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Abstract—In this paper, we extend the works of [2] and [4] to present
a new method for finding the inheritance hierarchies in fuzzy-valued Il. Fuzzy-VALUED CONCEPFNETWORKS

concept-networks, where the relevant values (degrees of generalization or kovich d K d f . f
degrees of similarity) between concepts in a fuzzy-valued concept network N _[4]' ltzkovich and Hawkes presented a fuzzy extension o
are represented by fuzzy numbers. The proposed method is more flexible inheritance hierarchies to provide a more refined construction that fa-

than the ones presented in [2] and [4] due to the fact that it allows the cilitate the representation of relations among concepts under uncertain
grades of similarity and the grades of generalization between concepts t0 gnditions. The extension is done in the following two steps:
be represented by fuzzy numbers rather than crisp real values between Step 1° Incorporate the synonvmy relation in the inheritance hier
zero and one or interval values in [0, 1]. pL - p Y Yy _y B
_ _archy, resulting in a new construction denoted as a concept-network.
Index Terms—Fuzzy numbers, fuzzy-valued concept-networks, inheri-  gtep 2: The relations on the concept-network are fuzzified to yield

tance hierarchies, synonymous concepts. .

a new construction denoted as a fuzzy concept-network, where the

relevant values between concepts are represented by real values

|. INTRODUCTION between zero and one.

In [4], ltzkovich and Hawkes pointed out that inheritance hier—ST]E:)TIOdVS:n't'ons of fuzzy concept-networks are reviewed from [4]

archies provide a significant descriptive capability using only tHE L ) P . -
generalization relations. They also presented a fuzzy extension oPefmt'ggncz'i' The )S|m|Iar|ityr rglatlotr:.RSi’“ fover a flmt'.te SGL.OL
inheritance hierarchies to fuzzy concept-networks which contain Nt ceP>s & = {e1, 2,0+, cn}, IS @ binary fuzzy relation whic

only generalization relations but also similarity relations. A fuzz?aﬂsnes all _Of the following properties:
concept-network can then be used in the application of reusable softt) Reflexive: pisim(ci, ci) = 1.
ware retrieval and information retrieval. In [8], Lucaralla and Morara 2) SYmMetric:puim(ci, ¢j) = psim(c), ¢i).
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tog = [0.65,0.75]

Fovsim = [0.9, 1] @

fy =[0.8,09]

Hsim =107, 0.9]

Fig. 1. A fuzzy concept network. Fig. 2. An interval-valued fuzzy concept network.
Definition 2.3: A fuzzy concept-network is denoted by (0

FCN(C, R), where C' is a finite set of concepts anf consists H

of two relations R« and R, over C' as defined in Definitions F

2.1 and 2.2.

For example, Fig. 1 shows an example of a fuzzy concept network.
In [2], we presented the concepts of interval-valued fuzzy concept
networks. In an interval-valued fuzzy concept-network, the degrees
of similarity and the degrees of generalization between concepts are
represented by real intervals in [0, 1]. Two intervalsb] and|c, d] U
are called equal if: = ¢ andb = d. If [a,b] > [c, d] then it implies L L 2
a>c andb >dora =candb>dora>candb = d. '!'he definitions Fig. 3. A triangular fuzzy number.
of interval-valued fuzzy concept networks are reviewed from [2] as

follows:
Definition 2.4: The interval-valued similarity relatiof;,«i.. over J7249))
a finite set of concept§’,C' = {ci,cz2,---, ¢, }, is @ binary fuzzy F

relation which satisfies all of the following properties.

1) Reflexive: pivsim(ci, ¢;) = [L,1].

2) Symmetric:jtivsim(ci, ¢j) = fivsim(cys Ci)-

3) Transitive: Let the degree of interval-valued similarity between
any conceptsc, and ¢, be represented byiivsim(cs,cy),
where ftivsim(cs,¢y) = [S'(cn,¢y), 8 (curey)] and 0 <
S'(ceyey) < §"(ceycy) < 1. Then,

Sl(c;,ck) > \/ (S’(c,;.,c]) A Sl(r:y,’,ck)).,

U
9, 9 qs q4

Fig. 4. A trapezoidal fuzzy number.

Cj
R h h ~ in Fig. 3, wheret, < t» < t3, or by a trapezoidal distribution
5 eirer) 2 y (8%(ei, ) A ST {ejer))- parametrized by a quadruplei, ¢z, ¢s, ¢«) shown in Fig. 4, where
o o ) 71 < g2 < g3 < qa.

Definition 2.5: The interval-valued generalization relatiafv, In the following, we introduce two kinds of fuzzy-valued concept
over a finite set of concept§’, C' = {ci,c2,---.¢ca}. is @ binary petworks. The first one allows the degrees of similarity and the
fuzzy relation which satisfies all of the following properties. degrees of generalization between concepts to be represented by tri-

1) Reflexive: pivg(ci,ci) = [1,1]. angular fuzzy numbers, whereas the second one allows the degrees of

2) Anti-symmetric: If pive(ci,cy) > [0,0] and similarity and the degrees of similarity be represented by trapezoidal

pivg(cj, ci)>10,0], thene; = ¢;. fuzzy numbers.

