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Finding Inheritance Hierarchies in
Fuzzy-Valued Concept-Networks

Yih-Jen Horng and Shyi-Ming Chen

Abstract—In this paper, we extend the works of [2] and [4] to present
a new method for finding the inheritance hierarchies in fuzzy-valued
concept-networks, where the relevant values (degrees of generalization or
degrees of similarity) between concepts in a fuzzy-valued concept network
are represented by fuzzy numbers. The proposed method is more flexible
than the ones presented in [2] and [4] due to the fact that it allows the
grades of similarity and the grades of generalization between concepts to
be represented by fuzzy numbers rather than crisp real values between
zero and one or interval values in [0, 1].

Index Terms—Fuzzy numbers, fuzzy-valued concept-networks, inheri-
tance hierarchies, synonymous concepts.

I. INTRODUCTION

In [4], Itzkovich and Hawkes pointed out that inheritance hier-
archies provide a significant descriptive capability using only the
generalization relations. They also presented a fuzzy extension of
inheritance hierarchies to fuzzy concept-networks which contain not
only generalization relations but also similarity relations. A fuzzy
concept-network can then be used in the application of reusable soft-
ware retrieval and information retrieval. In [8], Lucaralla and Morara
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presented a kind of concept-networks for fuzzy information retrieval.
In [3] and [9], we presented knowledge-based fuzzy information
retrieval techniques based on [8]. However, the fuzzy concept-
networks presented in [3], [4], [8], and [9] all assume that the relevant
values (degrees of graded generalization or degrees of similarity)
between concepts in a fuzzy concept-network are represented by crisp
real values between zero and one. In [2], we extended the work of
Itzkovich and Hawkes [4] to present the concepts of interval-valued
fuzzy concept-networks, where the relevant values (degrees of graded
generalization or degrees of similarity) between concepts in a fuzzy
concept-networks are represented by interval values in [0, 1] rather
than crisp real values between zero and one. In [2], we also presented
an algorithm for finding the collection of inheritance hierarchies in
interval-valued fuzzy concept-networks. However, if we can allow
the relevant values (degrees of generalization or degrees of similarity)
between concepts to be represented by fuzzy numbers, then there is
room for more flexibility.

In this paper, we extend the works of [2] and [4] to present a
new method for finding the collection of inheritance hierarchies in
fuzzy-valued concept networks, where the relevant values (degrees
of generalization or degrees of similarity) between concepts are
represented by fuzzy numbers. The proposed method is more flexible
than the ones presented in [2] and [4] due to the fact that it allows
the grades of similarity and the grades of generalization between
concepts to be represented by fuzzy numbers rather than crisp real
values between zero and one or interval values in [0, 1].

The rest of this paper is organized as follows. In Section II, we
present the concepts of fuzzy-valued concept-networks. In Section III,
we present an algorithm for finding the inheritance hierarchies in
fuzzy-valued concept-networks. The conclusions are discussed in
Section IV.

II. FUZZY-VALUED CONCEPT-NETWORKS

In [4], Itzkovich and Hawkes presented a fuzzy extension of
inheritance hierarchies to provide a more refined construction that fa-
cilitate the representation of relations among concepts under uncertain
conditions. The extension is done in the following two steps:

Step 1: Incorporate the synonymy relation in the inheritance hier-
archy, resulting in a new construction denoted as a concept-network.

Step 2: The relations on the concept-network are fuzzified to yield
a new construction denoted as a fuzzy concept-network, where the
relevant values between concepts are represented by real values
between zero and one.

The definitions of fuzzy concept-networks are reviewed from [4]
as follows.

Definition 2.1: The similarity relationRsim over a finite set of
conceptsC;C = fc1; c2; � � � ; cng; is a binary fuzzy relation which
satisfies all of the following properties:

1) Reflexive:�sim(ci; ci) = 1:
2) Symmetric:�sim(ci; cj) = �sim(cj ; ci):
3) Transitive:�sim(ci; ck) � _Cj (�sim(ci; cj) ^ �sim(cj ; ck)):

Definition 2.2: The graded generalization relationRg over a finite
set of conceptsC;C = fc1; c2; � � � ; cng; is a binary fuzzy relation
which satisfies all of the following properties:

1) Reflexive:�g(ci; ci) = 1:
2) Anti-symmetric: If�g(ci; cj)> 0 and�g(cj ; ci)> 0; thenci =

cj :

3) Transitive:�g(ci; ck) � _Cj (�g(ci; cj) ^ �g(cj ; ck)):

1083–4419/99$10.00 1999 IEEE
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Fig. 1. A fuzzy concept network.

Definition 2.3: A fuzzy concept-network is denoted by
FCN(C; R); where C is a finite set of concepts andR consists
of two relationsRsim and Rg over C as defined in Definitions
2.1 and 2.2.

For example, Fig. 1 shows an example of a fuzzy concept network.
In [2], we presented the concepts of interval-valued fuzzy concept

networks. In an interval-valued fuzzy concept-network, the degrees
of similarity and the degrees of generalization between concepts are
represented by real intervals in [0, 1]. Two intervals[a; b] and [c; d]
are called equal ifa = c and b = d: If [a; b]> [c; d] then it implies
a> c andb>d or a = c andb>d or a> c andb = d: The definitions
of interval-valued fuzzy concept networks are reviewed from [2] as
follows:

Definition 2.4: The interval-valued similarity relationRivsim over
a finite set of conceptsC;C = fc1; c2; � � � ; cng; is a binary fuzzy
relation which satisfies all of the following properties.

