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A New Method for Constructing Membership
Functions and Fuzzy Rules from Training Examples

Tzu-Ping Wu and Shyi-Ming Chen,Senior Member, IEEE

Abstract—To extract knowledge from a set of numerical data
and build up a rule-based system is an important research
topic in knowledge acquisition and expert systems. In recent
years, many fuzzy systems that automatically generate fuzzy
rules from numerical data have been proposed. In this paper,
we propose a new fuzzy learning algorithm based on the���-
cuts of equivalence relations and the���-cuts of fuzzy sets to
construct the membership functions of the input variables and
the output variables of fuzzy rules and to induce the fuzzy rules
from the numerical training data set. Based on the proposed
fuzzy learning algorithm, we also implemented a program on a
Pentium PC using the MATLAB development tool to deal with the
Iris data classification problem. The experimental results show
that the proposed fuzzy learning algorithm has a higher average
classification ratio and can generate fewer rules than the existing
algorithm.

Index Terms—Fuzzy learning algorithms, fuzzy rules, knowl-
edge acquisition, membership functions, rule-based systems.

I. INTRODUCTION

I N RECENT years, expert systems have become more and
more popular and important in many applications. The

purpose of expert systems is to emulate the reasoning process
of human experts within a specific domain of knowledge. An
expert system consists of a knowledge base, a user interface,
and an inference engine [8]. Knowledge engineering plays an
important role in the research field of expert systems. Knowl-
edge engineering involves knowledge acquisition, knowledge
representation, and human–machine interaction. The purpose
of knowledge acquisition is to extract knowledge from the
opinions of experts or a set of numerical data. It is difficult
to build up a conventional mathematical model to elicit
knowledge from experts or the sample data in the real-world
application due to the fact that it needs to precisely describe all
the characteristics of the system and it lacks flexibility. Fuzzy
set theory proposed by Zadeh [38] can deal with the vagueness
and uncertainty residing in the knowledge possessed by human
beings or implicated in the numerical data, and it allows us to
represent the system parameters with linguistic terms. Fuzzy
rules have been used as a key tool to express knowledge
in fuzzy logic and are more adequate and flexible than the
traditional IF–THEN rules. In [6], Duboiset al. have surveyed
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different possible semantics for fuzzy rules and showed how
they can be captured in the framework of fuzzy sets and
possibility theory.

There are different approaches to extract knowledge from
experts or training examples. These methods are based on
neural networks or the fuzzy set theory [9]–[13], [15], [16],
[20], [21], [26], [29], [32]. In [32], Wang et al. used a
table-lookup scheme to generate fuzzy rules directly from
numerical examples and proved that a fuzzy inference system
is a universal approximator by the Stone–Weierstrass theorem
[33]. In [26], Nozaki et al. presented a heuristic method
for generating Takagi–Sugeno–Kang (TSK) fuzzy rules from
numerical data, and then translated the consequent parts of
TSK fuzzy rules into linguistic representation. In [9], Grauel
et al. have investigated the connection between the shape of
transfer functions and the shape of membership functions,
where membership functions for multi-input of Sugeno con-
trollers and designed rules were derived. In [16], Klawonn
et al. discussed how fuzzy clustering techniques could be
applied to construct a fuzzy controller from the training data.
In [11], Hong and Lee have pointed out that the drawbacks
of most fuzzy controllers and fuzzy expert systems are that
they need to predefine membership functions and fuzzy rules
to map numerical data into linguistic terms and to make
fuzzy reasoning work. They proposed a method based on the
fuzzy clustering technique and the decision tables to derive
membership functions and fuzzy rules from numerical data.
However, Hong and Lee’s algorithm presented in [11] needs
to predefine the membership functions of the input linguistic
variables and it simplifies fuzzy rules by a series of merge
operations. As the number of variables becomes larger, the
decision table will grow tremendously and the process of
the rule simplification based on the decision tables becomes
more complicated. Thus, we must develop a new algorithm to
overcome the drawbacks of the Hong and Lee’s algorithm.