3) Transitive: Let the degree of interval-valued generalization Definition 2.7: Let A and B be two triangular fuzzy numbers,
between any concepts andc, be represented hyivs(cz,cy), where
Where lu’i"g(cl'ﬂcy) = [gl(cl':Cé/)fg’L(C”-"cy)]ﬂ and 0 S ‘4 :(([1’(1‘2‘(1‘3)‘
g'(cercy) < ¢"(cx,cy) < 1. Then, o

l l l B = (b1, ba, b)
is Ck > Ciy Cy 75 Ck ) )s .

g (ciren) 2 y (g (e, e5) A g (essex)), 0<a; <az <az <1,and0 < b, < by < bz < 1. The triangular
N ! N R fuzzy numbers4 and B are called equal (i.e4 = B) if and only
9" (cisen) >\ (9" (cive;) A g"(cjoen)). if a1 = by,as = by, andas = bs. Otherwise, the triangular fuzzy

¢y numbersA and B are called unequal (i.e4 # B).

Definition 2.6: An interval-valued fuzzy concept-network is de- Definition 2.8: Let X andY be two trapezoidal fuzzy numbers,
noted byIVFCN(C, R), where C is a finite set of concepts andwhere
R consists of two relationd?ivsim and Ri.; over C' as defined in X = (21,20, 3, 74)

Definitions 2.4 and 2.5. o

For example, Fig. 2 shows an interval-valued fuzzy concept- Y = (192,93, 94)
network. 0Lz xS wzg <2y <1, and0 <yr <y2 <yz3 <yqa < 1.

In the following, we present the concepts of fuzzy-valued conceplhe trapezoidal fuzzy numberX and Y are called equal (i.e.,
networks, where the degrees of generalizations and the degreesXof Y) if and only if 21 = yi, 20 = yo2, 23 = y3,and x4 = y4.
similarity between concepts are represented by fuzzy numbers.Qtherwise, the triangular fuzzy numbeXsandY are called unequal
fuzzy number is a fuzzy subset in the universe of discourdé tifat (i.e., X # Y).
is both convex and normal. A fuzzy numbercan be characterized The definitions of fuzzy-valued concept-networks using triangular
by a triangular distribution parametrized by a trigie, ¢2, ¢3) shown fuzzy numbers to represent the grades of generalization and grades
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Hygua= (07,09, 0.95, 1)

Hgn = (0.6, 0.8, 0.9) M= (09,095, 1) Hra =(0.6,0.7, 0.8, 0.9)

Hoim = (0.8, 0.9, 1)

Fig. 5. A fuzzy-valued concept-network using triangular fuzzy numbers. Fig. 6. A fuzzy-valued concept-network using trapezoidal fuzzy numbers.

@ : . c
2 = (0.7,0.8, 0.9, 1) 1.~ (0.8, 0.9, 0.9, 1)®

of similarity between concepts are presented in Definitions 2.9-2.112) SYMMEUiC: tsimera(ci, ¢;) = fisimtra(Css ¢i).

The definitions of fuzzy-valued concept-networks using trapezoidal3) Transitive: Let the degree of similarity between‘ any
fuzzy numbers to represent the grades of generalization and grades of CONCepts ¢z and ¢, be represented byjisimera(ca. cy),
similarity between concepts are presented in Definitions 2.12-2.14.  WNere jisimira(cr. cy) = (Si(cr,cy). Sa(er, ), S3(cascy),

Definition 2.9: The similarity relation Rume: represented by Sa(ex,cy)), and0 < Si(cw, ¢y) < Sa(cws cy) < Sslewsey) <
triangular fuzzy numbers over a finite set of concefitsC’ = Sa(czyey) < 1. Then