1) Reflexive:�ivsim(ci; ci) = [1; 1]:
2) Symmetric:�ivsim(ci; cj) = �ivsim(cj; ci):
3) Transitive: Let the degree of interval-valued similarity between

any conceptscx and cy be represented by�ivsim(cx; cy);
where �ivsim(cx; cy) = [Sl(cx; cy); S

h(cx; cy)] and 0 �
Sl(cx; cy) � Sh(cx; cy) � 1: Then,

S
l(ci; ck) �

Cj

(Sl(ci; cj) ^ S
l(cj ; ck));

S
h(ci; ck) �

Cj

(Sh(ci; cj) ^ S
h(cj ; ck)):

Definition 2.5: The interval-valued generalization relationRivg

over a finite set of conceptsC;C = fc1; c2; � � � ; cng; is a binary
fuzzy relation which satisfies all of the following properties.

1) Reflexive:�ivg(ci; ci) = [1; 1]:
2) Anti-symmetric: If �ivg(ci; cj) > [0; 0] and

�ivg(cj ; ci)> [0; 0]; then ci = cj :

3) Transitive: Let the degree of interval-valued generalization
between any conceptscx andcy be represented by�ivg(cx; cy);
where �ivg(cx; cy) = [gl(cx; cy); g

h(cx; cy)]; and 0 �
gl(cx; cy) � gh(cx; cy) � 1: Then,

g
l(ci; ck) �

Cj

(gl(ci; cj) ^ g
l(cj ; ck));

g
h(ci; ck) �

Cj

(gh(ci; cj) ^ g
h(cj ; ck)):

Definition 2.6: An interval-valued fuzzy concept-network is de-
noted by IVFCN(C;R); whereC is a finite set of concepts and
R consists of two relationsRivsim andRivg over C as defined in
Definitions 2.4 and 2.5.

For example, Fig. 2 shows an interval-valued fuzzy concept-
network.

In the following, we present the concepts of fuzzy-valued concept-
networks, where the degrees of generalizations and the degrees of
similarity between concepts are represented by fuzzy numbers. A
fuzzy number is a fuzzy subset in the universe of discourse ofU that
is both convex and normal. A fuzzy numberF can be characterized
by a triangular distribution parametrized by a triple(t1; t2; t3) shown

Fig. 2. An interval-valued fuzzy concept network.

Fig. 3. A triangular fuzzy number.

Fig. 4. A trapezoidal fuzzy number.

in Fig. 3, wheret1 � t2 � t3; or by a trapezoidal distribution
parametrized by a quadruple(q1; q2; q3; q4) shown in Fig. 4, where
q1 � q2 � q3 � q4:

In the following, we introduce two kinds of fuzzy-valued concept
networks. The first one allows the degrees of similarity and the
degrees of generalization between concepts to be represented by tri-
angular fuzzy numbers, whereas the second one allows the degrees of
similarity and the degrees of similarity be represented by trapezoidal
fuzzy numbers.

Definition 2.7: Let A and B be two triangular fuzzy numbers,
where

A =(a1; a2; a3);

B =(b1; b2; b3)

0 � a1 � a2 � a3 � 1; and0 � b1 � b2 � b3 � 1: The triangular
fuzzy numbersA andB are called equal (i.e.,A = B) if and only
if a1 = b1; a2 = b2; and a3 = b3: Otherwise, the triangular fuzzy
numbersA andB are called unequal (i.e.,A 6= B).

Definition 2.8: Let X andY be two trapezoidal fuzzy numbers,
where

X =(x1; x2; x3; x4)

Y =(y1; y2; y3; y4)

0 � x1 � x2 � x3 � x4 � 1; and0 � y1 � y2 � y3 � y4 � 1:
The trapezoidal fuzzy numbersX and Y are called equal (i.e.,
X = Y ) if and only if x1 = y1; x2 = y2; x3 = y3; and x4 = y4:

Otherwise, the triangular fuzzy numbersX andY are called unequal
(i.e., X 6= Y ).

The definitions of fuzzy-valued concept-networks using triangular
fuzzy numbers to represent the grades of generalization and grades
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Fig. 5. A fuzzy-valued concept-network using triangular fuzzy numbers.

of similarity between concepts are presented in Definitions 2.9–2.11.
The definitions of fuzzy-valued concept-networks using trapezoidal
fuzzy numbers to represent the grades of generalization and grades of
similarity between concepts are presented in Definitions 2.12–2.14.

Definition 2.9: The similarity relation Rsimtri represented by
triangular fuzzy numbers over a finite set of conceptsC;C =
fc1; c2; � � � ; cng; is a binary fuzzy relation which satisfies all of the
following properties.

1) Reflexive:�simtri(ci; ci) = (1; 1; 1):
2) Symmetric:�simtri(ci; cj) = �simtri(cj ; ci):
3) Transitive: Let the degree of similarity between any con-

cepts cx and cy be represented by�simtri(cx; cy); where
�simtri(cx; cy) = (S1(cx; cy); S2(cx; cy); S3(cx; cy)); and
0 � S1(cx; cy) � S2(cx; cy) � S3(cx; cy) � 1: Then

S1(ci; ck) �
Cj

(S1(ci; cj) ^ S1(cj ; ck))

S2(ci; ck) �
Cj

(S2(ci; cj) ^ S2(cj ; ck))

S3(ci; ck) �
Cj

(S3(ci; cj) ^ S3(cj ; ck)):

Definition 2.10: The graded generalization relationRgtri repre-
sented by triangular fuzzy numbers over a finite set of concepts
C;C = fc1; c2; � � � ; cng; is a binary fuzzy relation which satisfies
all of the following properties.

