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Pei Yuan Wu and Katsutoshi Takahashi 

We study the problem of determining which bounded linear operator on a Hilbert 
space can be dilated to a singular unitary operator. Some of the partial results we obtained 
are (1) every strict contraction has a diagonal unitary dilation, (2) every Co contraction 
has a singular unitary dilation, and (3) a contraction with one of its defect indices finite has 
a singular unitary dilation if and only if it is the direct sum of a singular unitary operator 
and a Co(N) contraction. Such results display a scenario which is in marked contrast to 
that  of the classical case where we have the absolute continuity of the minimal unitary 
power dilation of any completely nonunitary contraction. 

1. I N T R O D U C T I O N  

Let A and B be bounded linear operators on the complex Hilbert spaces H 

and K,  respectively. A is said to dilate to B if there is an isometry V from H to K such 

that  A = V*BV or, equivalently, if B is unitarily equivalent to some 2 • 2 operator matrix 

with A in its upper left corner. In this paper, we launch the study of the problem as 

to which operator can be dilated to a singular unitary operator. (Recall that  a unitary 

operator is singular (resp. absolutely continuous) if its spectral measure is singular (resp. 

absolutely continuous) with respect to the Lebesgue measure on the unit circle). 

An early dilation result due to Halmos says that every contraction r(ll r !1< 1) 
has a unitary dilation 

T 1 (1 - TT*)�89 
[ (1- T*T)~ -T* ] 

This is later generalized by Sz.-Nagy to his celebrated power dilation theorem: 

for every contraction T on H, there is a unitary operator U on K and an isometry V 

from H to K such that T n = V*U~V for M1 positive integer n. If T is further required 

to be completely nonunitary (c.n.u.), that  is, T has no nontrivial reducing subspace on 
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which T is unitary, and the unitary dilation U is required to be minimal in the sense that 

K =  ~/ U'~VH, then U is unique (up to unitary equivalence) and is absolutely continuous. 

This property of the minimal unitary power dilation can be exploited to yieid a functional 

calculus for c.n.u, contractions. Its further development by Sz.-Nagy and Foias in the 60s 

culminates in a functional model for such contractions revealing its rich structure theory. 

Such developments are all chronicled in the by now classic monograph [14]. 

Contrary to the classical case, dilation to singular unitary operators, the other 

extreme of the absolutely continuous ones, seems not to have been systematically studied. 

Hopefully, their study here will lead to a deeper understanding of the structure of contrac- 

tions. A special case of such dilations is the dilation to diagonal unitary operators. Recall 

that an operator is diagonal if it is unitarily equivalent to a diagonal matrix 

),2 0 
diag(),~) = 

0 

In Section 2 below, we start by considering diagonal unitary dilations. One too! 

we use for our purpose is a result of Nakamura [12] that an operator T has its numeri- 

cal range contained in a triangle Aabe if and only if T dilates to the diagonal operator 

aI (9 bI (9 cI. As consequences�9 we are able to show that every operator wi th numerical ra- 

dius no bigger than -1 and every c.n.u, normal contraction has a diagonal unitary dilation. 
2 

These can also be proved, together with the diagonal unitary dilation for strict contrac- 

tions and nilpo~ent contractions, via a deeper theorem of Arveson [3, Theorem 1.3.1] on 

the power dilation co the direct sum of copies of a Jordan block. The class of operators 

with a diagonal unitary dilation can be enlarged to include all algebraic contractions and 

even certain C0 contractions: this will be further pursued in Section 3. 

The main result in Section 3 is Theorem a.t in which we give a characterization 

of those contractions T with at least one of its defect indices finite which adimit a singular 

unitary dilation: T has such a dilation if and only if it is the direct sum of a singular 

unitary operator and a Co(N) contraction. The proof of the necessity is based on a cer- 

tain generalization of Carey's finite-rank perturbation result [5], which is applicable here 

because of our finite defect index assumption. On the other hand. the sufficiency follows 

from the more general theorem that every C0 contraction has a singular unitary dilation. 

Section 4 is devoted to the related problem of the finite-rank pert~arbation of 

singular unitary operators. It turns out that the class of contractions which are such a 

perturbation coinci des with those with finite defect indices which admit a singular unitary 
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dilation. We end in Section 5 with two open problems. 

For convenience, in the following we will only consider operators on a separable 

Hilbert space. The monographs [14] and [4] will be our references for the terminologies and 

results of the Sz.-Nagy-Foias contraction theory. Some of the theorems and the ideas of 

their proofs in this paper have been announced in [19]. 

2. DIAGONAL UNITARY DILATION 

Since every contraction can be uniquely decomposed as the direct sum of a uni- 

tary operator and a c.n.u, contraction, our first result below says that in the considering 

of the diagonal or singular unitary dilations we may restrict ourselves to the c.n.u, ones. 