{c1,¢2,---,¢cn}, is @ binary fuzzy relation which satisfies all of the Si(civer) > \/ (S1(cire;) A Silej,cr)),
following properties. c;
D) Reflexive: iimuri(ci i) = (1.1,1). Saleien) 2 \/ (Saleie)) A Sales,en)),
2) SYymMmetric:ptsimeri (Ci» ¢j) = Hsimtri () i ). cj
3) Transitive: Let the degree of similarity between any con-
ceptsc, and ¢, be represented bYisimei(cs,cy), Where Sa(ciser) 2 \/ (Sa(ei i) A Sa(ejo ex)),
ﬂsimtri(cw-/cy) = (Sl(crwcy)752(ca;~ cy)aSB(Ca;vcy))~ and < .
0 < Si(ca,cy) < So(ca,cy) < Ss3(ca,cy) < 1. Then Sa(ciycn) > \/ (Sa(ciscj) A Sa(cj,cr)).
Cj
Si(ci,en) > Si(ciy ;) ANSi(ey, ¢ o .
eiee) 2 M( Heine) e en)) Definition 2.13: The graded generalization relatid®y... repre-
' sented by trapezoidal fuzzy numbers over a finite set of concepts
Sz(cisen) 2 \/ (S2(cisej) A Sz(ejsex)) C,C = {ei,c2,---,cn}, is a binary fuzzy relation which satisfies
¢ all of the following properties.
Sa(ciser) 2 \/ (Salcise;) A Sa(ej, er)). 1) Reflexive: g (ci,ci) = (1,1,1,1).
<y 2) Anti-symmetric: If pgira(ci, ¢;) #(0,0,0,0) and pgiralc;,
Definition 2.10: The graded generalization relatioR.:,; repre- ci)#(0,0,0.0), thene; = c;.
sented by triangular fuzzy numbers over a finite set of concepts3) Transitive: Let the degree of similarity between any concepts
C,C = {c1.ca,---.cn}, is a binary fuzzy relation which satisfies andcy be represented ygira(cx, cy), Wherepguma(ca, cy) =
all of the following properties. (gy(cx,ﬁy)-,gz(cm,cy).,gg(ca-,,cy).,gzt(cm,cy)), and 0 <
1) Reflexive:jigii(ci,c;) = (1,1,1). gi(ca,ey) < ga(carcy) < gs(cancy) < ga(es,ey) <L
2) Anti-symmetric: If pigeri(ci, ¢;) # (0,0,0) and pgiri(cj, i) # Then
(0,0,0), thenc; = c;. g1(ci,cr) > \/ (g1(cisci) A gi(cj,cr)),
3) Transitive: Let the degree of generalization between any Cj
conceptsc, and ¢, ’be represented by,i.i(c..c,), where goleiren) > v (g2(cire) A gales,en)s
Uetri(Caycy) = (g1(caycy), g2(cascy), g3(ce, cy)), and o5
0 S {]1(01,0 ) S .(/2((31‘78 ) S .(/'J(Crac ) S 1. Then
! ’ ! gsteien) 2 \/ (gs(cine) A gs(ej.en)),
gi(ciser) 2 \/ (gieie;) Agi(ejen)), i
< ’ ; galci,crp) > \/ (ga(ciyci) A galey,cr)).
g2lensen) 2\ (galer e) A gulegoen)), &
ci Definition 2.14: A fuzzy-valued concept-network using trape-
g3(ci,cr) > \/ (gs(ci,ci) A gs(cj,cr)). zoidal fuzzy numbers to represent the degrees of generalization
Cy and the degrees of similarity between concepts is denoted by

Definition 2.11: A fuzzy-valued concept-network using trian-F YCNTRA(C, R), where C' is a finite set of concepts an&

gular fuzzy numbers to represent the degrees of generalizatf1SISts Of two relationsisimera @nd Ryera Over ¢ as defined in
and the degrees of similarity between concepts is denoted Bgfinitions 2.12 and 2.13.

FVCNTRI(C, R), whereC is a finite set of concepts arfél consists For example, Fig. 6 shows a fuzzy-valued concept-network using
of two relationsRuimir; and Ry over C' as defined in Definitions trapezoidal fuzzy numbers to represent the degrees of generalization
2.9 and 2.10. and the degrees of similarity between concepts.

For example, Fig. 5 shows a fuzzy-valued concept-network using
triangular fuzzy numbers to represent the degrees of generalization  1ll. AN ALGORITHM FOR FINDING THE INHERITANCE
and degrees of similarity between concepts. HIERARCHIES IN FUZZY-VALUED CONCEPFNETWORKS
Definition 2.12: The similarity relation Rinir. represented by |n [4], ltzkovich and Hawkes presented an algorithm for finding
trapezoidal fuzzy numbers over a finite set of concePts’ = the collection of inheritance hierarchies in fuzzy concept-networks,
{ci,c2.-++,en}, is @ binary fuzzy relation which satisfies all of thewhere the degrees of generalization and the degrees of similarity
following properties. between concepts are represented by real values between zero and
1) Reflexive:psimiralci,ci) = (1,1,1,1). one. In [2], we have presented an algorithm for finding the collection
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of inheritance hierarchies in interval-valued fuzzy concept networks,
where the degrees of generalization and the degrees of similarity
between concepts are represented by interval values in [0, 1].

In this section, we extend the works of [2] and [4] to present
an algorithm for finding the inheritance hierarchies in fuzzy-valued
concept-networks, where the degrees of generalization and the de-
grees of similarity between concepts are represented by fuzzy num-
bers. Firstly, we present a method to model the fuzzy-valued concept-
networks by means of concept matrices. If therera@ncepts in a
fuzzy concept-network, thens:ax n concept matrix will be used to Fig. 7. Figure of Case Al.
model the fuzzy-valued concept-network.

Case 1: If a fuzzy-valued concept-network uses triangular fuzzy
numbers to represent the degrees of generalization and the degrees
of similarity between concepts.