1) Reflexive:�gtri(ci; ci) = (1; 1; 1):
2) Anti-symmetric: If�gtri(ci; cj) 6= (0; 0; 0) and�gtri(cj ; ci) 6=

(0; 0; 0); then ci = cj :

3) Transitive: Let the degree of generalization between any
conceptscx and cy be represented by�gtri(cx; cy); where
�gtri(cx; cy) = (g1(cx; cy); g2(cx; cy); g3(cx; cy)); and
0 � g1(cx; cy) � g2(cx; cy) � g3(cx; cy) � 1: Then

g1(ci; ck) �
Cj

(g1(ci; cj) ^ g1(cj ; ck));

g2(ci; ck) �
Cj

(g2(ci; cj) ^ g2(cj ; ck));

g3(ci; ck) �
Cj

(g3(ci; cj) ^ g3(cj ; ck)):

Definition 2.11: A fuzzy-valued concept-network using trian-
gular fuzzy numbers to represent the degrees of generalization
and the degrees of similarity between concepts is denoted by
FVCNTRI(C;R); whereC is a finite set of concepts andR consists
of two relationsRsimtri andRgtri over C as defined in Definitions
2.9 and 2.10.

For example, Fig. 5 shows a fuzzy-valued concept-network using
triangular fuzzy numbers to represent the degrees of generalization
and degrees of similarity between concepts.

Definition 2.12: The similarity relationRsimtra represented by
trapezoidal fuzzy numbers over a finite set of conceptsC;C =
fc1; c2; � � � ; cng; is a binary fuzzy relation which satisfies all of the
following properties.

1) Reflexive:�simtra(ci; ci) = (1; 1; 1; 1):

Fig. 6. A fuzzy-valued concept-network using trapezoidal fuzzy numbers.

2) Symmetric:�simtra(ci; cj) = �simtra(cj ; ci):
3) Transitive: Let the degree of similarity between any

concepts cx and cy be represented by�simtra(cx; cy);
where �simtra(cx; cy) = (S1(cx; cy); S2(cx; cy); S3(cx; cy);
S4(cx; cy)); and0 � S1(cx; cy) � S2(cx; cy) � S3(cx; cy) �
S4(cx; cy) � 1: Then

S1(ci; ck) �
Cj

(S1(ci; cj) ^ S1(cj ; ck));

S2(ci; ck) �
Cj

(S2(ci; cj) ^ S2(cj ; ck));

S3(ci; ck) �
Cj

(S3(ci; cj) ^ S3(cj ; ck));

S4(ci; ck) �
Cj

(S4(ci; cj) ^ S4(cj ; ck)):

Definition 2.13: The graded generalization relationRgtra repre-
sented by trapezoidal fuzzy numbers over a finite set of concepts
C;C = fc1; c2; � � � ; cng; is a binary fuzzy relation which satisfies
all of the following properties.

1) Reflexive:�gtra(ci; ci) = (1; 1; 1; 1):
2) Anti-symmetric: If �gtra(ci; cj) 6=(0; 0; 0; 0) and �gtra(cj ;

ci) 6=(0; 0; 0; 0); then ci = cj :

3) Transitive: Let the degree of similarity between any conceptscx
andcy be represented by�gtra(cx; cy); where�gtra(cx; cy) =
(g1(cx; cy); g2(cx; cy); g3(cx; cy); g4(cx; cy)); and 0 �
g1(cx; cy) � g2(cx; cy) � g3(cx; cy) � g4(cx; cy) � 1:
Then

g1(ci; ck) �
Cj

(g1(ci; cj) ^ g1(cj ; ck));

g2(ci; ck) �
Cj

(g2(ci; cj) ^ g2(cj ; ck));

g3(ci; ck) �
Cj

(g3(ci; cj) ^ g3(cj ; ck));

g4(ci; ck) �
Cj

(g4(ci; cj) ^ g4(cj ; ck)):

Definition 2.14: A fuzzy-valued concept-network using trape-
zoidal fuzzy numbers to represent the degrees of generalization
and the degrees of similarity between concepts is denoted by
FVCNTRA(C;R); where C is a finite set of concepts andR
consists of two relationsRsimtra and Rgtra over C as defined in
Definitions 2.12 and 2.13.

For example, Fig. 6 shows a fuzzy-valued concept-network using
trapezoidal fuzzy numbers to represent the degrees of generalization
and the degrees of similarity between concepts.

III. A N ALGORITHM FOR FINDING THE INHERITANCE

HIERARCHIES IN FUZZY-VALUED CONCEPT-NETWORKS

In [4], Itzkovich and Hawkes presented an algorithm for finding
the collection of inheritance hierarchies in fuzzy concept-networks,
where the degrees of generalization and the degrees of similarity
between concepts are represented by real values between zero and
one. In [2], we have presented an algorithm for finding the collection
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of inheritance hierarchies in interval-valued fuzzy concept networks,
where the degrees of generalization and the degrees of similarity
between concepts are represented by interval values in [0, 1].