P R O P O S I T I O N  2.1, An operator T dilates to a diagonal (resp. singular) 

unitary operator if and only if T is a contraction, its unitary part is diagonal (resp. sin- 

gular) and its c.n.u, part dilates to a diagonal (resp. singular) unitary operator. 

We omit its easy proof. 

The next result gives an alternative expression for dilating to a diagonal unitary 

operator in terms of an (infinite) C*-convex combination. It is an easy consequence of [16, 

Lemma 3.2]. We include the proof here for completeness. 

P R O P O S I T I O N  2.2. An operator T dilates to a diagonal unitary operator 

if and only i fT  = ~ A~T~ in the strong operator topology (SOT), where 1A~I = 1 for all n 

and the T'~ are positive operators satisfying ~ T~ : 1 in SOT. In this case, all the T" s 

may be taken to be of rank one. 

P R O O F .  If T on H dilates to D =d iag (~)  on g2, say, T = V*DV for some 

isometry V from H to g2, then, letting T~ = V*P~V, where P~ denotes the rank-one 

(orthogonal) projection 

P n ( x 0 , 2 : l , ' " , 2 : n , " ' )  = ( 0 , 0 , ' ' ' , 2 : n , 0 , ' ' ' )  

on g2 we obtain T = ~ A=T= in SOT. On the other hand, V*V = 1 implies that ~ T ~  = 1 
n 

in SOT. 

For the converse, if A~ and T~ satisfy the asserted conditions, then the operator 

V = [T o T1 } ...]t is an isometry from H to ~ |  satisfying T = V*DV, where D is the 
n 

diagonal unitary operator 

D ( E G m . ) = E O , k ~ z ~  for EOx~ in E @ H .  
~z n n n 

This shows that T dilates to D as asserted. I 
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A special case of the preceding proposition when there are only three A~s can be 

further characterized in terms of the numerical range. This was given in [20, Proposition 

2.5]; the equivalence of (a) and (b) is due to Nakamura [12]. Reca!! t h a  the numerical 

range W(T)  of an operator T on H is the  set {ITz, x):  x E H, 11 x ll= 1}and the numerical 

radius w(T) of T is sup{l(Tz , z)] :  x ~ H, II x ]l= 1}, where (,, .} denotes the inner produc~ 

in H.  For their properties, readers may consult [11, Chapter 22]. 

P R O P O S I T I O N  2.3. For any operator T, the following conditions are equiv- 

alent: 

T s = l ;  

C. 

(a) W(T) is contained inside a triangle Aabc; 

(b) T = aT1 + bT2 + eta for some positive operators T1, T2 and T3 with T1 + 7'2 + 

(c) T can be dilated to a normal operator with spectrum consisting of a, b and 

Two consequences of this proposition are the following. 
1 

C O R O L L A R Y  2,4. If the numerical radius of an operator T is at most -~, 

then T dilates to a diagonal unitary operator with three points in its spectrum. 

P R O O F .  Since the hypothesis implies that  W(T) is contained in any equilat- 

eral triangle inscribed in the unit circle, the conclusion follows from Proposition 2.3. I, 

This corollary was pointed out to the first author by D. Farenick aztd was noted 

before in [20]. 

C O R O L L A R Y  2.5. A normal operator dilates to a diagonal (resp. singular) 

unitary operator if and only if it is a contraction whose unitary part i s diagonal (resp. sin- 

gular). 

P R O O F .  In view of Proposition 2.1, we need only check that  every c.n.u. 

normal contraction T dilates to a diagonal unitary operator. By the spectral theorem, T 

can be written as the direct sum ~ | where each T~ has its spectrum contained in a 

triangle whose three vertices are rational points on the unit circle. By Proposition 2.3, each 

T~ dilates to a diagonal unitary operator, say, Us, and therefore T dilates to the singular 

unitary ~ @U~..  

Another powerful resul t which can be enlisted for our purpose is a deep theorem 

of Arveson [3, Theorem 1.3.t]. For any n > 1, let J~ denote the n • n nilpotent Jordan 
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block 

0 

& =  

1 0 

T H E O R E M  2.6. Let T be a contraction and 2 < n < oe. Then the following 

are equivalent: 

(a) T J , j  = 1 , . . . , n  - 1, dilates simultaneously to Y~ (9 J~ G "  "; 
n--1 

(h) 1 + 2 R e ~  )~JT j >_ 0 hoIds for all )% I),[ = 1; 
j = l  

(c) 2Re[(1 - aT)*a"T ~] <_ 1 - T*T holds for all a, i)q : 1. 

