Integr. equ. oper. theory 33 (1999) 231 - 247 .
0378-620X/99/020231-17 $ 1.50+0.20/0 Integral Eq”at;_";‘]“s
© Birkhiuser Verlag, Basel, 1999 and Operator Theory

Singular Unitary Dilations

Pei Yuan Wu and Katsutoshi Takahashi

We study the problem of determining which bounded linear operator on a Hilbert
space can be dilated to a singular unitary operator. Some of the partial results we obtained
are (1) every strict contraction has a diagonal unitary dilation, (2) every Co contraction
has a singular unitary dilation, and (3) a contraction with one of its defect indices finite has
a singular unitary dilation if and only if it is the direct sum of a singular unitary operator
and a Cy(N) contraction. Such results display a scenario which is in marked contrast to
that of the classical case where we have the absolute continuity of the minimal unitary
power dilation of any completely nonunitary contraction.

1. INTRODUCTION

Let A and B be bounded linear operators on the complex Hilbert spaces H
and K, respectively. A is said to dilate to B if there is an isometry V from H to K such

that A = V*BV or, equivalently, if B is unitarily equivalent to some 2 x 2 operator matrix

2

with A in its upper left corner. In this paper, we launch the study of the problem as
to which operator can be dilated to a singular unitary operator. (Recall that a unitary
operator is singular (resp. absolutely continuous) if its spectral measure is singular (resp.
absolutely continuous) with respect to the Lebesgue measure on the unit circle).

An early dilation result due to Halmos says that every contraction T'(]| 7' ||< 1)
has a unitary dilation

T (1-TT*)3
(1—-1"T) —~T*

This is later generalized by Sz.-Nagy to his celebrated power dilation theorem:
for every contraction T on H, there is a unitary operator U/ on K and an isometry V
from H to K such that 7™ = V*U"V {or all positive integer n. If T is further required

to be completely nonunitary (c.n.u.), that is, T' has no nontrivial reducing subspace on
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which T is unitary, and the unitary dilation U is required to be minimal in the sense that
. oC
K= \/ U™V H, then I is unique (up to unitary equivalence) and is absolutely continuous.

This gigperty of the minimal unitary power dilation can be exploited to vield a functional
calculus for c.n.u. contractions. Its further development by Sz.-Nagy and Foias in the 60s
culminates in a functional model for such contractions revealing its rich structure theory.
Such developments are all chronicled in the by now classic monograph [14].

Contrary to the classical case, dilation to singular unitary operators, the other
extreme of the absolutely continuous ones, seems not to have been systematically studied:
Hopefully, their study here will lead to a deeper understanding of the structure of contrac-
tions. A special case of such dilations is the dilation to diagonal unitary operators. Recall
that an operator is diagonal if it is unitarily equivalent to a diagonal matrix

A1
A2 0
d]ag()‘n) = :
0

In Section 2 below, we start by considering diagonal unitary dilations. One tool
we use for our purpose is a result of Nakamura [12] that an operator T has its numeri-
cal range contained in a triangle Acbe if and only if T dilates to the diagonal operator
al @bl ®cl. As consequences, we are able to show that every operator with numerical ra-
dius no bigger than ! and every c.n.u. normal contraction has a diagonal unitary dilation.
These can also be proved, together with the diagonal unitary dilation for strict contrac-
tions and nilpotent contractions, via a deeper theorem of Arveson [3, Theorem 1.3.1] on
the power dilation to the direct sum of copies of a Jordan block. The class of operators
with a diagonal unitary dilation can be enlarged to include all algebraic contractions and
even certain Cy contractions; this will be further pursued in Section 3.

The main result in Section 3 is Theorem 3.1 in which we give a characterization
of those contractions T with at least one of its defect indices finite which adimit a singular
unitary dilation: T has such a dilation if and only if it is the direct sum of a singular
unitary operator and a Co{N) contraction. The proef of the necessity is based on a cer-
tain generalization of Carey’s finite-rank perturbation result [5], which is applicable here
because of our finite defect index assumption. On the other hand, the sufficiency follows
from the more general theorem that every Co contraction has a singular unitary dilation.

Section 4 is devoted to the related problem of the finite-rank perturbation of
singular unitary operators. [t turns out that the class of contractions which are such a
perturbation coincides with those with finite defect indices which admit a singular unitary
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dilation. We end in Section 5 with two open problems.