In this section, we extend the works of [2] and [4] to present
an algorithm for finding the inheritance hierarchies in fuzzy-valued
concept-networks, where the degrees of generalization and the de-
grees of similarity between concepts are represented by fuzzy num-
bers. Firstly, we present a method to model the fuzzy-valued concept-
networks by means of concept matrices. If there aren concepts in a
fuzzy concept-network, then an� n concept matrix will be used to
model the fuzzy-valued concept-network.

Case 1: If a fuzzy-valued concept-network uses triangular fuzzy
numbers to represent the degrees of generalization and the degrees
of similarity between concepts.

If �simtri(ci; cj) = �ij ; where�ij 2 [0; 1]; then letM(i; j) =
M(j; i) = (�ij ; �ij ; �ij);

if �gtri(ci; cj) = �ij ; where �ij 2 [0; 1]; then letM(i; j) =
(�ij ; �ij ; �ij) andM(j; i) = (0; 0; 0);

if �simtri(ci; cj) = (�1ij ; �
2
ij ; �

3
ij); where0 � �1ij � �2ij � �3ij �

1; then letM(i; j) = M(j; i) = (�1ij ; �
2
ij ; �

3
ij);

if �gtri(ci; cj) = (�1ij ; �
2
ij ; �

3
ij); where0 � �1ij � �2ij � �3ij � 1;

then letM(i; j) = (�1ij ; �
2
ij ; �

3
ij) andM(j; i) = (0; 0; 0);

if there are no relationships between the conceptsci andcj ; then
let M(i; j) = M(j; i) = (0; 0; 0):

Furthermore, we letM(i; i) = (1; 1; 1); where1 � i � n; due to
the fact that each conceptci is reflexive to itself.

Example 3.1: Given a fuzzy-valued concept-network shown in
Fig. 5, wherec1 is a generalization ofc2 with �gtri(c2; c1) =
(0:6; 0:8; 0:9); c1 is also a generalization ofc3 with �gtri(c3; c1) =
(0:9; 0:95; 1); and c3 is similar to c4 with �simtri(c3; c4) =
�simtri(c4; c3) = (0:8; 0:9; 1): Then, we can use a 4� 4 concept
matrix M to model the fuzzy-valued concept-network

M =

(1; 1; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0)
(0:6; 0:8; 0:9) (1; 1; 1) (0; 0; 0) (0; 0; 0)
(0:9; 0:95; 1) (0; 0; 0) (1; 1; 1) (0:8; 0:9; 1)

(0; 0; 0) (0; 0; 0) (0:8; 0:9; 1) (1; 1; 1)

:

Case 2: If a fuzzy-valued concept-network uses trapezoidal fuzzy
numbers to represent the degrees of generalization and the degrees
of similarity between concepts.

If �simtra(ci; cj) = �ij ; where�ij 2 [0; 1]; then letN(i; j) =
N(j; i) = (�ij ; �ij ; �ij ; �ij);

if �gtra(ci; cj) = �ij ; where �ij 2 [0; 1]; then letN(i; j) =
(�ij ; �ij ; �ij ; �ij) andN(j; i) = (0; 0; 0; 0);

if �simtra(ci; cj) = (�1ij ; �
2
ij ; �

3
ij ; �

4
ij); where0 � �1ij � �2ij �

�3ij � �4ij � 1; then letN(i; j) = N(j; i) = (�1ij ; �
2
ij ; �

3
ij ; �

4
ij);

if �gtra(ci; cj) = (�1ij ; �
2
ij ; �

3
ij ; �

4
ij); where 0 � �1ij � �2ij �

�3Ij � �4ij � 1; then letN(i; j) = (�1ij ; �
2
ij ; �

3
ij ; �

4
ij) andN(j; i) =

(0; 0; 0; 0);
if there are no relationships between the conceptsci andcj ; then

let N(i; j) = N(j; i) = (0; 0; 0; 0):
Furthermore, we letN(i; i) = (1; 1; 1; 1); where1 � i � n; due

to the fact that each conceptci is reflexive to itself.
Example 3.2: Given a fuzzy-valued concept-network shown

in Fig. 6, wherec1 is a generalization ofc3 with �gtra(c3; c1)

Fig. 7. Figure of Case A1.

Fig. 8. Figure of Case A2.

= (0:6; 0:7; 0:8; 0:9); c1 is also a generalization ofc4 with �gtra
(c4; c1) = (0:7; 0:9; 0:95; 1); c2 is similar to c3 with �simtra

(c2; c3) = �simtra(c3; c2) = (0:7; 0:8; 0:9; 1); and c4 is similar to
c5 with �simtra(c4; c5) = �simtra(c5; c4) = (0:8; 0:9; 0:9; 1): Then,
we can use a5 � 5 concept matrixN to model the fuzzy-valued
concept-network shown in the equation at the bottom of the page.