Note that  Corollary 2.4 can be proved via Theorem 2.6. Indeed, it is easily 
1 

seen that  w(T)  < ~ implies that  T is a contraction and is equivalent to the condition that  

1 + 2Re( IT)  >_ 0 for all ),, Ill = 1. Hence the equivalence of (a) and (b) yields that  T 

dilates to J2 | J~ O-"  ", which implies that  T dilates to the diagonal unitary operator [001] [00 ] 
1 0 0 �9 1 0 0 @-- .  
010 010 

P R O P O S I T I O N  2.7. Every strict contraction has a diagonal unitary dila- 

tion. 

P R O O F .  If T is a strict contraction (ll T II< 1), then, letting s be such that  

0 < e < 1 - T ' T ,  for any vector x and any/~, ]t I = 1, we have 

(2Re((1 - aZ)*A~Tn)x, x) = 2Re((1 - tT )*~nr~x ,  x) 

_< 2 II (i- IT)'I~T ~ I1" II z 112_< 2(1+ ]l T If) II T II~ll x II 2 

-< ~ II x II 2 

for sufficiently large n. Since e It ~ It2--- ((1 - r * r ) x , x ) ,  this verifies condition (c) in 

Theorem 2.6. Hence T dilates to J~ | J~ @ . . .  and therefore it dilates to the singular 

unitary operator 

i 

(9 

0 

0 1 
1 

1 0 

@ . . . . ,  

We remark that  Corollary 2.5 can also be proved via Proposition 2.7. Indeed, 

if T is a c.n.u, normal contraction, then by the spectral theorem, T = ~ | where each 
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T~ is a strict contraction. Thus Proposition 2.7 implies that  T dilates to a diagonal uni tary 

operator.  

Another  consequence of Theorem 2.6 is that  every nilpo~en~ contra,c~ion has a 

diagonal uni tary  dilation. For if the contraction T is such that  T n = 0, then (c) of Theorem 

2.6 obviously holds and hence T dilates to J~@J,| which implies our assertion as before. 

However, this par t icular  result can be proved in a more elementary fashion by following 

the line of arguments in [11, Solution 152], which will yield that  a contraction T satisfies 

T ~ = 0 if and only if it power dilates to J~ | - . -  @ J~, where k = d i m  ran(1 - T 'T)}  and, 

k 

in this case, k is the smallest such number. This can be further generalized to t, he result 

that  every algebraic contraction has a diagonal uni tary dilation. Indeed. in [20, Theorem 

1.4] it was proved that  every algebraic contraction T can be power dilated to an oprator  of 

the form T1 �9 T1 | . - . ,  where T1 is a cyclic contraction on a finite-dimensional space with 

rank(1 - T~T~) < 1 and with the same minimal polynomial as that  of T. Hence T dilates ~o 

U|174 where U is the Hahnos dilation of T> Since U acts on a finite-dimensional space. 

U | U | .. is a diagonal unitary dilation of T. We will further pursue this at the end of 

the next section by showing that even some Co contractions have diagonal uni tary  dilations. 

3. S I N G U L A R  U N I T A R Y  D I L A T I O N  

For an arbi t rary  operator  T, let dT = d i m r a n ( i  - * ~ z r)~ and dT.=dimran(1 TT*)} 

denote its defect indices. A contraction T is of class Co if it is c.n.u, and there is some 

nonzero function f in H ~176 such that  f (T )  = 0. In this case, there is an inner function r 

called the minimal function of T which satisfies r  = 0 and divides any f in H ~176 with 

f (T )  = 0. Note that  the defect indices of a Co contract ion must  equal. A Co contraction 

with defect indices at most N ( <  oo) is said to be of class Co(N). The main theorem of 

this section is the following. 

T H E O R E M  3.1. Let T be a contraction on H with at least one defect index 

finite. Then T dilates to a singular unitary operator U if and only if it is a direct sum of 

a singular unitary operator and a Co(N) contraction. Moreover, in this case~ the singular 

unitary operator U can be chosen to act on a space K containing H with d i m ( K G H )  = dT. 

To prove this, we start  with some lemmas which i l lustrate more clearly what 

the hypothesis of finite defect index means. The first lemma is in [10, Lemma 4]. 

L E M M A  3.2 Let T be an operator from H1 to H> Then dT+dim ker 

T* = d r . + d i m  ker T. 

L E M M A  3.3 Let T be an operator on H: Then dr = tiT* < cyo (rasp. 
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dT< dr*) if and only if T is the sum of a unitary operator (resp. nonunitary isometry) 

and a finite-rank operator (with rank equal to dr). In this case, T is FredhoIm ( resp. left 

Fredholm) with ind T = 0 (resp. ind T = dT -- dr.). 

For the Fredholm theory, readers may consult [8, Chapter XI]. 