For convenience, in the following we will only consider operators on a separable
Hilbert space. The monographs [14] and [4] will be our references for the terminologies and
results of the Sz.-Nagy-Folas contraction theory. Some of the theorems and the ideas of

their proofs in this paper have been announced in [19].
2. DIAGONAL UNITARY DILATION

Since every contraction can be uniquely decomposed as the direct sum of a uni-
tary operator and a c.n.u. contraction, our first result below says that in the considering
of the diagonal or singular unitary dilations we may restrict ourselves to the c.n.u. ones.

PROPOSITION 2.1. An operator T dilates to a diagonal (resp. singular)
unitary operator if and only if T is a contraction, its unitary part is diagonal (resp. sin-
gular) and its c.n.v. part dilates to a diagonal (resp. singular) unitary operator.

We omit its easy proof.

The next result gives an alternative expression for dilating to a diagonal unitary
operator in terms of an (infinite) C*-convex combination. It is an easy consequence of [16,
Lemma 3.2]. We include the proof here for completeness.

PROPOSITION 2.2. An operator T dilates to a diagonal unitary operator
if and only if T =3 ATy in the strong operator topology (SOT), where |Ay| =1 for all n

and the T,s are positive operators satisfying » T, =1 in SOT. In this case, all the T's

may be taken to be of rank one.
PROOF. If T on H dilates to D =diag(),) on £2, say, T = V*DV for some
isometry V from H to £2, then, letting 7, = V*P,V, where P, denotes the rank-one

(orthogonal) projection
Pn(x()yxla""mny"') = (0707"' 71:11,707"')

on £%, we obtain T' = Z AT, in SOT. On the other hand, V*V = 1 implies that Z T,=1
in SOT. i i

For the converse, if A, and T, satisfy the asserted conditions, then the operator
V= [TO% Tl% «++J" is an isometry from H to > @H satisfying T = V*DV, where D is the

diagonal unitary operator

D(Z@%)=Z€B)\n$n for Ze}mn in EEBH.

This shows that T dilates to D as asserted. n



234 Wu and Takahashi

A special case of the preceding proposition when there are only three A s can be
further characterized in terms of the numerical range. This was given in [20, Proposition
2.5}; the equivalence of (a) and (b) is due to Nakamura [12]. Recall that the numerical
range W(T') of an operator T on H isthe set {{Tz,z) : z € H,|| z ||= 1} and the numerical
radius w(T) of T is sup{|{(Tz,z)| : = € H, || z ||= 1}, where (-, -} denotes the inner product
in H. For their properties, readers may consult [11, Chapter 22].

PROPOSITION 2.3. For any operator T, the following conditions are equiv-

alent:

(a) W(T) is contained inside a triangle Aabe;

{(b) T' = aTy + bTy + T3 for some positive operators Ty, Ty and Ty with Ty + 1o+
=1,

(¢) T can be dilated to a nermal operator with spectrum consisting of a,b and
c.

Two consequences of this proposition are the following.

COROLLARY 2.4. If the numerical radius of an operator T is at most %,
then T dilates to a diagonal unitary operator with three points in its spectrum.

PROOF. Since the hypothesis implies that W(T') is contained in any equilat-

eral triangle inscribed in the unit circle, the conclusion follows from Proposition 2.3.-8

This corollary was pointed out to the first author by D. Farenick and was noted
before in {20].

COROLLARY 2.5. A normal operator dilates to a diagonal (resp. singular)
unitary operator if and only if it is a contraction whose unitary part is diagonal (resp. sin-
gular).

PROOF. In view of Proposition 2.1, we need only check that every c.n.u.
normal contraction T' dilates to a diagonal unitary operator. By the spectral theorem, 7'

can be written as the direct sum Z @T,, where each T, has its spectrum contained in a

k23
triangle whose three vertices are rational points on the unit circle. By Proposition 2.3, each

T, dilates to a diagonal unitary operator, say, U,, and therefore T dilates to the singular
unitary E &U,. &

Another powerful result which can be enlisted for our purpose ig a deep theorem

of Arveson [3, Theorem 1.3.1]. For any n > 1, let J, denote the n X n nilpotent Jordan
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block