In the following, we present a method for performing the�-cuts
operations on a fuzzy-valued concept-network. Assume that a fuzzy-
valued concept-network using triangular fuzzy numbers to represent
the degrees of generalization and the degrees of similarity between
concepts has been modeled by a concept matrixM: Let P be a
probability matrix derived from performing the�1-cut operation
on the concept matrixM; where�1 is a threshold value between
zero and one. Then, in a probability matrixP; the elementP (i; j)
indicates the degree of probability thatM(i; j) is larger than or equal
to �1; whereM(i; j) is represented by a triangular fuzzy number
(aij ; bij ; cij): The larger the value ofP (i; j); the more the degree
of the probability that the degree of relationship (generalization
relationship or similarity relationship) between the conceptsci and
cj is larger than�1: The value ofP (i; j) is decided by the following
cases, whereM(i; j) is represented by a triangular fuzzy number
parametrized by(aij ; bij ; cij) and0 � aij � bij � cij � 1:

If aij = bij = cij then
Case A1: If �1>aij (see Fig. 7), then we letP (i; j) = 0:
Case A2: If �1 � aij (see Fig. 8), then we letP (i; j) = 1:
else
Case A3: If �1>cij (see Fig. 9), then we letP (i; j) = 0:
Case A4: If bij � �1 � cij and bij 6= cij (see Fig. 10),

then we letP (i; j) = (cij � �1)
2=(cij � bij)(cij � aij): (Since

the area of the shadow triangle is(1=2)((cij � �1)
2=(cij � bij))

and the area of the whole triangle parametrized by(aij ; bij ; cij) is
1
2
(cij � aij); the P (i; j) is equal to the proportion of the shadow

triangle to the whole triangle parametrized by(aij ; bij ; cij) which is
(cij � �1)

2=(cij � bij)(cij � aij)):

N =

(1; 1; 1; 1) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)
(0; 0; 0; 0) (1; 1; 1; 1) (0:7; 0:8; 0:9; 1) (0; 0; 0; 0) (0; 0; 0; 0)

(0:6; 0:7; 0:8; 0:9) (0:7; 0:8; 0:9; 1) (1; 1; 1; 1) (0; 0; 0; 0) (0; 0; 0; 0)
(0:8; 0:9; 0:9; 1) (0; 0; 0; 0) (0; 0; 0; 0) (1; 1; 1; 1) (0:8; 0:9; 0:9; 1)

(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0:8; 0:9; 0:9; 1) (1; 1; 1; 1)
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Fig. 9. Figure of Case A3.

Fig. 10. Figure of Case A4.

Fig. 11. Figure of Case A5.

Fig. 12. Figure of Case A6.

Case A5: If bij � �1 � cij andbij = cij (see Fig. 11), then we
let P (i; j) = 0:

Case A6: If aij � �1 � bij and aij 6= bij (see Fig. 12), then
we let P (i; j) = 1 � ((�1 � aij)

2=(bij � aij)(cij � aij)): (Since
the area of the empty triangle is(1=2)((�1 � aij)

2=(bij � aij))
and the area of the whole triangle parametrized by(aij ; bij ; cij) is
1

2
(cij � aij); theP (i; j) is equal to one minus the proportion of the

empty triangle to the whole triangle parametrized by(aij ; bij ; cij)
which is 1 � ((�1 � aij)

2=(bij � aij)(cij � aij))):
Case A7: If aij � �1 � bij and aij = bij (see Fig. 13), then

we let P (i; j) = 1:
Case A8: If �1<aij (see Fig. 14), then we letP (i; j) = 1:
Assume that a fuzzy-valued concept-network using trapezoidal

fuzzy numbers to represent the degrees of generalization and the
degrees of similarity between concepts has been modeled by a concept
matrixN: Let Q be a probability matrix derived from performing the
�1-cut operation on the concept matrixN; where�1 is a threshold
value between zero and one. Then, in a probability matrixQ; the
elementQ(i; j) indicates the degree of probability thatN(i; j)

Fig. 13. Figure of Case A7.

Fig. 14. Figure of Case A8.

Fig. 15. Figure of Case B1.

Fig. 16. Figure of Case B2.

is larger than or equal to�1; where N(i; j) is represented by a
trapezoidal fuzzy number(aij ; bij ; cij ; dij): The larger the value
of Q(i; j); the more the degree of the probability that the degree
of relationship (generalization relationship or similarity relationship)
between the conceptci andcj is larger than�1: The value ofQ(i; j)
is decided by the following cases, whereN(i; j) is represented by
a fuzzy number parametrized by(aij ; bij ; cij ; dij) and 0 � aij �

bij � cij � dij � 1:

If aij = bij = cij = dij then
Case B1: If �1>aij (see Fig. 15), then we letQ(i; j) = 0:

Case B2: If �1 � aij (see Fig. 16), then we letQ(i; j) = 1:

else
Case B3: If �1>dij (see Fig. 17), then we letQ(i; j) = 0:

Case B4: If cij � �1 � dij andcij 6= dij (see Fig. 18), then we
letQ(i; j) = (dij��1)

2=(dij�cij)(dij+cij�bij�aij): (Since the
area of the shadow triangle is(1=2)((dij��1)

2=(dij�cij)) and the
area of the whole trapezoidal parametrized by(aij ; bij ; cij ; dij) is
1

2
(dij + cij � bij � aij); the Q(i; j) is equal to the proportion
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Fig. 17. Figure of Case B3.

Fig. 18. Figure of Case B4.

Fig. 19. Figure of Case B5.