In this paper, we propose a new fuzzy learning algorithm
based on the -cuts of fuzzy equivalence relations and the

-cuts of fuzzy sets to divide numerical data into different
partitions and to automatically derive membership functions
for each partition. Based on the hierarchical relationships
between different data partitions, the membership functions of
the input linguistic variables and the output linguistic variables
can be constructed automatically and the fuzzy rules can be
generated directly.

The rest of this paper is organized as follows. In Section II,
basic concepts and definitions of the fuzzy set theory are
reviewed from [8], [17], [22], [36], and [38]. In Section III, we
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Fig. 1. The triangular fuzzy setA.

introduce how to use the-cuts of the fuzzy equivalence rela-
tion to partition the numerical data and to derive membership
functions of variables from them. And then we can directly
induce fuzzy rules from the data partitions. In Section IV,
we use an example to illustrate our new algorithm and the
experimental results are shown. In Section V, we apply the
proposed fuzzy learning algorithm to the Iris classification
problem and compare the experimental results to that of Hong
and Lee’s algorithm [11]. The conclusions are discussed in
Section VI.

II. BASIC CONCEPTS OFFUZZY SETS

The theory of fuzzy sets was proposed by Zadeh
in 1965 [38]. A fuzzy set can be characterized by
a membership function. Let be the universe of
discourse, . A fuzzy set in
the universe of discourse is a set of ordered pairs

, where
is the membership function of the fuzzy set, ,
and indicates the membership degree of in the
fuzzy set . If the universe of discourse is an infinite set,
then the fuzzy set can be represented by

The triangular fuzzy set shown in Fig. 1 can be rep-
resented by a triplet , where and are called the
left vertex and right vertex of the triangular fuzzy set,
respectively.

The -cut of a fuzzy set in the universe of discourse
is defined as follows:

Based on the definition of -cuts, the fuzzy set can be
represented as follows:

A fuzzy relation among fuzzy sets is a
subset of the Cartesian product and is
denoted by , where

and . The mem-
bership function of the fuzzy relation
is represented by , where and

. Let and be two binary fuzzy
relations with a common fuzzy set . The composition of

and is denoted by
and is defined as follows:

where for all .
Let be a fuzzy set of the universe of discourse.

A binary fuzzy relation is reflexive if and only
if . A fuzzy relation is
symmetric if and only if

. A fuzzy relation is transitive if and only if

. The transitive closure of a binary fuzzy relation
is denoted by and defined as follows:

where and .
If a binary fuzzy relation is reflexive and symmetric, then

the binary fuzzy relation is a compatibility relation. If a
binary fuzzy relation is reflexive, symmetric, and transitive,
then the binary fuzzy relation is called a fuzzy equivalence
relation. Assume that is a fuzzy set, then, the-cuts of a
binary fuzzy relation can be defined as follows:

where . Thus, every binary fuzzy relation can be
represented in terms of its-cut i.e.,

Furthermore, it can be easily shown that a fuzzy equiva-
lence relation can be considered to effectively group
elements into equivalence classes whose members are similar
to each other in some specified degree by taking an-cut ,
where . Each of these equivalence classes forms a
partition of . Two elements of belong to the same
block of partition if and only if .

III. A N EW FUZZY LEARNING ALGORITHM

In an -input-single-output fuzzy system, the fuzzy rules
have the following general format:

is is

is is

where the variables appearing in the
antecedent parts of the fuzzy rules are called the input
linguistic variables, the variable in the consequent part of
the fuzzy rule is called the output linguistic variable, the
fuzzy sets are called the input fuzzy sets of the input
linguistic variable of the fuzzy rule , and the fuzzy
set is called the output fuzzy set of the output linguistic
variable of the fuzzy rule .

In many real-world applications, the numerical data are
easily obtained from the instruments or the environment. Thus,
the fuzzy rules can be learned from these numerical data.
Assume that there are input–output pairs given as the
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numerical training data set of the -input-single-output
fuzzy system

(1)

where is the value of the th input linguistic variable
of the th input–output pair , and

is the value of the output linguistic variable of the th
input–output pair . The value of the
input linguistic variable is called the input value, and the
value of the output linguistic variable is called the output
value, where and . The input-value set of
the input linguistic variable consists of some input values
of the input linguistic variable in the input–output pairs of
the training data set , where . The output-value
set of the output linguistic variable consists of some output
values of the output linguistic variable in the input–output
pairs of the training data set .