!
10|
THEOREM 2.6. Let T be a contraction end 2 < n < 0o. Then the following
are equivalent:
(a) 79,7 =1, --,n —1, dilates simultaneously to Ji @ Ji @ -+~

n-1
(b) 1 +2Re> " NT9 > 0 holds for all A, |A] = 1;
j=1

{c) 2Re[(1 = ATy A"T"] < 1 —T*T holds for all A, |M] = 1.
Note that Corollary 2.4 can be proved via Theorem 2.6. Indeed, it is easily

seen that w(T") < L implies that T" is a contraction and is equivalent to the condition that
14 2Re(AT) > 0 for all A,|A] = 1. Hence the equivalence of (a) and (b) yields that T
dilates to J, @ Jo @ - - -, which implies that T' dilates to the diagonal unitary operator

001 0 01
1001t 00O
010 010

PROPOSITION 2.7. FEvery strict contraction has a diagonal unttary dila-

tion.
PROOF. IfT is a strict contraction (|| 7 ||< 1), then, letting £ be such that
0 <e<1—-TT, for any vector z and any A, |A| = 1, we have
{(2Re((1 — AT)"A"T™)z, ) = 2Re{(1 — AT)* A" T"z, z)
20 @=2AT)y AT - 2 P< 20 I TN T I < |

ellz|?

INIA

for sufficiently large n. Since ¢ || @ I’< {(1 — T*T)=,z), this verifies condition (c) in
Theorem 2.6. Hence T dilates to J, & J, @ -+ and therefore it dilates to the singular

unitary operator

10 10
We remark that Corollary 2.5 can also be proved via Proposition 2.7. Indeed,

if T'is a c.n.u. normal contraction, then by the spectral theorem, T' = Z @T,, where each

n



236 Wu and Takahashi

T, is a strict contraction. Thus Proposition 2.7 implies that 7' dilates to a diagonal unitary
operator.

Another consequence of Theorem 2.6 is that every milpotent contraction has a
diagonal unitary dilation. For if the contraction T is such that T™ = 0, then {¢) of Theorem
2.6 obviously holds and hence T" dilates to J,®J,®- - - which implies our assertion as before.
However, this particular result can be proved in a more elementary fashion by following
the line of arguments in {11, Solution 152], which will yield that a contraction T' satisfies
T™ = 0 if and only if it power dilates to J,, @ -+ - @ J,, where k=dim ran(l — T*T)% and,

in this case, & is the smallest such number. T}fis can be further generalized to the result
that every algebraic contraction has a diagonal unitary dilation. Indeed, in [20, Theorem
1.4] it was proved that every algebraic contraction T can be power dilated to an oprator of
the form Ty & Ty & - - -, where T} is a cyclic contraction on a finite-dimensional space with
rank(1—-T7771) < 1 and with the same minimal polynomial as that of T'. Hence T dilates to
UeU@- - -, where U is the Halmos dilation of T3. Since U acts on a finite-dimensional space,
UdU®--- is a diagonal unitary dilation of 7. We will further pursue this at the end of

the next section by showing that even some Cp contractions have diagonal unitary dilations.

3. SINGULAR UNITARY DILATION

For an arbitrary operator T, let d7 =dim ran(l — T*T)% and dp-=dim %an(l - TT+)

denote its defect indices. A contraction T is of class Cp if it is c.n.u. and there is some
nonzero function f in H* such that f(T) = 0. In this case, there is an inner function ¢,
called the minimal function of T which satisfies ¢(T) = 0 and divides any f in H* with
f(T) = 0. Note that the defect indices of a Cy contraction must equal. A Cj contraction
with defect indices at most N(< o0) is said to be of class Co(N). The main theorem of
this section is the following.

THEOREM 3.1. Let T be a contraction on H with af least one defect indez
finite. Then T dilates to a singular unitary operator U if and only if it is a direct sum of
a singular unitary operator and a Co(N) contraction. Moreover, in this case, the singular
unitary operator U can be chosen to act on a space K containing H with dim(K 6 H) = dr.

To prove this, we start with some lemmas which illustrate more clearly what
the hypothesis of finite defect index means. The first lemma is in [10, Lemma 4].

LEMMA 3.2 Let T be an operator from Hy to H,. Then dr-+dim ker
T* = dpe+dim ker T.

LEMMA 3.3 Let T be an operator on H. Then dr = dp. < oo (resp.
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dr < dp+) if and only if T is the sum of a unitary operator (resp. nonunitary isometry)
and a finite-rank operator (with rank equal to dr). In this case, T' is Fredholm (resp. left
Fredholm) with ind T =0 (resp. ind T = dr — dg).