Fig. 20. Figure of Case B6.

of the shadow triangle to the whole triangle parametrized by
(aij ; bij ; cij ; dij) which is (dij � �1)

2=(dij � cij)(dij + cij �

bij � aij)):

Case B5: If cij � �1 � dij and cij = dij (see Fig. 19), then
we let Q(i; j) = 0:

Case B6: If bij � �1 � cij (see Fig. 20), then we letQ(i; j) =

(dij+cij�2�1)=(dij+cij�bij�aij): (Since the area of the shadow
trapezoidal is1

2
(dij+cij�2�1) and the area of the whole trapezoidal

parametrized by(aij ; bij ; cij ; dij) is 1

2
(dij + cij � bij � aij);

the Q(i; j) is equal to the proportion of the shadow trapezoidal
to the whole triangle parametrized by(aij ; bij ; cij ; dij) which is
(dij + cij � 2�1)=(dij + cij � bij � aij):

Case B7: If aij � �1 � bij andaij 6= bij (see Fig. 21), then we
letQ(i; j) = 1�((�1�aij)

2=(bij�aij)(dij+cij�bij�aij)): (Since
the area of the empty triangle is(1=2)((�1� aij)

2=(bij � aij)) and
the area of the whole trapezoidal parametrized by(aij ; bij ; cij ; dij)

is 1

2
(dij + cij � bij � aij); the Q(i; j) is equal to one minus the

Fig. 21. Figure of Case B7.

Fig. 22. Figure of Case B8.

Fig. 23. Figure of Case B9.

proportion of the empty triangle to the whole triangle parametrized
by (aij ; bij ; cij ; dij) which is 1 � ((�1 � aij)

2=(bij � aij)(dij +

cij � bij � aij))).
Case B8: If aij � �1 � bij and aij = bij (see Fig. 22), then

we let Q(i; j) = 1:

Case B9: If �1<aij (see Fig. 23), then we letQ(i; j) = 1:

Let S be a confidence matrix derived fromP; and let �2 be
a threshold value between zero and one. IfP (i; j) � �2; where
�2 2 [0; 1]; then we letS(i; j) = 1: Otherwise, we letS(i; j) =

0: S(i; j) = 1 indicates that the degree of probability� in which
the degree of relationship between the conceptsci and cj is larger
than or equal to�1 is larger than or equal to�2; where �2 2

[0; 1]:

Let S be a confidence matrix derived fromQ; and let �2 be
a threshold value between zero and one. IfQ(i; j) � �2; where
�2 2 [0; 1]; then we letS(i; j) = 1: Otherwise, we letS(i; j) =

0: S(i; j) = 1 indicates that the degree of probability� in which
the degree of relationship between the conceptsci and cj is larger
than or equal to�1 is larger than or equal to�2; where �2 2

[0; 1]:

In the following, we assume that a fuzzy-valued concept-network
which consists ofn concepts using triangular fuzzy numbers to
represent the degrees of generalization and the degrees of similarity
between concepts has been modeled by ann�n concept matrixM;

whereM(i; j) = (�1ij ; �
2

ij ; �
3

ij); 0 � �1ij � �2ij � �3ij � 1; 1 � i �

n; and1 � j � n: The algorithm for performing�-cuts operations
on the fuzzy-valued concept-network to obtain the probability matrix
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Fig. 24. Fuzzy-valued concept-network of Example 3.3.

P and the confidence matrixS is now presented as follows.

�-Cuts Operations Algorithm (Algorithm A) for
Fuzzy-Valued Concept-Networks Using
Triangular Fuzzy Numbers:

for i 1 to n do
for j  1 to n do
begin

if (�1ij = �2ij = �3ij) then
if (�1 � �1ij) thenP (i; j) 0
elseP (i; j) 1

else
begin

if (�1 � �3ij) thenP (i; j) 0;
if (�2ij � �1 � �3ij) and(�2ij 6= �3ij) then

P (i; j) 
(�3ij � �1)

2

(�3ij � �2ij)(�
3

ij � �1ij)
;

if (�2ij � �1 � �3ij) and(�2ij = �3ij)
thenP (i; j) 0;

if (�1ij � �1 � �2ij) and(�1ij 6= �2ij) then

P (i; j) 1�
(�1 � �1ij)

2

(�3ij � �1ij)(�
2

ij � �1ij)
;

if (�1ij � �1 � �2ij) and(�1ij = �2ij)
thenP (i; j) 1;

if (�1 � �1ij) thenP (i; j) 1
end;
if (P (i; j) � �2) thenS(i; j) 1
elseS(i; j) 0

end.

Example 3.3: Given a fuzzy-valued concept-network shown in
Fig. 24. Assume that�1 = 0:6 and�2 = 0:7; then we can use the
concept matrixM to model the fuzzy-valued concept-network shown
at the bottom of the page. By performing the�-cuts operations, the
probability matrixP and confidence matrixS can be obtained as

follows:

P =

1 1 0 0 1 0 0 0
0 1 1 1=8 0 1 0 0
0 0 1 0 0 0 1=2 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1=2 0 0 0 1 0
0 0 0 1 0 0 0 1

S =

1 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1

In the following, we assume that a fuzzy-valued concept-network
which consists ofn concepts using trapezoidal fuzzy numbers to
represent the degrees of generalization and the degrees of similarity
between concepts has been modeled by ann � n concept matrix
N; whereN(i; j) = (�1ij ; �

2

ij ; �
3

ij ; �
4

ij); 0 � �1ij � �2ij � �3ij �
�4ij � 1; 1;� i � n; and1 � j � n: The algorithm for performing
�-cuts operations on the fuzzy-valued concept-network to obtain the
probability matrixQ and the confidence matrixS is shown above
the matrix at the bottom of the next page.