P R O O F .  If dr = tiT. < c~, then dim ker T =d im ker T* by Lemma 3.2. Hence 

T has the polar decomposition T = U(T*T)�89 with U unitary. Since dr  = rank ( t  - T'T)  is 
. 1 

f inite,  we  have  T*T = 1 + F ,  where rank F = dr < oo. Hence rank((T - 1) =rank( (1  + 

F)�89 - 1) = dT < cx~ and thus T = U + U((T*T)�89 - 1) expresses T as the sum of a unitary 

operator and a finite-rank operator. 

To prove the converse, assume that  T = U + F ,  where U is unitary and F 

has finite rank. Then T*T = (U* + F*)(U + F) = 1 + (U*F + F*U + F ' F )  and hence 

dr < co. Similarly, we have dr .  < co. On the other hand, our assumption implies that  T 

is a Fredholm operator with ind T = 0. Hence dim ker T =d im ker T* < co. We conclude 

from Lemma 3.2 that  dr = tiT. < oe. Similar arguments work for the case dT< tiT,. (Note 

that  in a separable space, the condition dr < dr* implicitly implies that  dT< c~.) ,  

The assertion for the case dr < dr* in the preceding lemma appeared before in 

[2, Theorem 4.2]. 

Now we can bring into play the perturbation result. Recall that  every isometry 

V has a canonical decomposition V = U~ �9 U~ O S, where U~ (resp. Ua) is a singular (resp. 

absolutely continuous) unitary operator, and S is a unilateral shift (with some multiplic- 

ity). In generalizing the celebrated Rosenblum-Kato perturbation theorem (for unitary 

operators),  Carey proved that  if 1/1 and V2 are isometrics with V1 - V2 of finite rank, then 

the absolutely continuous unitary parts of 1/1 and V2 are unitarily equivalent (cf. [5]). Our 

next result can be seen as a generalization of this although its proof also depends on it. 

P R O P O S I T I O N  3.4. Let T be a contraction. I fT  = V1 + F, where 1/1 is an 

isometry (resp. nonunitary coisometry) and F is of finite rank, and T dilates to another 

isometry ~ ,  then the absolutely continuous unitary part of V1 (resp. the simple bilateral 

shift) is a direct summand of V2. 

P R O O F .  First assume that  V1 is an isometry. Let V1 = U | S, where U is 

unitary and S is a unilateral shift, and 

F = [  F1Fa F4F2 t 

with respect to the same decomposition of the underlying space. Since U + F1 also dilates 

to 17% we may assume without loss of generality that  1/1 is itself unitary. 
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 et =r cA} Since  is nisometr, weh w 

c* B c =L0 l j  

Hence (1) ~ * ~  + V ; F  + F ' ~  + F ' F  + B * S  = 1, (2) A ~  + A~F + C ~  : 0 and (3) 

A ' A +  C*C = 1. (1) implies that  B*B = - V I " F - F * V I  - F * F  is finite-rank and hence rank 

B < e~. This, together with (2), yields that  A'V1 = - A * F  - C*B is finite-rank. Hence 

the same is true for A* = A*V~VI* or A. Since 

0 C + B 0 ' 

by the Fredholm theory C is left Fredholm with 

i n d C = i n d V l + i n d C = i n d [ V 1  0 ] 0 C = i n d � 8 9  

. 1 "3 Thus C has the polar decomposition C = V3(C C)~ with �89 isometry. Now ~ ) implies that  

C*C is the sum of the identity and a finite-rank operator. The same is true for (C'C)�89 

Thus C is the sum of I4 and a finite-rank operator. Consequently, the difference of the 

isometrics V~ and V1 �9 V3 is of finite rank. Carey~s result then implies that  their absolutely 

continuous unitary parts are unitarily equivalent. In particular, this imples that  the abso- 

lutely continuous unitary part  of V1 is a direct summand of 14 as asserted. 

The proof for t/1 a nonunitary coisometry is analogous co the one above. Here 

we only give a brief sketch. As before, we may assume that  ~ ~ is the simple backward 

shift, that  is, the adjoint of the unilateral shift of multiplicity one. Then we deduce that  

B and A are both of finite rank. By the Fredholm theory and the polar decomposition, we 
. 1 

have C = V3(C C)g, where Va is a nonunitary isome~ry. As before, C is the sum of V~ and 

a finite-rank operator, and hence the difference of V2 and V1 @ V~ is of finite rank. Since 

the simple unilateral shift is a direct summand of Va and since the former is a rank-one 

perturbation of a simple bilateral shift W, we infer that  V2 and an isometry of the form 

W | V4 differ by a finite-rank operator. Carey~s result then implies that  W is a direct 

summand of the absolutely continuous unitary part  of V2, completing the proof. I 

P R O P O S I T I O N  3.5. Any c.n.u. Cll contraction with finite defect indices 

and any contraction with unequal defect indices admit no singular unitary dilation. 