If fsimeri(ci,c;) = paj, wherep;; € [0,1], then letM(i, j)
M(5,0) = (pijs ttijs 1 );

if pgui(ci,c;) = pij, wherepi; € [0,1], then let M (4, j)
(/l,l‘j, Hijs /l,l‘j) and M(j, i) = (0, 0, 0);

if proimeni(ci, ¢5) = (s pi pis), where0 < pujy < pdy < pfj
1, then letAI(LJ) = —’VL-/[(J i) = (ﬂ}]aﬂ%j:#'?]);

if prgeri(circj) = (s 3y ), where0 < pl; < pi; < pdy <1,

1.0

1.0

U

<
Fig. 8. Figure of Case A2.

then letM (i, j) = (pi;. pii;. ;) and M(j, i) = (0,0,0);

if there are no relationships between the conceptandc;, then
let M(4,7) = M(j,%) = (0,0,0).

Furthermore, we lef/(i,7) = (1,1,1), wherel < i < n, due to
the fact that each concept is reflexive to itself.

Example 3.1: Given a fuzzy-valued concept-network shown
Fig. 5, wherec, is a generalization ofz with pigi(c2,c1) =
(0.6,0.8,0.9), c; is also a generalization af; with pgii(cs, c1) =
(0.9,0.95.1), and cs is similar to ¢4 Wwith jisimeri(cs, ca)
Usimeri(ca,c3) = (0.8,0.9,1). Then, we can use a 4 4 concept
matrix M to model the fuzzy-valued concept-network

(1,LL1)  (0,0,0)  (0,0,0) (0,0,0)
v - [(06,08.09) (L1,1)  (0,0,0) (0,0,0)
‘ (0.9,0.95,1) (0,0,0) (1,1,1)  (0.8,0.9,1)

(0,0,0)  (0,0,0) (0.8,0.9,1)  (1,1,1)

= (0.6,0.7,0.8,0.9). ¢, is also a generalization ofs with figra
(ca,c1) (0.7,0.9,0.95,1),c2 is similar to cs With psimira
(e2,03) = /ISImtra(FJ,Fz) = (0.7,0.8,0.9,1), and ¢4 is similar to

e5 With pisimtra(ca, ¢5) = pisimtra(cs, ca) = (0.8,0.9,0.9,1). Then,
~we can use & x 5 concept matrixV.to model the fuzzy-valued
I"toncept-network shown in the equation at the bottom of the page.

In the following, we present a method for performing theuts

operations on a fuzzy-valued concept-network. Assume that a fuzzy-
valued concept-network using triangular fuzzy numbers to represent
the degrees of generalization and the degrees of similarity between
concepts has been modeled by a concept malfixLet P be a
probability matrix derived from performing the;-cut operation

on the concept matri¥}/, where«; is a threshold value between
zero and one. Then, in a probability matdX the elementP(i, j)
indicates the degree of probability thak(i, j) is larger than or equal

to a1, where M (i, 7) is represented by a triangular fuzzy number

Case 2: If a fuzzy-valued concept-network uses trapezoidal fuzzyi;: bij» ¢i;)- The larger the value of(é, j), the more the degree
numbers to represent the degrees of generalization and the degféet® probability that the degree of relationship (generalization

of similarity between concepts.

If pisimtra(ciscj) = pij, where u;;
N(Goi) = (pigs pigs pijs piz )3

if pigira(ci,cj) = pij, wherep; € [0,1], then let N(7,j) =
(Hijs pijs pizs ptij) and N (j.i) = (0,0,0,0);

if lu’simtra(ciwcj) = ('H‘}jw}l%jvll’?jvﬂ'?i)w where0 S /J/zlg S [1,727 S
ply < pdy <1 then letN (i, j) = N(j,i) = (uiys ndys i 1135

if #gtl‘a(c‘i7c,7) = (#}jﬂﬂ?jvll'?jeﬂ?j)ﬂ where 0 < )u'}j < #22']'
wiy < piy < 1othenletN (i, j) = (i, uiy, wilj. piy) and N (j. )
(0,0,0,0);

if there are no relationships between the concept@ndc;, then
let N(i.j) = N(j.i) = (0,0,0,0).

Furthermore, we lefV(i,i) = (1,1,1,1), wherel < i < n, due
to the fact that each concept is reflexive to itself.

€ [0,1], then letN(i,5) =

A

relationship or similarity relationship) between the conceptand

¢; is larger thany;. The value ofP(i, j) is decided by the following
cases, wheré\{ (i, j) is represented by a triangular fuzzy number
parametrized bya;;, bi;, ci;) and0 < a;; < by < ¢;; < 1.

If a;; = bz']' = Cij then

Case Al: If oy >a,; (see Fig. 7), then we leP(i,j) = 0.

Case A2: If ay < a;j (see Fig. 8), then we leP(i,5) = 1.

else

Case A3: If a1 >¢;; (see Fig. 9), then we leP(i,j) = 0.