For simplicity, we only consider to construct the multiple-
inputs-single-output (MISO) fuzzy model. Since the outputs
of the MISO fuzzy model are independent, the general rule
structure of the MISO fuzzy model can easily be represented as
a collection of the rules of the multiple-inputs-multiple-outputs
(MIMO) fuzzy models [22].

As discussed in the previous section, a fuzzy equivalence
relation is reflexive, symmetric, and transitive, and it can
divide the crisp data into different groups by its-cuts.
Instead of finding the fuzzy equivalence relation directly,
we can determine a fuzzy compatibility relation (reflexive
and symmetric) in terms of an appropriate distance function
applied to the given data. Then, a fuzzy equivalence relation
can be obtained by the max–min transitive closure of the
fuzzy compatibility relation. Before constructing the fuzzy
equivalence relation of the training data set, we first use the
output values of the output linguistic variableas the key to
sort the training data set in an ascending order [11]. Then,
the sorted training data set can be obtained as follows:

and (2)

where . We only consider the
output values of the output linguistic variable

in the sorted training data set . The fuzzy compatibility
relation between the output values and
of the output linguistic variable in the sorted training data
set can be defined in terms of the Euclidean distance [17]
as follows:

(3)

where and are the output values of the output linguistic
variable in the sorted training data set , where

and , and is a constant which ensures
the compatibility relation . That is, if

, then we let . In this paper,

we calculate the value of as follows:

(4)

where is the maximum value of the output linguistic
variable in the sorted training data set . In general,
the relation defined in (3) is a fuzzy compatibility relation,
but it is not necessarily a fuzzy equivalence relation. The
fuzzy equivalence relation between the output
values and of the output linguistic variable in the
sorted training data set can be obtained from the max–min
transitive closure of the compatibility relation
between the output values and of the output linguistic
variable in the sorted training data set .

After the fuzzy equivalence relation between
the output values of the output linguistic variable in the
sorted training data set has been defined, we can divide
the sorted training data set into different partitions based
on the -cuts of the fuzzy equivalence relation .
Assume that we partition the sorted training data setinto

different subsets , and the th subset
of the sorted training data can be represented as follows:

and (5)

where is the threshold value that is chosen to divide the
sorted training data set adequately, and is
the number of subsets obtained from the sorted training data
set .

Assume that the th output-value set of the output
linguistic variable and the th input-value set of the
input linguistic variable are obtained from theth subset

of the sorted training data set , then

(6)

(7)

Thus, we can construct the membership functions of the output
fuzzy sets of the output linguistic variable from the output
values of the output-value set , where . Since
the output values in the sorted training set have been
divided into different output-value sets
based on the -cuts of the equivalence relation, each output-
value set of the output linguistic variable can be thought
of as the -cut of the output fuzzy set of the output
linguistic variable . That is

and

(8)

where is the membership function of the output fuzzy
set of the output linguistic variable , and is the th
output-value set of the output linguistic variable.
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Because the output values of the-cut of the output
linguistic variable are permuted in ascending order (i.e.,

if ), we can simply calculate the average of
the minimum and the maximum output values of the-cut set

and define it as the center of the output fuzzy setof
the output linguistic variable . That is

(9)

where is the center of the output fuzzy set ; and
are the minimum and the maximum elements of the-cut
, respectively. The membership grades of the minimum

and maximum elements of the-cut are set to the
threshold value , where . According to these three
points , and , we can calculate the
left vertex and the right vertex of the output
fuzzy set of the output linguistic variable by interpolation
as follows:

(10)

(11)

where is obtained using (9), and are the minimum
and the maximum elements of the-cut , respectively.
Thus, the membership function of the output fuzzy set

of the output linguistic variable can be represented by
the triplet as follows:

if ,

if ,

otherwise.