For the Fredholm theory, readers may consult [8, Chapter XIJ.

PROOF. Ifdr = dr« < oo, then dim ker T =dim ker T* by Lemma 3.2. Hence
T has the polar decomposition T' = U(T*T)% with U unitary. Since dy =rank(l —T*T) is
finite, we have T*T = 1+ F, where rank F' = dy < co. Hence rank((T*T)2 —1) =rank((1+
F)2 —1) =dr < 0o and thus T = U + U((T*T)z — 1) expresses T' as the sum of a unitary
operator and a finite-rank operator.

To prove the converse, assume that 7" = U + F, where U is unitary and F
has finite rank. Then 7T = (U* + F*}(U + F) = 1 + (U*F + F*U + F*F) and hence
dr < oo. Similarly, we have dr« < co. On the other hand, our assumption implies that T'
is a Fredholm operator with ind T = 0. Hence dim ker T =dim ker T* < co. We conclude
from Lemma 3.2 that dr = dy- < co. Similar arguments work for the case dy < dr». {Note

that in a separable space, the condition dr < dp+ implicitly implies that dr < o0.)

The assertion for the case dr < dr« in the preceding lemma appeared before in
[2, Theorem 4.2].

Now we can bring into play the perturbation result. Recall that every isometry
V has a canonical decomposition V = U, @ U, & S, where U; (resp. U,) is a singular (resp.
absolutely continuous) unitary operator, and § is a unilateral shift (with some multiplic-
ity). In generalizing the celebrated Rosenblum-Kato perturbation theorem (for unitary
operators), Carey proved that if V| and V; are isometries with V; — V; of finite rank, then
the absolutely continuous unitary parts of V; and V; are unitarily equivalent (cf. [5]). Our
next result can be seen as a generalization of this although its proof also depends on it.

PROPOSITION 3.4. Let T be a contraction. If T = Vi + F, where Vy is an
isometry (resp. nonunitary coisometry) and F is of finite rank, and T dilates to another
isometry Vi, then the absolutely continuous unitary part of Vi (resp. the simple bilateral
shift) is a direct summand of Vi.

PROOF. First assume that V4 is an isometry. Let Vi = U @ S, where U is

unitary and S is a unilateral shift, and

_ 1 P
r=[R &)

with respect to the same decomposition of the underlying space. Since U 4 F} also dilates

to V2, we may assume without loss of generality that V; is itself unitary.
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F
LetVQ:[Vl-i—‘ 4 . Since V4 is an isometry, we have
| B C
vy o | W OB Vi+F A _‘H 01
2= A* O B cli 10 1}'

Hence (1) VI + W F + FV+ F*F+B*B=1,(2) AVi + A*F + C*B =0 and (3)
A*A+C*C = 1. (1) implies that B*B = —V*F — F*V, — F*F is finite-rank and hence rank
B < oo. This, together with {2), yields that A*Y} = —A*F — C*B is finite-rank. Hence
the same is true for A" = A*V;V* or A. Since

v F Al
%ﬁ{ﬂ c] [B 0]

by the Fredholm theory C is left Fredholm with
ind ¢ =ind V1+indC=ind[

Thus C has the polar decomposition C = Vg(C*C’)% with V3 isometry. Now (3) implies that
C*C is the sum of the identity and a finite-rank operator. The same is true for (C"‘C)%.
Thus C is the sum of V4 and a finite-rank operator. Consequently, the difference of the
isometries V3 and Vi @ V4 is of finite rank. Carey’s result then implies that their absolutely
continuous unitary parts are unitarily equivalent. In particular, this imples that the abso-
lutely continuous unitary part of V; is a direct summand of V; as asserted.

The proof for V; a nonunitary coisometry is analogous to the one above. Here
we only give a brief sketch. As before, we may assume that V; is the simple backward
shift, that is, the adjoint of the unilateral shift of multiplicity one. Then we deduce that
B and A are both of finite rank. By the Fredholm theory-and the polar decomposition, we
have C = Vg(C*C)%, where V3 1s a nonunitary isometry. As before, C is the sum of V5 and
a finite-rank operator, and hence the difference of V3 and V| & V4 is of finite rank. Since
the simple unilateral shift is a direct summand of V3 and since the former is a rank-one
perturbation of a simple bilateral shift W, we infer that V; and an isometry of the form
W @ Vj differ by a finite-rank operator. Carey’s result then implies that W is a direct