Case A4: If bi]' < ap < Cij and bij ;ﬁ Cij (see Flg 10),
then we letP(i,j) = (cij — a1)?/(cij — bij)(cij — aij). (Since
the area of the shadow triangle (%/2)((c:; — a1)*/(ci; — bi;))
and the area of the whole triangle parametrized(®dy, b;;, c;;) is
1 (ci; — aqij), the P(i, j) is equal to the proportion of the shadow

Example 3.2: Given a fuzzy-valued concept-network showrifiangle to the whole triangle parametrized fay;. b;;. ci;) which is

in Fig. 6, wherec; is a generalization ofs with pigera(cs, 1) (cij = a1)?/(eij = bij)(eij — aiz)).
(1,1,1,1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (1,1,1,1) (0.7,0.8,0.9,1) (0,0,0,0) (0,0,0,0)
N = |(0.6,0.7,0.8,0.9) (0.7,0.8,0.9,1) (1,1,1,1) (0,0,0,0) (0,0,0,0)
(0.8,0.9,0.9,1) (0,0,0,0) (0,0,0,0) (1,1,1,1) (0.8,0.9,0.9,1)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0.8,0.9,0.9,1) (1,1,1,1)
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1.0 1.0}
0 U 0 % U
a; bu ¢ a Q; ¢
av
Fig. 9. Figure of Case A3. sz
Fig. 13. Figure of Case A7.
1.0
1.0
0 U
a, b, «a o 0 U
a, a; bij C;
Fig. 10. Figure of Case A4.
Fig. 14. Figure of Case A8.
1.0 1.0
0 U
a, a
0 a2 U bi]_ 1
a!j bl CU
i
d,
Fig. 11. Figure of Case A5. Fig. 15. Figure of Case B1.
1.0
) 0 A———
0 U
0 Q; Z‘f
y
¢y
d

E

Fig. 12. Figure of Case A6.
Fig. 16. Figure of Case B2.

Case A5: If b;; < a1 < ¢;; andb;; = ¢;; (see Fig. 11), then we
let P(i,5) = 0.

Case A6: If a;; < ay < b;; anda;; # b;; (see Fig. 12), then
we let P(Lj) =1- ((Q’1 — aij)z/(b;j — aij)(cij — (L,’j)). (Since

the area of the empty triangle €/2)((c1 — ai;)*/(bij — aij)] .
P gle ©@/2)((ar = a;j) /(bij = aij)) between the concept andc; is larger tham. The value ofQ)(i. j)

and the area of the whole triangle parametrized(dy. b:;, ci;) is | ; X AN
% (¢i; — ai;). the P(i, j) is equal to one minus the proportion of thds decided by the following cases, whel&(i, j) is represented by

empty triangle to the whole triangle parametrized (ay;, bi;, c;;) & [UZzy number parametrized ;. bij, ¢ij, dij) and0 < ai; <

is larger than or equal tev;, where N(i,j) is represented by a
trapezoidal fuzzy numbefa;;, b;;, c:i;,d;;). The larger the value
of Q(i,j), the more the degree of the probability that the degree
of relationship (generalization relationship or similarity relationship)

which is1 — ((0’1 - (1,;‘]')2/(1),;]’ — (l,,jj)((:,;j - ﬂ,7))) bij < 6ij < (]7:7 < L
Case A7:If a;; < ay < b;; anda;; = by; (see Fig. 13), then  If aij = bi; = ¢;j = di; then

we let P(i,j) = 1. Case B1: If «y >a;; (see Fig. 15), then we l&p(i, j) = 0.
Case A8: If a; < a;; (see Fig. 14), then we leé®(i, j) = 1. Case B2: If ay < a4; (see Fig. 16), then we lep(i, j) = 1.

Assume that a fuzzy-valued concept-network using trapezoidal€lse
fuzzy numbers to represent the degrees of generalization and th€ase B3: If a, >d;; (see Fig. 17), then we l&p(i, j) = 0.
degrees of similarity between concepts has been modeled by a conceftase B4: If ¢;; < a1 < d;; ande;; # di; (see Fig. 18), then we
matrix N. Let () be a probability matrix derived from performing thelet Q(i, j) = (di; — a1)?/(dij — ci;)(dij+cij — bi; —aiz). (Since the
«1-cut operation on the concept matrX, where«; is a threshold area of the shadow triangle (%/2)((d:; —a1)?/(d;j — ¢;;)) and the
value between zero and one. Then, in a probability maffixthe area of the whole trapezoidal parametrized (y;, b;j, cij, dij) is
elementQ(i, ;) indicates the degree of probability tha€(i,;) 1 (dij + cij — bij — aij). the Q(i,j) is equal to the proportion
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1.0
0 U
a, bu. Q,
Fig. 17. Figure of Case B3.
Fig. 21. Figure of Case B7.
I.O,T\
0 U
a, b,] c, a, d, U
Fig. 18. Figure of Case B4. a;
bu
Fig. 22. Figure of Case B8.
1.0
0 U
a, b; a,
¥ 0 U
v & g bu ¢ dv
Fig. 19. Figure of Case BS. Fig. 23. Figure of Case B9.
10 proportion of the empty triangle to the whole triangle parametrized
. by (aij,bi]',CgJ'?dij) which is1 — ((Oél — Clij)g/(bij - “’ij)(dij +
cij = bij = aij))).
Case B8: If a;; < a1 < b;; anda;; = bi; (see Fig. 22), then
0 U we let Q(i,j) = 1.
a, b, @ ¢ d, Case B9: If oy < ay; (see Fig. 23), then we l&@(é,j) = 1.
Let S be a confidence matrix derived froRt, and let as be
Fig. 20. Figure of Case B6. a threshold value between zero and onePlfi,j) > a2, where

as € [0,1], then we letS(i,5) = 1. Otherwise, we letS(i,j) =
0. S(i,j) = 1 indicates that the degree of probabilifyin which
of the shadow triangle to the whole triangle parametrized B{)e degree of relationship between the conceptandc; is larger

(aij,bij,cijdi;) Which is (di; — a1)?/(dij — ¢i;)(dij + ¢;; — than or equal toa; is larger than or equal tev,, wherea: €
bij — aij)). [0,1].