A contraction T is of class Cll if T~x 7 4 0 and T*~x 7 4 0 in norm for any 

nonzero vector x. 
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P R O O F .  Let T be a c.n.u. Ctl contraction which dilates to a singular uni- 

tary operator V. Then T is quasisimilar to an absolutely continuous unitary operator U 

(cf.[14, Proposition II.3.5.]). By [1], there is a nonzero invariant subspace K for T such 

that T1 = TIK  is similar to a direct summand of U, say, U1. In particular, T1 is a c.n.u. Cll 

contraction with finite (and equal) defect indices and U1 is an absolutely continuous unitary 

operator. Lemma 3.3 implies that T1 = U2 + F,  where U2 is unitary and F is finite-rank. 

We infer from [7, Lemma] that 0"1 is unitarily equivalent to the absolutely continuous part 

U~ of U2. Since T1 = U2 + F dilates to the singular unitary V, Proposition 3.4 implies that 

U~ is a direct summand of V, which is impossible. This shows that T cannot have any 

singular unitary dilation. 

On the other hand, if T is a contraction with dT 7 ~ dr., then, without loss of 

generality, we may assume that dT> dT.. Hence Lemma 3.3 implies that T is the sum of a 

nonunitary coisometry and a finite-rank operator. Our assertion for T again follows from 

Proposition 3.4. i 

Now we are ready for the proof of the 

N E C E S S I T Y  OF T H E O R E M  3.1. Let T be a c.n.u, contraction with 

d~. < co which admits a singular unitary dilation. We have to show that T is of class Co(N). 

0 T2 be the triangulation of type C.1 * (cf. [14, Theorem II. 4.1]). 
0 C.0 

0 T4 and T2 = 0 T6 of 

type [C01 * I [Coo * ] 
L 0 C1~ and 0 Clo ' respectively (cf. [18, Lemma 3.2]). We can deduce 

that dTl,dr~ < d T <  co, and also dT~ < dT3 <_ dr1 < co, dT4 = d ~  <_ dxl < co, dT5 = 

dr~ < dT~ < oo and dT~ < dT~ (cf. [14, Proposition VII. 3.6]). Hence T3, T4 and T6 have no 

singular unitary dilation by Proposition 3.5. This implies that in the above triangulations, 

these three operators are absent. Therefore, T = Ts is of class Co(N). | 

To prove the sufficiency part of Theorem 3.1, we need show that every Co(N) 

contraction has a singular unitary dilation. Actually, more is true: every Co contraction 

has such a dilation. We now embark on its proof. The next proposition should be known 

among experts; we include its proof here for completeness. In the finite-dimensional case, 

it is a special case of [15, Theorem 2]. 

P R O P O S I T I O N  3.6. I f  T is a contraction on H with equal defect indices, 

then T has a unitary dilation on a space K which contains H with dim(K O H) =dT. 
Moreover, in this case, dT is the smallest such dimension. 
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and let 

PROOF. Let W Be a unitary operator from ran(1 - T*T)-~ onto r a n ( l ~  .TT*)7, 

T (1 - TT*)�89 ] 
U =  (I-T'T)�89 - T * w  j 

on I f  : H O ran(1 - T*T)~.I Here we need the fact that  T*(1 - TT')�89 = (1 - T*T)�89 * 

to ensure that  - T * W  is an operator on ran(1 , 1 - T  T ) <  It is routine to check that  U is 

indeed unitary on K.  

On the other hand, if 

u,=[T A1 
B C j on K'=H(gH' 

is another unitary dilation of T, then from 

U"U'= ] C* = i LA ~ B C  

we obtain that  T*T + B*B = 1 

dim H' .  " 

and hence dT =dim r a n ( 1 -  T ' T )  = dim ranB*B < 

P R O P O S I T I O N  3.7. If  T is a Co(N) contraction and T = U + P~ where 

U is unitary and F is of finite rank, then U is singular. 

0 ] be the minimal isometric dilation of PROOF. Let V 
= . ~  S j 

p o w e r  

T (cf. [14, Theorem 1.4.k]). Since V is an isometry, a simple computat ion yields that  

T*T + T{T1 = k. Hence rank T~*Tl=rank(1 - T 'T)  = dT< 0% and therefore rank Ti < co. 

E F 0 ] is of finite rank. Carey's result implies that  the absolutely T h u s V - ( U |  T1 0 
.1 

continuous unitary parts of the isometrles V and U | S are unitarily equivalent. Since V 

itself is a unilateral shift (cf. [14, Thereto VI.3.1]); we infer that  U must be singular, u 

The next result is our promised unitary dilation for Co contractions. 