summand of the absolutely continuous unitary part of V2, completing the proof. #

PROPOSITION 3.5. Any c.n.u. Cyy contraction with finite defect indices
and any contraction with unequal defect indices admit no singular unitary dilation.
A contraction T is of class Cy; if T"z + 0 and T*"*z -4 0 in norm for any

nonzero vector z.
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PROOF. Let T be a c.n.u. Cyy contraction which dilates to a singular uni-
tary operator V. Then T is quasisimilar to an absolutely continuous unitary operator U
(cf.[14, Proposition 11.3.5.]). By [1], there is a nonzero invariant subspace K for T such
that 77 = T'|K is similar to a direct summand of U, say, U;. In particular, 7} is a c.n.u. Cyy
contraction with finite (and equal) defect indices and U is an absolutely continuous unitary
operator. Lemma 3.3 implies that T} = U, + F, where U; is unitary and F is finite-rank.
We infer from [7, Lemma] that U; is unitarily equivalent to the absolutely continuous part
U, of Us. Since Ty = U, 4+ F' dilates to the singular unitary V, Proposition 3.4 implies that
U, is a direct summand of V, which is impossible. This shows that 7' cannot have any
singular unitary dilation.

On the other hand, if T' is a contraction with dr # dr-, then, without loss of
generality, we may assume that dy > dp«. Hence Lemma 3.3 implies that T is the sum of a
nonunitary coisometry and a finite-rank operator. Our assertion for 7' again follows from

Proposition 3.4. &

Now we are ready for the proof of the

NECESSITY OF THEOREM 3.1. Let T be a c.n.u. contraction with
dr < oo which admits a singular unitary dilation. We have to show that 7' is of class Co(N).

Let T = Lo be the triangulation of type Ca x (cf. [14, Theorem II. 4.1]).
0 TQ 0 C.O
. . . T3 * T5 *®
Since dy < oo, Ty and T, have the triangulations T} = and Ty = of
0 Ty 0 Ts

Cor = Coo * :
‘)
type [ 0 Oy J and [ 0 Cu J, respectively (cf. [18, Lemma 3.2]). We can deduce

that dp,,dn, < dr < oo, and also dTa* < dp £ dp < oo,dy, = dT; < dp < oo,dp, =
drr < dr, < 00 and dg, < drs (cf. [14, Proposition VII. 3.6]). Hence T3, Ty and Ts have no
singular unitary dilation by Proposition 3.5. This implies that in the above triangulations,

these three operators are absent. Therefore, 7' = Ty is of class Co(N ). E

'To prove the sufficiency part of Theorem 3.1, we need show that every Co(N)
contraction has a singular unitary dilation. Actually, more is true: every Cp contraction
has such a dilation. We now embark on its proof. The next proposition should be known
among experts; we include its proof here for completeness. In the finite-dimensional case,
it is a special case of [15, Theorem 2].

PROPOSITION 3.6. If T is a contraction on H with equal defect indices,
then T has a unitary dilation on a space K which contains H with dim(K © H) = dr.

Moreover, in this case, dr is the smallest such dimension.
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PROOF. Let W be a unitary operator fromran(1 — T*7T)7 onto ran(l — TT*)%,
and let

T (1-TT*:W

U = 1
(1-7T*T)2 -TW

.
x
|

J

on K = H @ran(l — T*T)z. Here we need the fact that T*(1 — TT™)3 = (1 ~ T*T)z7T*
to ensure that —T*W is an operator on ran(l — T*T)%. It is routine to check that U is
indeed unitary on X.

On the other hand, if

,_ [T Al - ,
U_[BCJ on K'=HageH

is another unitary dilation of T, then from

[T B* T A
ikl i —
A C*} [B c|=!
we obtain that 7*I' + B*B = 1 and hence dr =dim ran(l — T*T) = dim ranB*B £
dim H'. 1
PROPOSITION 3.7. IfT is a Co(N) contraction and T = U + F, where

U is unitary and F is of finite rank, then U is singular.

[T o
PROOF. Let V = [Tl <

T (cf. [14, Theorem 1.4.1]). Since V is an isometry, a simple computation yields that
T*T +TyTy = 1. Hence rank Ty T =rank(l — T*T") = dr < oo, and therefore rank T < oo.