Case B5: If ¢;; < a1 < d;; ande;; = d;; (see Fig. 19), then Let S be a confidence matrix derived fro), and let . be
we let Q(i,j) = 0. ' a threshold value between zero and oneQlfi,j) > a2, where

Case B6: If b;; < ), < ¢;; (see Fig. 20), then we lgp(i,j) = @2 € [0,1]. then we letS(i,j) = 1. Otherwise, we letS(i, j) =
(dij+cij—2a1)/(dij+ci;—bij—ai;). (Since the area of the shadow0- S(¢,7) = 1 indicates that the degree of probabilityin which
trapezoidal is; (d;;+c:; —2a1) and the area of the whole trapezoidathe degree of relationship between the conceptandc; is larger
parametrized by(ai;,bij,cij,dij) is % (dij + cij — bi; — ai;), than or equal toa, is larger than or equal tev,. wherea, €
the Q(i,j) is equal to the proportion of the shadow trapezoidd?; 1]-
to the whole triangle parametrized Wyi;;, b;;, cij, dij) which is In the following, we assume that a fuzzy-valued concept-network
(dij + cij — 201)/(dij + cij — bij — aij). which consists ofn concepts using triangular fuzzy numbers to

Case B7: If a;; < aq < b,;; anda,; # bi; (see Fig. 21), then we represent the degrees of generalization and the degrees of similarity
letQ(i, j) = 1—((ov1—ai; )/ (bij—ai;)(dij4cij—bi;—ai;)). (Since  between concepts has been modeled by ann concept matrixi4,
the area of the empty triangle (&/2)((a1 — a;;)*/(b;; —a;;)) and  whereM(i,j) = (#317#?]‘:#‘?1%0 < #}j < #12; < ,u?j <1,1<i<
the area of the whole trapezoidal parametrized by, b;j,c;j,d;;) n, and1l < j < n. The algorithm for performingy-cuts operations
is % (dij + cij — bij — aqij), the Q(i,7) is equal to one minus the on the fuzzy-valued concept-network to obtain the probability matrix
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fign = (03, 0.5, 0.7) fs = (0.8,0.95, 1)

Homn = (0.9, 0.9, 1) ©

L= (0.85,0.9, 0.95)

Homn = (0.8,0.9,1)

Fig. 24. Fuzzy-valued concept-network of Example 3.3.

P and the confidence matri& is now presented as follows.

a-Cuts Operations Algorithm (Algorithm_A) for
Fuzzy-Valued Concept-Networks Using
Triangular Fuzzy Numbers:
fori «— 1ton do
for j — 1ton do
begin
i (! = iy = i) then
if (a; > ;zfj) thenP(i,j) — 0
elseP(i,j) — 1
else
begin
if (1 > pd;) thenP(i ) —0;
if (;/,] <ar < /IU) and(;/” # /IU ) then
(p —a)®
PG.j) = (/‘?]‘ - .“/”)(/1/,,] - /l'}j)7
if (uf; < ar < piy) and (pf; = pi)
thenP(i j) — 0;
if (;t,] <ar < ,uu) and(;LZ] # ,uu) then
Pli.j)—1- (a1 N:i) .
(13 — #”)(#,] — i)’
if (;z,, <oy < ,u”) and(u,] = ,u”)
thenP(i,j) «— 1;
if (a1 < plj) thenP(i,j) « 1
end;
if (P(i,j) > ag)thenS(i,j) <1
elseS(i,j) — 0
end.

Example 3.3: Given a fuzzy-valued concept-network shown in

Fig. 24. Assume that; = 0.6 and a2 = 0.7, then we can u

C
My = (0.5, 0.6, 0.7) @

follows:

rl 1 0 0 1 0 0 07
0 1 1 1/8 0 1 0 0
0 0 1 0 00 1/2 0

p— 0 0 O 1 00 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 O
00 1/2 0 0 0 1 0
LO 0 0 1 0 0 0 1l
rl 1 0 0 1 0 0 07
01 1 0 0100
001 0 0 00O

g 0o 0 0 1 0 0 01
1 0 001 0 0O
01 0 0 0 1 0 O
0o 0 0 0 0 0 1 0
Lo 0 0 1 0 0 0 14

In the following, we assume that a fuzzy-valued concept-network
which consists ofn concepts using trapezoidal fuzzy numbers to
represent the degrees of generalization and the degrees of similarity
between concepts has been modeled byrak n concept matrix
N, where N(i,j) = (pij. nij» i p13), 0 < piy < pgy < piy <
N/,:l,;’ <1,1,<i<mn,andl < j < n. The algorithm for performing
«-cuts operations on the fuzzy-valued concept-network to obtain the
probability matrix@ and the confidence matri is shown above
the matrix at the bottom of the next page.