P R O P O S I T I O N  3.8 Every Co contraction on H has a singular unitary di- 

lation on a space K(D_ H) with dim ( K G  H) = dT. 

P R O O F .  Let T be a Co(N) contraction on H with dr  = d r *  = a < c ~ .  By 

Proposition 3.6, T h a s a u n i t a r y d i l a t i o n U =  B C o n K = H @ C  ~. I f T ' =  B 

then it is easily seen that  dr, = n and T r'~ --+ 0 nd T ' ' ~  ~ 0 in the s t rong operator topol- 

ogy. Hence T' is also a Co(N) contraction. Since T' = U + F, where F = 00 - C  

finite-rank, Proposition 3.7 implies that  U is singular. Hence T has the singular unitary 
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dilation U with the asserted property. 

More generally, if T is a Co contraction with minimal function r then it was 

proved in [13, Lemma 4] that T power dilates to S(r @ S(r @. . . ,  where S(r is the 

operator on H(~) = H 2 O ~H 2 defined by S( r  = P(z f ( z ) ) ,  P being the (orthogonal) 

projection from H 2 onto H(r Since S(~b) has defect indices equal to 1, as shown above 

it dilates to a singular unitary operator, say, U1. Then T dilates to the singular unitary 

u~ o u~ @.. . .  R 

To conclude this section, we derive a condition under which a Co contraction 

has a diagonM unitary dilation. A comp!ete characterization of such Co contractions seems 

difficult to come by. 

P R O P O S I T I O N  3.9. I f  T is a Co contraction whose rninirnaI function ~ is 

a BIaschke product with the property that the closure of the zeros of r is a countable set, 

then T has a diagonal unitary dilation. 

P R O O F .  Since r dilates to S(r | 8(r O ' " ,  we need only prove our as- 

sertion for S(r By Proposition 3.6, S(~) has a unitary diIation U = [ S(r A ] B C on 
L .1 

K = | c We check that U is diagonal unitary If r ' =  [ S(O) 0 ] then, as in 
[ B 0 ] ' 

the proof of Proposition 3.8, T ~ is a C0(N) contraction with dr, = 1. Hence T '  is unitarily 

equivalent to S(~b)for some inner function ~. Since ~ ( T ' ) =  r ~ ( S !  #~)) 0 ] j = 0 ,  w e  
L 

have r162 = 0 and r = 0, and thus both r and ~,~(z) = z, are divisors of ~. We 

infer that ~(z) = zr Hence ~ is also a Blaschke product with the closure of its zeros a 

countable set. Since U is a rank-one perturbation of T ', we may apply [6, Theorem 7.1] to 

S(O) to deduce that U is a diagonal unitary operator. This completes the proof. I 

C O R O L L A R Y  3.10. Every algebraic contraction has a diagonal unitary di- 
lation. 

P R O O F .  This follows from Proposition 3.9 since every algebraic contraction 

is the direct sum of a unitary operator with finitely many points in its spectrum and a Co 

contraction whose minimM function is a Blaschke product with finitely many zeros, u 

4. F I N I T E - R A N K  P E R T U R B A T I O N  

From the proofs of Propositions 3.7 and 3.8, it can be observed that there is an 

intimate relation between finite-rank perturbations and dilations by a finite-dimensionM 

space. This will be made more transparent by the next result, the main theorem of this 
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section. It shows that in the situation considered here, they are actually equivalent. 

T H E O R E M  4.1. A contraction T is the sum of a singular unitary operator 

U and a finite-rank operator F if and only if it is the direct sum of a singular unitary 

operator U1 and a Co(N) contraction T1. In this case, the multiplicities of U and U! differ 

at most by rank F and dT1 <_ rank F holds. Moreover, we may choose F to have rank 

equal to dT. 

Recall that  the multiplicity #(T)  of an operator T on H is the minimad cardl- 

nality of a subset X of H for which H is the closed linear span of the vectors T~x with 

x E X a n d n = 0 , 1 , 2 , - . . .  T i s  cyclic i f # ( T ) = l .  

An immediate corollary of the preceding theorem is 

C O R O L L A R Y  4.2. A contraction T is the rank-one perturbation of a singular 

unitary operator if and onl 5. if it is the direct sum of a singular unitary operator and an 

operator of th~ form S(r where o ~s an tuner function. 

This generalizes Clark's result [6] that every S(r is the rank-one perturbation 

of a singular unitary operator. (Actually, he did more than this by constructing explicitly 

all rank-one perturbations of S(r which are unitary.) 

The following two lemmas are in the domain of the general contraction theory. 

Their proofs are given here for completeness. [Recall that  any contraction T can be decom- 

posed uniquely as the direct sum T = Us (9 U~ (9 To, where U., and U, are singular and 

absolutely continuous unitary and To is a c.n.u, contraction T is said to be absolutely 

continuous if in this decomposition Us is absent. For an operator T, Lat T denotes the 

lattice of its invarian~ subspaces. 