Thus V- (U&S)= [5 8
1

continuous unitary parts of the isometries ¥V and U @ 5 are unitarily equivalent. Since V
itself is a unilateral shift (cf. [14, Therem VI1.3.1]), we infer that U must be singular. ®

be the minimal isomeiric power dilation of

is of finite rank. Carey's result implies that the absolutely

The next result is our promised unitary dilation for Cy contractions.

PROPOSITION 3.8 Every Cy contraction on H has a singular unitary di-
lation on a space K(2 H) with dim (K © H) = dr.

PROOF. Let T be a Go(N) contraction on H with dr = dp- = n < o0, By

Proposition 3.6, T has a uanitary dilatien U = g é on K =HeC" T = [ ; g ],
then it is easily seen that dr = n and 7™ — 0 nd T™™ — 0 in the strong-operator topol-
ogy. Hence TV is also a Co(N) contraction. Since TV = U + F, where F = g :g is

finite-rank, Proposition 3.7 implies that U is singular. Hence T has the singular unitary
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dilation U with the asserted property.

More generally, if T is a Cp contraction with minimal function @, then it was
proved in [13, Lemma 4] that T power dilates to S(¢) ® S(¢) @ ---, where S(4) is the
operator on H(¢) = H? & ¢H? defined by S(¢)f = P(zf(z)), P being the (orthogonal)
projection from H? onto H(¢). Since S(4#) has defect indices equal to 1, as shown above
it dilates to a singular unitary operator, say, U;. Then T dilates to the singular unitary
Uolh@---. &

To conclude this section, we derive a condition under which a Cy contraction
has a diagonal unitary dilation. A complete characterization of such Cp contractions seems
difficult to come by.

PROPOSITION 3.9. If T is a Cy contraction whose minimal function ¢ is
a Blaschke product with the property that the closure of the zeros of ¢ is a countable set,
then. T has a diagonal unitary dilation.

PROOF. Since T dilates to S(¢) & S{#) B -+, we need only prove our as-

sertion for S(¢). By Proposition 3.6, S(¢) has a unitary dilation U = [ Sgb) é ] on

K = H(¢) ® C. We check that U is diagonal unitary. If T’ = Sgb) 3 ], then, as in

the proof of Proposition 3.8, T” is a Co(NN) contraction with dz+ = 1. Hence T” is unitarily

equivalent to S(1) for some inner function . Since (1) = ¢(5£¢)) ¢?0) } =0, we
have ¢(S(4)) = 0 and ¥(0) = 0, and thus both ¢ and £, £(2) = z, are divisors of 1. We
infer that ¥(z) = 2¢(z). Hence ¢ is also a Blaschke product with the closure of its zeros a
countable set. Since U is a rank-one perturbation of 7", we may apply [6, Theorem 7.1] to

S(i) to deduce that U is a diagonal unitary operator. This completes the proof. ¥
COROLLARY 3.10. Every algebraic contraction has a diagonal unitary di-

lation.
PROOF. This follows from Proposition 3.9 since every algebraic contraction
Is the direct sum of a unitary operator with finitely many points in its spectrum and a Cj

contraction whose minimal function is a Blaschke product with finitely many zeros. &

4. FINITE-RANK PERTURBATION

From the proofs of Propositions 3.7 and 3.8, it can be observed that there is an
intimate relation between finite-rank perturbations and dilations by a finite-dimensional

space. This will be made more transparent by the next result, the main theorem of this
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section. It shows that in the situation considered here, they are actually equivalent.

THEOREM 4.1. A contraction T is the sum of a singular unitary operator
U and a finite-rank operator F if and only if it is the direct sum of a singular unitary
operator Uy and a Co(N) contraction Ty. In this case, the multiplicities of U and Uy differ
at most by rank F and dy, < rank F holds. Moreover, we may choose F to have rank
equal to dy.

Recall that the multiplicity u(T) of an operator T on H is the minimal cardi-
nality of a subset X of H for which H is the closed linear span of the vectors 7™z with
z€Xandn=20,1,2,-- . Tis cyclicif u(T)=1.

An immediate corollary of the preceding theorem is

COROLLARY 4.2. A contraction T is the rank-one perturbation of a singular
unstary operator if and only if it is the direct sum of o singular unitery operator and an
operator of the form S(4), where ¢ is an inner function.

This generalizes Clark’s result [6] that every S(¢) is the rank-one perturbation
of a singular unitary operator. (Actually, he did more than this by constructing explicitly
all rank-one perturbations of S(¢) which are unitary.)