Example 3.4: Given a fuzzy-valued concept-network shown in
Fig. 25. Assume that�1 = 0:6 and�2 = 0:7; then we can use the
concept matrixN to model the fuzzy-valued concept-network shown
at the bottom of the page. By performing the�-cuts operations, the
probability matrixQ and confidence matrixS can be obtained as
follows:

Q =

1 1 1 0 0 0
1 1 0 0 0 0
0 0 1 0 1=18 13=14
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

S =

1 1 1 0 0 0
1 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

:

In the following, we present the definition of concept classes in
a fuzzy-valued concept-network based on [4]. A concept classPi in
a fuzzy-valued concept-network using triangular fuzzy numbers to

M =

(1; 1; 1) (0:85; 0:9; 0:95) (0; 0; 0) (0; 0; 0) (0:8; 0:9; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0)
(0; 0; 0) (1; 1; 1) (0:8; 0:95; 1) (0:3; 0:5; 0:7) (0; 0; 0) (0:9; 0:9; 1) (0; 0; 0) (0; 0; 0)
(0; 0; 0) (0; 0; 0) (1; 1; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0:5; 0:6; 0:7) (0; 0; 0)
(0; 0; 0) (0; 0; 0) (0; 0; 0) (1; 1; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0:6; 0:8; 1)

(0:8; 0:9; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0) (1; 1; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0)
(0; 0; 0) (0:9; 0:9; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0) (1; 1; 1) (0; 0; 0) (0; 0; 0)
(0; 0; 0) (0; 0; 0) (0:5; 0:6; 0:7) (0; 0; 0) (0; 0; 0) (0; 0; 0) (1; 1; 1) (0; 0; 0)
(0; 0; 0) (0; 0; 0) (0; 0; 0) (0:6; 0:8; 1) (0; 0; 0) (0; 0; 0) (0; 0; 0) (1; 1; 1)
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Fig. 25. Fuzzy-valued concept-network of Example 3.4.

represent the degrees of generalization and the degrees of similarity
between concepts is a set of concepts, such that the set of concepts
C in the fuzzy-valued concept-network is the union of each concept
class, i.e.,C = [i Pi: Furthermore, after performing the�-cuts
operations in the fuzzy-valued concept-network, we can define the
set of synonymous concepts in each concept class.

Definition 3.1: In a concept classPi; 8ci; cj 2 Pi; if
�simtri(ci; cj)> 0; then we say thatci and cj are in the same
set of synonymous concepts in the fuzzy-valued concept-networks

using triangular fuzzy numbers to represent the degrees of
generalization and the degrees of similarity between concepts.

A concept classXi in a fuzzy-valued concept-network using trape-
zoidal fuzzy numbers to represent the degrees of generalization and
the degrees of similarity between concepts is a set of concepts, such
that the set of conceptsC in the fuzzy-valued concept-network is the
union of each concept class, i.e.,C = [iXi: Furthermore, after per-
forming the�-cuts operations in the fuzzy-valued concept-network,
we can define the set of synonymous concepts in each concept class.

Definition 3.2: In a concept classXi;8ci; cj 2 Xi; if
�simtra(ci; cj)> 0; then we say thatci andcj are in the same set of
synonymous concepts in the fuzzy-valued concept-networks using
trapezoidal fuzzy numbers to represent the degrees of generalization
and the degrees of similarity between concepts.

The algorithm for finding the inheritance hierarchies in a fuzzy-
valued concept-network is a modification of the one we presented
in [2]. The algorithm is shown at the bottom of the next page and
continued on the page following that.

Example 3.5: We make the same assumptions as in Example
3.3, where the fuzzy-valued concept-network shown in Fig. 24 is
modeled by the concept matrixM; and the probability matrixP

�-Cuts Operations Algorithm (Algorithm B) for
Fuzzy-Valued Concept-Networks Using
Trapezoidal Fuzzy Numbers:

for i 1 to n do
for j  1 to n do
begin

if (�1ij = �2ij = �3ij = �4ij) then
if (�1 � �1ij) thenQ(i; j) 0
elseQ(i; j) 1

else
begin

if (�1 � �4ij) thenQ(i; j) 0;
if (�3ij� �1 � �4ij) and(�3ij = �4ij) then

Q(i; j) 
(�4ij � �1)

2

(�4ij � �
3

ij)(�
4

ij + �3ij � �
2

ij � �
1

ij)
;

if (�3ij � �1 � �4ij) and(�3ij 6= �4ij)
thenQ(i; j) 0;

if (�2ij � �1 � �3ij) then

Q(i; j) 
�4ij + �3ij � 2�1

�4ij + �3ij � �
2

ij � �
1

ij

;

if (�1ij � �1 � �2ij) and(�1ij 6= �2ij) then

Q(i; j) 1�
(�1 � �

1

ij)
2

(�2ij � �
1

ij)(�
4

ij + �3ij � �
2

ij � �
1

ij)
;

if (�0

ij � �1 � �2ij) and(�1ij = �2ij) then
Q(i; j) 1;

if (�1 � �1ij) thenQ(i; j) 1
end;
if (Q(i; j) � �2) thenS(i; j) 1
elseS(i; j) 0

end.