L E M M A  4.3. I f  T = Us (9 U~ (9 To on H = H~ (9 H~ (9 Ito is a contraction 

decomposed as above, then Lat T =Lat  U~(pLat (U~ (9 To). 

P R O O F .  Let M ELat T. We decompose the contraction T I M  as T I M  = 

T1 (9 T2 | T3 on M = M1 | 2r (9 Ms.~ where T1 and T2 are singular and absoiutely continu- 

ous unitary opera~ors and T3 is a c.n.u, contraction. Since -~J1 and 3/i2 ~) M3 are invariant 

subspaces for T, to prove that M is in Lat U~(9 Lat(U~ (9 To) we need only show that 

M~ C_ H, and M2 @ M3 C_ H~ | Ho. 

If U on KCD 7/o) is the minimal unitary power dilation of To, then W = 

Us (9 U~ (9 U is the mimmal unitary power dilation of T. Hence, in particuIar. W is a 

unitary power dilation of T2 (9 Ta. There exists a reducing subspace L(_D M2 (9 Ms) for W 

such that W I L  is the minimal unitary power dilation of T2 @ Ta. Since T2 is absolutely 

continuous unitary and Ts is c.n.u., W L must be absolutely continuous unitary. On the 

other hand, since Lat W = Lat U~@ Lat (Uo (PU) (cf. [9, Lemma 1]), we have L C_ H~(PK. 

Therefore, M2 @ M3 C_ L A H _C (H~ (9 K)  n (H~ (9 H~ (9 H0) = H~ �9 H0. a n  even simpler 
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argument along this line applied to M1 yields that M1 C H,. This shows that Lat T C Lat 

U,@ Lat (U~ �9 To). Since the converse inclusion is trivial, the proof is completed. J 

L E M M A 4 . 4 .  I f T =  [ T1 * ] 0 T2 on H = H1 @ H2 is a contraction, then the 

singular unitary part of T is the direct sum of the singular unitary parts of TI and T2. 

P R O O F .  Let T = Us | T ~ on H = H~ | H ~, where U~ is singular unitary 

and T' is an absolutely continuous contraction. Since Lat T = Lat U~@ Lat T ~ by Lemma 

4.3, we have//1 = K �9 K', where K E Lat U~ and K'  C Lat Tq Then K is an invariant 

subspace for T1 and [/1 =- T1]K~ = TIK = U~[K is singular unitary since every invariant 

subspace for a singular unitary operator is actually reducing (d. [17, Lemma 3]). Hence 

T1 = U1 �9 T[ on H~ = K @ K', where T; is absolutely continuous. Similarly, applying the 

a b ~ 1 7 6  T~** T;O ] yields that T; : U; @ g~* ~ H~ : M | M'  f~ s~ 

singular unitary U~ and absolutely continuous T~. It follows that 

U1 0 0 0 
OT OX 

T =  
0 0 U2 0 
OOOT  

with U1 @ U2 singular unitary and [ T~ 
[ 0 

on H = K @ K ' @ M @ M '  

X ] absolutely continuous. This implies that l 
K | M _ / I s  and K' G M' C_ H'. Since (K @ M) | (K' @ M') = H = H~ @ H', we must 

have K �9 M = H~ and K' �9 M ' = Hq It follows that U1 @ U2 = Us as asserted. | 

The next lemma yields the relation between the multiplicities of the singular 

unitary parts of contractions which differ by a finite-rank operator. 

L E M M A  4.5. Let T1 and T2 be contractions on H with rank (T1 - T 2 )  < 

~ .  Then the multiplicities of the singular unitary parts U1, and U2, of T1 and T2 satisfy 

,(Uls) < ,(g~s)+rank(T1 - T~) and ,(U~s) < #(U~)+rank(T~ - T~). 

P R O O F .  Let F = T1 - T2 and k =rank F. Assume that ran F is spanned 

by the vectors Xl,- . . ,  x~. If K is the closed subspace of H spanned by T~x~, m >_ 0 and 

1 < n < k, then K is invariant for both T1 and T2. Hence we have the triangulations 

0 T12 , T2= 0 T22 and F =  0 0 

on H = K G K J-. If U~i is the singular unitary part of TiN, i , j  = 1, 2, then UI~ = Un | 0"12 

and U2~ = U2~ ~)U2~ by Lemma4.4. We have #(U~I) ~ #(T~) _< k for i = 1,2. On 

the other hand, from T1 - T2 = F we have TI~ = T22 and hence 0"12 = [/22. Finally. 

p(Uls) _< #(U~) + #(U~) ~ k + #(U~2) _~ k + #(U2~) and similarly for the other inequality, n 
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We are now ready for the 