(12)

For the input linguistic variable , its corresponding input
values in the sorted training data setalso have concurrently
been divided into input-value sets based
on the -cuts of the equivalence relation between the output
values of the output linguistic variable in the sorted training
data set . In the th input-value set of the input linguistic
variable , we also sort the input values in the ascending
order. The fuzzy equivalence relation between the input values
of the th input-value set of the input linguistic variable

can be constructed based on the similarity between the
input values. We also define the fuzzy compatibility relation
between the input values of the input-value set of the input
linguistic variable in terms of the Euclidean distance [17]

(13)

where
, and . denotes the number

of the elements of the input-value set . The value of is
calculated as follows:

(14)

where denotes the number of the elements of the input-
value set of the input linguistic variable is the
maximum value of the input linguistic variable in the input-
value set , and . By the max–min transitive
closure of the compatibility relation , we
can obtain the fuzzy equivalence relation
between the input values of the input-value set of the
input linguistic variable . Furthermore, based on the-cuts
of the fuzzy equivalence relation, theth input-value set
of the input linguistic variable can be divided into different
“input-value subsets” of the th input-value set of
the input linguistic variable as follows:

and (15)

where is the number of the input-value subsets ob-
tained from the th input-value set of the input linguistic
variable based on the -cuts of the fuzzy equivalence
relation between the input values of theth input-value set
of the input linguistic variable . denotes the number
of the elements of the input-value set .

Every input-value subset of the input linguistic vari-
able can also be thought of as the-cut of the
corresponding input fuzzy set of the input linguistic
variable . Then, the -cut of the input fuzzy set

of the input linguistic variable is defined as follows:

(16)

where is the membership function of the input
fuzzy set of the input linguistic variable is
the threshold value, and . The input values in
the -cut are also permuted in ascending order
(i.e., , if ). The membership function

of the input fuzzy set can be represented
by a triplet , where , and

are the center, the left vertex, and the right vertex of
the input fuzzy set of the input linguistic variable ,
respectively. Then, the triplet can be
calculated by the minimum and the maximum elements of
the -cut of the input fuzzy set and by
interpolation as follows:

(17)

(18)

(19)

where and are the minimum and the maxi-
mum elements of the -cut of the input fuzzy set

of the input linguistic variable
, and is the number of the input-value

subsets obtained from the th input-value set of
the input linguistic variable . Furthermore, the membership
function of the input fuzzy set of the
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input linguistic variable can be represented by the triplet
as follows:

if ,

if ,

otherwise,
(20)

where and , and are the center, the left
vertex, and the right vertex of the input fuzzy set of
the input linguistic variable , respectively,

, and is the number of the input-value
subset obtained from the th input-value set of the
input linguistic variable .

Based on (3)–(20), we can partition the input–output pairs
of the sorted training data set into the different input-
value subset of the input linguistic variable and the
output-value set of the output linguistic variable , where

, and . We also
can derive the membership function of the input
fuzzy set of the input linguistic variable and the
membership function of the output fuzzy set of
the output linguistic variable from the data residing in the
input-value subset of the input linguistic variable
and the output-value set of the output linguistic variable

, respectively.
After deriving the membership functions of the input lin-

guistic variables and the output linguistic variables, we con-
tinue to generate the fuzzy rules based on the hierarchical
relationships between the input-value subsets of the input
linguistic variables and the output-value sets of the output
linguistic variables. In the following, we take a system with
two input linguistic variables , and one output lin-
guistic variable as an example to illustrate the hierarchical
relationships between the output-value sets and the input-value
subsets.

First, the th output-value set of the output linguistic
variable and the th input-value set of the input
linguistic variable are obtained based on the-cuts of
the equivalence relation between the output values of the
output linguistic variable in the training data set , where

, and is the number of subsets obtained
from the sorted training data set . Furthermore, the th
input-value subset of the input linguistic variable
can be obtained based on the-cuts of the equivalence relation
between the input values of theth input-value set of the
input linguistic variable , where

, and is the number of input-value subsets
obtained from the th input-value set of the input

linguistic variable .
There exists the hierarchical relationship between theth

output-value set of the output linguistic variable and the
th input-value subsets of the input linguistic variable

, where and . Assume that

Fig. 2. The relationship between the output-value setOj of the output
linguistic variableY and the input-value subsetI1; j; k of the input linguistic
variableX1.