Example 3.4: Given a fuzzy-valued concept-network shown in
Fig. 25. Assume that; = 0.6 and a2 = 0.7, then we can use the
concept matrixV to model the fuzzy-valued concept-network shown
at the bottom of the page. By performing thecuts operations, the
probability matrix @ and confidence matri¥ can be obtained as

follows:
i 1 1 0 0 0
1 1 0 0 0 0
|00 1 0 1/18 13/14
Q= 0 0 0 1 0 0
00 0 O 1 0
L0 0 0 0 0 1
rt 1.1 0 0 0
1 1.0 0 0 0
001001
S= 0o 0 0 1 0 0
0 00 010
L0 0 0 O 1

se the

concept matrix}/ to model the fuzzy-valued concept-network shown In the following, we present the definition of concept classes in
at the bottom of the page. By performing thecuts operations, the a fuzzy-valued concept-network based on [4]. A concept dass
probability matrix P and confidence matri§ can be obtained as a fuzzy-valued concept-network using triangular fuzzy numbers to

- (1,1,1)  (0.85,0.9,0.95)  (0,0,0) (0,0,0)  (0.8,0.9,1)  (0.,0,0) (0.0,0) (0,0,0) 7
(0,0,0) (1,1,1) (0.8,0.95.1) (0.3,0.5,0.7)  (0,0,0)  (0.9,0.9.1)  (0.0,0) (0.0,0)
(0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0) (0,0,0)  (0.5,0.6,0.7)  (0,0,0)
v | (0.00 (0,0,0) (0,0 ) (1,1,1) (0,0,0) (0,0,0) (0,0,0)  (0.6,0.8,1)
M7 1(0.8,0.9,1) (0,0,0) (0,0, (0.0.,0) (1.1,1) (0.0,0) (0.0,0) (0.0.,0)
(0,0,0) (0.9,0.9,1) (0, ) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0)
(0,0,0) (0,0,0) (0.5, 0 ) (0,0,0) (0,0,0) (0 0.0) (1,1,1) (0,0,0)
L (0,0,0) (0,0,0) (0,0,0) (0.6,0.8,1)  (0,0.0) (0.0,0) (0,0,0) (1,1,1) |
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s = (05,0.7,0.9, 1) Hei =(03,0.4,045,0.7)

Hgn=(0,02,0.4, 0.6) Hy = (0.8, 0.85, 0.95, 1)

C.
Famn = (0.7, 08,09, 1) ©

Fig. 25. Fuzzy-valued concept-network of Example 3.4.
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using triangular fuzzy numbers to represent the degrees of
generalization and the degrees of similarity between concepts.

A concept classY; in a fuzzy-valued concept-network using trape-
zoidal fuzzy numbers to represent the degrees of generalization and
the degrees of similarity between concepts is a set of concepts, such
that the set of concepts in the fuzzy-valued concept-network is the
union of each concept class, i.6!,= U; X;. Furthermore, after per-
forming the «-cuts operations in the fuzzy-valued concept-network,
we can define the set of synonymous concepts in each concept class.

Definition 3.2: In a concept classX;,Vei,¢; € X, |f
Usimtra(Css ¢j) > 0, then we say that; andc; are in the same set of
synonymous concepts in the fuzzy-valued concept-networks using

represent the degrges of generalization and the degrees of similafity,e 7 oidal fuzzy numbers to represent the degrees of generalization
between concepts is a set of concepts, such that the set of concgRifthe degrees of similarity between concepts.

C' in the fuzzy-valued concept-network is the union of each conceptthe algorithm for finding the inheritance hierarchies in a fuzzy-

class, i.e.,C = U; P;. Furthermore, after performing the-cuts

valued concept-network is a modification of the one we presented

operations in the fuzzy-valued concept-network, we can define te[2]. The algorithm is shown at the bottom of the next page and

set of synonymous concepts in each concept class.

Definition 3.1: In a concept classP;.Vc,,c; € P, |if

continued on the page following that.
Example 3.5: We make the same assumptions as in Example

Hsimtri(ci, ;) >0, then we say that; and c; are in the same 3.3, where the fuzzy-valued concept-network shown in Fig. 24 is
set of synonymous concepts in the fuzzy-valued concept-networkedeled by the concept matrix/, and the probability matrixP

a-Cuts Operations Algorithm (Algorithm B) for
Fuzzy-Valued Concept-Networks Using
Trapezoidal Fuzzy Numbers:

fori < 1ton do
for j — 1ton do
begin

if (ui; = pi; = pil; = piy) then
if (a1 > ;) thenQ(i, j) + 0

else@(i,j) — 1
else
begin

if (a1 > pf;) thenQ(i, j) < 0;
if (< an < i) and(ud; = pi;) then

(p; = on)?