P R O O F  O F  T H E O R E M  4.1. Assume first ~hat T = U + F ,  where U is 

singular uni tary and F is of finite rank. Let T = U1 | T1 on H = K (9 L, where U1 is 

uni tary and T1 is c.n.u.. Let R = ran(1 * 1- - T{T1)2 and let 

Ti T~ ) ~ ( 1 -  ~ ~- 

�88 = U ~ |  

0 
I 0 

1 

o n  
~176 

o 

K e ( L e s e R e . - . )  

be the minimal isometric power dilation of T (cf. [14, pp.17-18]). If 

0 
1 0 

V = U |  

~  , 

and E = V1 - V, then we claim that rank E =rank F.  Since 

F 0 . .-  
0 (1 * 1- - TIT1)~ 0 . . .  

E =  0 0 0 . . . .  

we obviously have rank E _>rank F.  To prove the reverse inequality, let 

E ' =  (1 -T'T)}  0 on H@H. 

The rank E =rank E'. Since 1 - T*T = 1 - (U* + F*)(U + F)  = - U * F  - F*U - F*F > O, 

we have - U * F  - F*U _> F*F and hence ran F*=ranF*F C r a n ( - U * F  , F'U) .  Let 

- U * F  = B 0 on H =ran(U*F*)*@ker U*F. Since 

_ U . F _ F , u = [ A + A *  B * ]  B 0 > F*F >_ O, 

we infer that B = 0 and thus 

- U ' F - F ' U =  [ A + A *  O] 
0 0j" 

It follows that  ranF* C_ran(-U*F - F'U)  C_ ran(U 'F)* .  Therefore 

[ELF2] 
F~ = 0 0 on H = ran(U 'F)*  �9 ker U*F. 
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We also have ran(1 - T'T) = r a n ( - U * F  - F*U - F'F) C_ r a n ( - V * F  - F*U)+ran F*F C 

ran(U'F)*.  Let ( 1 -  T'T)�89 = [ F3 0 ] 0 0 on H=ran(U*F)*@ker U*F. Then 

F ; o o o  
E' = F~ O 0 0 

P 3 o o o  ' 

0 0 0 0  

and thus rank E =rank E ~ _< rank(U'F)* =rank F, completing the proof of our claim. In 
, ! 

particular, we have tiT1 =rank (1 - T~ T1)2 _rank E =rank F. 

Carey~s result implies that the absolutely continuous unitary parts of V and V1 

are unitarily equivalent. Since U, the unitary part of V, is singular, the same is true for 

the unitary part of 171. This implies that U1 and the unitary part of the minimal isometric 

power dilation V2 of T1 are both singular. Hence V2 must be a unilateral shift (el. [14, 

Theorem II. 6.4]). This latter condition dictates that T1 satisfy T~ *~ -~ 0 in the strong 

operator topology. A similar argument applied to T* yields that T~ ~ 0 in the strong op- 

erator topology. Since dT, _<rank F < c~ as noted above, we conclude that T1 is a Co(N) 
contraction. Finally, since rank(V - V1) =rank F, the assertion on the multiplicities of U 

and U1 follows from Lemma 4.5. 

For the converse, we need only consider for Co(N) contractions. Let T be such 

a contraction. Since dT= dr. < oc, by Lemma 3.3, T is the sum of a unitary operator U 

and a finite-rank operator F with rank F = dT. Proposition 3.7 implies that U is singular. 

This completes the proof. I 

5. O P E N  P R O B L E M S  

Although we obtained various necessary and/or sufficient conditions, the main 

probIem addressed in this paper, which contraction has a singular (resp. diagonal) unitary 

dilation, remains open. It may turn out that this general problem admits no tractable 

answer. Some special cases of it are still worth exploring. Here are two. 

Q U E S T I O N  5.1. Is it true that no c.n.u. Cll contraction has a singular 
unitary dilation? 

Proposition 3.5 says that this is indeed the case for those c.n.u. Cll contrac- 

tions with finite defect indices. The problem can be reduced to considering only those 

which are similar to a cyclic unitary operator. Indeed, since every c.n:u. Cll contraction T 

is quasisimilar to a unitary operator, [1] implies that there is an invariant subspace K for 

T such that T!K is similar to some unitary operator. Using the spectral theorem, we may 
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even assume that the unitary operator is cyclic. 

Q U E S T I O N  5.2. For which (nonconstant) inner function r does S(r have 

a diagonal unitary dilation? 

A slightly more general condition on r than the one in Proposition 3.9 was give 

in [6, Theorem 7.1]. Its complete characterization will yield, as did in our Section 3, a 

necessary and sufficient condition for a contraction with at least one defect index finite to 

have a diagonal unitary dilation. 
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