Fig. 3. The relationship between the output fuzzy setAj of the output
linguistic variableY and the input fuzzy setA1; j; k of the input linguistic
variableX1.

the input–output pair belongs to the sorted
training data set , where . If the input value

of the input linguistic variable belongs to the input-
value subset , then we can infer that the corresponding
output value of the output linguistic variable should
belong to the output-value set . In Fig. 2, we can see the
hierarchical relationship between theth output-value sets
of the output linguistic variable and the th input-value
subset of the input linguistic variable . Hence, we
can obtain the hierarchical relationship between theth output
fuzzy set of the output linguistic variable and the th
input fuzzy set of the input linguistic variable based
on the hierarchical relationship between theth output-value
set of the output linguistic variable and the th input-
value subset of the input linguistic variable . The
hierarchical relationship between theth output fuzzy set
of the output linguistic variable and the th input fuzzy set

of the input linguistic variable is shown in Fig. 3,
where and .

From Fig. 3, the fuzzy rules can be generated based on the
hierarchical relationship between the output fuzzy setof
the output linguistic variable and the input fuzzy set
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of the input linguistic variable as follows:

is

is

is

is

is

is

...

...

...

...

...

is

is

is

is

is

is

(21)

By the same way, we can also obtain the hierarchical
relationship between theth output-value set of the output
linguistic variable and the th input-value subset of
the input linguistic variable as shown in Fig. 4, where

and . The hierarchical relationship
between the th output fuzzy set of the output linguistic
variable and the th input fuzzy set of the input
linguistic variable is shown in Fig. 5, where
and . From Fig. 5, the fuzzy rules can be
generated based on the hierarchical relationship between the
output fuzzy set of the output linguistic variable and
the input fuzzy sets of the input linguistic variable
as follows:

is

is

is

is

is

is

...

...

...

...

...

is

is

is

is

is

is

(22)

In fact, we can see that the fuzzy rules whose antecedent
part is “ is ” in (21) and the fuzzy rules whose
antecedent part is “ is ” in (22) share the same
consequent part “ is .” For a training input–output pair

of the sorted training data set , if the input
value belongs to the input-value set of the input
linguistic variable and if the input value belongs to
the input-value set of the input linguistic variable ,
then the output value belongs to the output-value set of

Fig. 4. The relationship between the output-value setOj of the output
linguistic variableY and the input-value subsetI2; j; k of the input linguistic
variableX2.

Fig. 5. The relationship between the output fuzzy setAj of the output
linguistic variableY and the input fuzzy setA2; j; k of the input linguistic
variableX2.

the output linguistic variable . Thus, if the input–output pair
satisfies both the antecedent parts of “is

” and “ is ” for some and
some , then we can infer that the consequent
part of the fuzzy rule is “ is ,” where ,
is the number of the input-value subsets obtained from theth
input-value set of the input linguistic variable , where

.
The hierarchical relationship between the output fuzzy set

of the output linguistic variable , the input fuzzy set
of the input linguistic variable , and the input

fuzzy set of the input linguistic variable can be
obtained as shown in Fig. 6, where and

.
The fuzzy rules in (21) and (22) can be combined based

on the hierarchical relationship between the output fuzzy set
of output linguistic variable , the input fuzzy set

of the input linguistic variable , and the input fuzzy set
of the input linguistic variable as follows:

is is is

(23)

where , and .
Finally, we can generate fuzzy rules

from the given numerical training data set. In general, if
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Fig. 6. Relationship between the output fuzzy setAj of the output linguistic variableY , the input fuzzy setA1; j; k of the input linguistic variable
X1 and the input fuzzy setA2; j; k of the input linguistic variableX2.

there are input linguistic variables and a single
output linguistic variable in a fuzzy system, then the total
number of fuzzy rules generated from the training data set
based on the proposed fuzzy learning algorithm is

(24)

where is the number of output fuzzy sets of the output
linguistic variable , and is the number of input fuzzy
sets of the input linguistic variable .