The following two lemmas are in the domain of the general contraction theory.
Their proofs are given here for completeness. Recall that any contraction 7' can be decom-
posed uniquely as the direct sum T = U, @ U, & To, where U, and U, are singular and
absolutely continuous unitary and Tg is a c.n.u. contraction. 7' is said to be absolutely
continuous if in this decomposition U, is absent. For an operator T, Lat T denotes the
lattice of its invariant subspaces.

LEMMA 4.3. IfT=U,U,® T on H=H,® H, ® Hy is a contraction
decomposed as above, then Lat T =Lat U®Lat (U, ® To).

PROOF. Let M €lat T. We decompose the contraction T'|M as T|M =
TveTdTson M = M, & My ® Ms, where 71 and T are singular and absolutely continu-
ous unitary operators and T3 is a cnu. contraction. Since M; and M, & M; are invariant
subspaces for T, to prove that M is in Lat U;@® Lat(U, & 75) we need only show that
My C H,and My ® M; C H, & H.

If U on K (2 Hp) is the minimal unitary power dilation of Ty, then W =
U, ® U, ® U is the minimal unitary power dilation of T'. Hence, in particular, W is a
unitary power dilation of T3 & T3. There exists a reducing subspace L(2 M, & M;) for W
such that W/|L is the minimal unitary power dilation of T3 @ T3. Since 73 is absolutely
continuous unitary and T3 is c.n.u., W|L must be absolutely continuous unitary. On the
other hand, since Lat W = Lat U,® Lat (U, ®@U) (cf. [9, Lemma 1}), wehave L C H, § K.
Therefore, My @ M; CLNHC(H, 8 K)N{H, & H, ® Hy) = H, ® Hy. An even simpler
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argument along this line applied to M; yields that My C H,. This shows that Lat T C Lat
Us® Lat (U, ®Ty). Since the converse inclusion is trivial, the proof is completed. &
T1 *

0 Ty
singular unitary part of T is the direct sum of the singular unitary parts of Ty and To.

PROOF. Let T = U; ®T' on H = H, ® H', where U, is singular unitary
and 1" is an absolutely continuous contraction. Since Lat T = Lat U.® Lat 7' by Lemma
4.3, we have H; = K @ K', where K € Lat U, and K' € Lat T'. Then K is an invariant

subspace for Ty and U) = T1|K; = T|K = U;|K is singular unitary since every invariant

LEMMA 4.4. IfT = on H=H, ® H, is a contraction, then the

subspace for a singular unitary operator is actually reducing (cf. {17, Lemma 3]). Hence
Ty =U1&T] on Hy = K & K’, where T} is absolutely continuous. Similarly, applying the

above arguments to T = [ 1;1‘ 29* ] yields that T = Uy @ 75" on Hy = M & M’ for some
2

singalar unitary U, and absolutely continuous Tj. It follows that

U, 0 0 ¢
|01y 0 X _ ' )
T = 0 0 U, 0 on H=KoK'oMoM
0 0 0 T

i
1

0 T
KoMCH,and K@M C H'. Since ( K@ M)D(K'®M')=H=H,® H', we must
have K M = H, and K' & M' = H’. 1t follows that U} @ U, = U, as asserted. u

with U; @ U, singular unitary and absolutely continuous. This implies that

The next lemma yields the relation between the multiplicities of the singular
unitary parts of contractions which differ by a finite-rank operator.

LEMMA 4.5. Let Ty and Ty be contractions on H with rank (T3 — T3) <
oo. Then the multiplicities of the singular unitary parts Uy, and U, of Ty and Ty satisfy
#(Uss) < w(Uszs)+rank(Ty — T3) and p(Us,) < p(Us,)+rank(Ty — Ty).

PROOF. Let F =17 — T and k =rank F. Assume that ran F is spanned
by the vectors zy,--+,z;. If K is the closed subspace of H spanned by T/"z,,m > 0 and
I £ n <k, then K is invariant for both 7} and T,. Hence we have the triangulations