N =

(1; 1; 1; 1) (0:7; 0:8; 0:9; 1) (0:8; 0:85; 0:95; 1) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)
(0:7; 0:8; 0:9; 1) (1; 1; 1; 1) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0)

(0; 0; 0; 0) (0; 0; 0; 0) (1; 1; 1; 1) (0; 0; 0; 0) (0:3; 0:4; 0:45; 0:7) (0:5; 0:7; 0:9; 1)
(0; 0; 0; 0) (0; 0; 0; 0) (0; 0:2; 0:4; 0:6) (1; 1; 1; 1) (0; 0; 0; 0) (0; 0; 0; 0)
(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (1; 1; 1; 1) (0; 0; 0; 0)
(0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (0; 0; 0; 0) (1; 1; 1; 1)
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and the confidence matrixR have been obtained. By applying the
inheritance hierarchy generation algorithm, we can obtain three sets
of concept classes:fc1; c2; c3; c5; c6g; fc4; c8g; fc7g; and three sets
of synonymous concepts:fc1; c5g; fc2; c6g; fc4; c8g: Assume that we
are interested in the concept classes containingc2; then after perform-

ing the algorithm, we can find the inheritance hierarchyfhc1; c2; c3ig
containingc2; graphically as shown in Fig. 26(a). By using replace-
ment among synonymous concepts, we can obtain the other three
inheritance hierarchies:fhc5; c2; c3ig; fhc1; c6; c3ig; fhc5; c6; c3ig as
shown in Fig. 26(b)–(d), respectively.

Inheritance Hierarchy Generation Algorithm for Fuzzy-Valued Concept-Networks:
Step 1: Perform the�-cuts operations on the fuzzy-valued concept network using the�-cuts operations

algorithm described previously.
(Notes: (1) If the degrees of generalization and the degree of similarity between concepts in the

fuzzy-valued concept networks are represented by triangular fuzzy numbers, then we can
choose AlgorithmA for performing the�-cuts operations on the fuzzy-valued concept
network.

(2) If the degrees of generalization and the degree of similarity between concepts in the
fuzzy-valued concept networks are represented by trapezoidal fuzzy numbers, then we can
choose AlgorithmB for performing the�-cuts operations on the fuzzy-valued concept
network.

(3) Because a triangular fuzzy number(a; b; c) can also be represented by a trapezoidal fuzzy
number(a; b; b; c); if the degrees of generalization and the degree of similarity between
concepts in the fuzzy-valued concept-networks are represented by triangular fuzzy numbers,
then we also can firstly translate the triangular fuzzy numbers in the fuzzy-valued concept
network into trapezoidal fuzzy numbers, and then we can choose AlgorithmB for performing
the�-cuts operations on the fuzzy-valued concept-networks.)

Step 2: fori 1 to n do
for j  1 to n do

begin
if i = j andci is not in any concept class then generate a new concept class, and putci in the

new generated concept class;
if i 6= j andS(i; j) = 1 then

if S(j; i) = 1 then
begin

if ci is not in any concept class then generate a new concept class, and putci andcj in the
new generated concept class

else
put cj in the same concept class withci;

if ci is not in any set of synonymous concepts then generate a new set of synonymous
concepts, and putci andcj in the new generated set of synonymous concepts

else
put cj in the same set of synonymous concepts withci

end
else

begin
if ci is not in any concept class andcj is not in any concept class then generate a new

concept class, and putci andcj in the new generated concept class;
if ci is in a concept class andcj is not in any concept class then putcj in the same

concept class withci;
if ci is not in any concept class andcj is in a concept class then putci in the same

concept class withcj ;
if ci is in a concept class andcj is in a concept class
then

begin
put all concepts in the concept class containingcj in the same concept class withci;
put all fuzzy-valued generalization in the concept class containingcj in the concept
class containingci

end;
let hci; cji be an fuzzy-valued generalization relation in concept class containingci

end
end;

find the concept class containing conceptck;
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list all fuzzy-valued generalization relations in this concept class which form an inheritance hierarchy;
for all ci in this inheritance hierarchy do
begin

find the set of synonymous concepts containingci;

for eachcj in this set of synonymous concepts do
begin

substituteci in the fuzzy-valued generalization relation bycj ;

list all fuzzy-valued generalization relations in this concept
class which form a new inheritance hierarchy

end
end.

Fig. 26. Inheritance hierarchies of Example 3.5.

Fig. 27. Inheritance hierarchies of Example 3.6.

Example 3.6: We make the same assumptions as in Example
3.4, where the fuzzy-valued concept-network shown in Fig. 25 is
modeled by the concept matrixN; and the probability matrixQ
and the confidence matrixR have been obtained. By applying
the inheritance hierarchy generation algorithm, we can obtain three
sets of concept classes:fc1; c2; c3; c6g; fc4g; fc5g; and one set of
synonymous concepts:fc1; c2g: Assume that we are interested in the
concept classes containingc3; then after performing the algorithm,
we can find the inheritance hierarchyfhc1; c3; c6ig containingc3;
graphically as shown in Fig. 27(a). By using replacement among
synonymous concepts, we can obtain the other inheritance hierarchy:
fhc2; c3; c6ig as shown in Fig. 27(b).

IV. CONCLUSIONS

In this paper, we have extended the works of [2] and [4] to
present the concepts of fuzzy-valued concept-networks and to present
an algorithm for finding the collection of inheritance hierarchies in
fuzzy-valued concept-networks where the degrees of generalization

and the degrees of similarity between concepts are represented by
triangular fuzzy numbers or trapezoidal fuzzy numbers. The proposed
method is more flexible than the ones presented in [2] and [4] due to
the fact that it allows the similarity relations and the generalization
relations between concepts to be represented by triangular fuzzy
numbers or trapezoidal fuzzy numbers rather than crisp real values
between zero and one or interval-values in [0, 1].
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