QUi j)

(it = )y + pdy = pdy — )

if (3 <on <pdy) and(pd; # pi))

thenQ(i,j) < 0;

if (pF; <aq < pd;) then

QUi j)

ph+ il = 20

Wl oy~

if (ul; < o1 < pdy) and(ul; # pi;) then

(a'l - )u'zlj)z

Q. j) —1-

(13 — nip) (i +ud;

- :u’zzj - /"th)7

if (ui; < o1 < piy) and(p; = pi;) then

Qi,j) — L

if (g < ;z,ljj) thenQ(i,j) «— 1

end;

if (Qi,j) > az) thenS(i, j) — 1

elseS(i,j)— 0
end.

(1,1,1,1)  (0.7,0.8,0.9.1) (0.8,0.85,0.95,1) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0.7,0.8,0.9,1)  (1,1,1,1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
v | (0000 (0,0,0,0) (1,1,1,1) (0,0,0,0) (0.3,0.4,0.45,0.7) (0.5,0.7,0.9,1)
T (0,0,0,0) (0,0,0,0) (0,0.2,0.4,0.6) (1,1,1,1) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (1,1,1,1) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (1,1,1,1)
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and the confidence matriR have been obtained. By applying theing the algorithm, we can find the inheritance hierar¢kwi , c2, c5)}
inheritance hierarchy generation algorithm, we can obtain three setstainingc:, graphically as shown in Fig. 26(a). By using replace-
of concept classedci, c2,¢s3,¢5,¢6}, {ca, cs}, {c7 }, and three sets ment among synonymous concepts, we can obtain the other three
of synonymous concept§er, s }, {c2, cs }, {c4, cs }. Assume that we inheritance hierarchie$i{cs. c2,cs)}, {{c1,cs, c3)}, {{cs,cs,c3) } as

are interested in the concept classes containinthen after perform- shown in Fig. 26(b)—(d), respectively.

Inheritance Hierarchy Generation Algorithm for Fuzzy-Valued Concept-Networks:
Step 1: Perform the-cuts operations on the fuzzy-valued concept network usingvthets operations

algorithm described previously.

(Notes: (1) If the degrees of generalization and the degree of similarity between concepts in the
fuzzy-valued concept networks are represented by triangular fuzzy numbers, then we can
choose AlgorithmA for performing thea-cuts operations on the fuzzy-valued concept
network.

(2) If the degrees of generalization and the degree of similarity between concepts in the
fuzzy-valued concept networks are represented by trapezoidal fuzzy numbers, then we can
choose AlgorithmB for performing thex-cuts operations on the fuzzy-valued concept
network.

(3) Because a triangular fuzzy number, b, ¢) can also be represented by a trapezoidal fuzzy
number(a, b, b, ¢), if the degrees of generalization and the degree of similarity between
concepts in the fuzzy-valued concept-networks are represented by triangular fuzzy numbers,
then we also can firstly translate the triangular fuzzy numbers in the fuzzy-valued concept
network into trapezoidal fuzzy numbers, and then we can choose AlgaBtfion performing
the -cuts operations on the fuzzy-valued concept-networks.)

Step 2: fori — 1 ton do
forj — 1ton do
begin
if ¢ = j andc; is not in any concept class then generate a new concept class, andipdhe
new generated concept class;
if i #7 andS(i,j) =1 then
if S(j,7) =1 then
begin
if ¢; is not in any concept class then generate a new concept class, andgmatc; in the
new generated concept class
else
put ¢; in the same concept class witft
if ¢; is not in any set of synonymous concepts then generate a new set of synonymous
concepts, and put; and¢; in the new generated set of synonymous concepts
else
put ¢; in the same set of synonymous concepts with
end
else
begin
if ¢; is not in any concept class amrgl is not in any concept class then generate a new
concept class, and put andc; in the new generated concept class;
if ¢; is in a concept class ang is not in any concept class then pytin the same
concept class witla;;
if ¢; is not in any concept class amgl is in a concept class then put in the same
concept class witla;;
if ¢; is in a concept class ang is in a concept class
then
begin
put all concepts in the concept class containingn the same concept class withy
put all fuzzy-valued generalization in the concept class containjrig the concept
class containing:;
end;
let {c;, c;) be an fuzzy-valued generalization relation in concept class containing
end
end;
find the concept class containing concept
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list all fuzzy-valued generalization relations in this concept class which form an inheritance hierarchy;
for all ¢; in this inheritance hierarchy do
begin
find the set of synonymous concepts containing
for eachc; in this set of synonymous concepts do
begin
substitutec; in the fuzzy-valued generalization relation by,
list all fuzzy-valued generalization relations in this concept
class which form a new inheritance hierarchy

end
end.
and the degrees of similarity between concepts are represented by
@ @ @ @ triangular fuzzy numbers or trapezoidal fuzzy numbers. The proposed
method is more flexible than the ones presented in [2] and [4] due to
the fact that it allows the similarity relations and the generalization
@ @ @ @ relations between concepts to be represented by triangular fuzzy
numbers or trapezoidal fuzzy numbers rather than crisp real values
@ @ @ @ between zero and one or interval-values in [0, 1].
Fig. 26. Inheritance hierarchies of Example 3.5. ACKNOWLEDGMENT
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