% . [
T1=[131 le}’ ng[%l T;} and F:H‘;’ Iﬂ
on H=Kao Kt It U;; is the singular unitary part of 13,7, = 1,2, then Uy, = Uy @ Uy
and Uy, = Up @ Uy by Lemma 4.4. We have p(Usin) < p(Ta) < k for i = 1,2. On
the other hand, from 73 — Ty = F we have Ty3 = Ty and hence Uiy = Us,. Finally.
#(Urs) < p(Unn) + p(Urz) < b+ p(Use) < k4 p(Uy,) and similarly for the other inequality. o
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We are now ready for the
PROOF OF THEOREM 4.1. Assume first that T = U + F', where U is
singular unitary and F is of finite rank. Let T = U; @ Ty on H = K & L, where U; s
unitary and T is c.n.u.. Let B = ran(l — TyT})% and let
')
(1=T:T)F 0
1

Vi=U1 8 0 on K@(LORGR® )
1.

be the minimal isometric power dilation of T (cf. [14, pp.17-18}). If
0
1
V=U@® 1 0 on (K@LYB(RGRD )

o

and B =V, — V, then we claim that rank E =rank F. Since
F 0

0 (1-TrT)E 0

=19 0 0

we obviously have rank £ >rank F. To prove the reverse inequality, let

F 0
(1-T*T)z 0
The rank E =rank E'. Since | -T*T =1 (U*+ FYU + F) = ~U*F - F*U - F"F > 0,
we have —U*F — F*U > F*F and hence ran F*=ranF*F Cran{~U*F — F*U). Let

E’:[ ] on H& H.

~UF = { g 8 } on H =ran(U*F*)*@ker U*F. Since
_UF - FU = {A“LA* B*l > F*F >0,
B 0 |
we infer that B = 0 and thus
) gy | A+ A" 0]
~U'F—FU = { 0 0 _{ .

It follows that ranF™ Cran(—U*F — F*U)} C ran(U*F)*. Therefore

[ R F

0 0 ] on H =ran(U*F)* @ ker U"F.
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We also have ran(l — T*T} =ran(—U*F — F*U — F*F) C ran(—U*F — F*U)+ran F*F C
ran(U*F)*. Let (1 — T*T)3 = [ B 0 } on H =ran(U*F)*®ker U*F. Then

0 0
F* 000
, | E o000
E=1r g0 0]
0 00 0

and thus rank F =rank E’' < rank(U*F)* =rank F, completing the proof of our claim. In
particular, we have dy, =rank (1 — T} Tl)% <rank E =rank F.

Carey's result implies that the absolutely continuous unitary parts of V and V4
are unitarily equivalent. Since U, the unitary part of V, is singular, the same is true for
the unitary part of V;. This implies that U; and the unitary part of the minimal isometric
power dilation V; of Ty are both singular. Hence V; must be a unilateral shift (cf. [14,
Theorem 1II. 6.4]). This latter condition dictates that Ty satisfy Ty™ — 0 in the strong
operator topology. A similar argument applied to T* yields that T — 0 in the strong op-
erator topology. Since dr, <rank F' < oo as noted above, we conclude that Tj is a Cy(N)
contraction. Finally, since rank(V — V4) =rank F, the assertion on the multiplicities of U/
and U; follows from Lemma 4.5.

For the converse, we need only consider for Co(N) contractions. Let T' be such
a contraction. Since dr = dr+ < 00, by Lemma 3.3, T is the sum of a unitary operator U
and a finite-rank operator F' with rank F = dr. Proposition 3.7 implies that U is singular,
This completes the proof. n

5. OPEN PROBLEMS

Although we obtained various necessary and/or sufficient conditions, the main
problem addressed in this paper, which contraction has a singular (resp. diagonal) unitary
dilation, remains open. It may turn out that this general problem admits no tractable
answer. Some special cases of it are still worth exploring. Here are two.

QUESTION 5.1. Is it true that no c.n.u. Cyy contraction has a singular
unitary dilation?

Proposition 3.5 says that this is indeed the case for those c.n.u. C;; contrac-
tions with finite defect indices. The problem can be reduced to considering only those
which are similar to a cyclic unitary operator. Indeed, since every c.n:u. Cyy contraction 7'
is quasisimilar to a unitary operator, [1] implies that there is an invariant subspace K for

T such that T|K is similar to some unitary operator. Using the spectral theorem, we may
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even assume that the unitary operator is cyclic.

QUESTION 5.2.  For which (nonconstant) inner funciion ¢ does 5{¢) have
a diagonal unitary dilation?

A slightly more general condition on ¢ than the one in Proposition 3.9 was give
in [6, Theorem 7.1]. Its complete characterization will yield, as did in our Section 3, a
necessary and sufficient condition for a contraction with at least one defect index finite to

have a diagonal unitary dilation.
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