However, it is necessary to check whether some of the
generated fuzzy rules are unnecessary or some input fuzzy
sets of the input linguistic variables in the antecedent parts
of the fuzzy rules are equivalent or redundant. If there are
equivalent input fuzzy sets of the same input linguistic variable
in the antecedent parts of the generated fuzzy rules, we need to
perform the merge operation to simplify the generated fuzzy
rules.

Consider the following two fuzzy rules with two input
linguistic variables , , and one output linguistic variable

:

is is is

is is is

where and are the output fuzzy sets of the output
linguistic variable , and are the input fuzzy
sets of the input linguistic variable , and and
are the input fuzzy sets of the input linguistic variable.
The input fuzzy sets and of the input linguistic
variable , and the input fuzzy sets and of the
input linguistic variable are shown in Fig. 7.

From Fig. 7, we can see that the similarity degree between
the input fuzzy sets and of the input linguistic
variable is high. Since the two input fuzzy sets seem to
be equivalent, we can generate a new membership function of
the new input fuzzy set by merging the membership
functions of the input fuzzy sets and of the
input linguistic variable . After the new input fuzzy set

of the input linguistic variable has been generated,
we can replace the input fuzzy sets and in the

Fig. 7. The similarity between input fuzzy sets.

antecedent parts of the fuzzy rules by . The simplified
fuzzy rules are listed as follows:

is is is

is is is

There are a lot of methods to measure the similarity or
equality degree between two distinct fuzzy sets, such as in
[4], [5], [22], [31], and [37]. In this paper, we build the
equality relation matrices for the input fuzzy sets of the input
linguistic variable based on the method proposed by Lin
[22]. The equality degree of two distinct input fuzzy sets

and of the input linguistic variable is
defined as follows:

(25)

where , and
. is the area of the

intersection of the two distinct input fuzzy sets and
. is the area of the union of the

two distinct input fuzzy sets and .
By means of the -cuts of the equality, we can obtain those

fuzzy sets whose equality degree is higher than the specified
threshold value , where and then
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merge their membership functions to generate a new one. As-
sume that is greater than the threshold
value , where the value of is specified by the
user and , then we can merge the two input
fuzzy sets and of the input linguistic variable

to generate the new input fuzzy set which can be
represented by the triplet . The triplet

is calculated by averaging the triplets
( , , ) of the input fuzzy set
and the triplet , , of the input fuzzy
set . Hence, the triplet of the
merged input fuzzy set can be obtained as follows:

(26)

(27)

(28)

The membership function of the input fuzzy set
of the input linguistic variable can be represented

by the triplet as follows:

if ,

if ,

otherwise.

(29)

The new fuzzy set of the input linguistic variable can
replace those input fuzzy sets of the input linguistic variable

whose equality degree is higher than the threshold value
in the antecedent parts of the fuzzy rules. Therefore,

the number of the input fuzzy sets of the input linguistic
variable in the generated fuzzy rules is reduced, and we
can obtain simpler and more efficient fuzzy rules.

Based on the method discussed previously, the proposed
fuzzy learning algorithm which constructs the membership
functions of the input linguistic variables and the output lin-
guistic variable and generates fuzzy rules from the numerical
training data set is stated as follows.

Input: The training data set contains input–output
pairs of the input lin-
guistic variables , and the output
linguistic variable , where .

Step 1: Sort the training data set in ascending order
based on the output values of the output linguis-
tic variable and obtain the sorted training data
set .

Step 2: Construct the equivalence relation between
the output values of the output linguistic vari-
able in the sorted training data set .

Step 3: Divide the sorted training data in the sorted
training set into different output-value

sets of the output linguistic variable and
different input-value sets of the input

linguistic variable based on the -cuts of
the equivalence relations derived from the
output values of the output linguistic variable
in the sorted training set , where
and .

Step 4: Derive the membership function of the
output fuzzy set of the output linguistic
variable based on the -cuts of the
output fuzzy set with respect to the output-
value sets , where .

Step 5: Sort the input values of the input-value set
of the input linguistic variable in ascending
order, where and .

Step 6: Construct the equivalence relation between
the input values of theth input-value set
of the input linguistic variable , where

and .
Step 7: Divide the input values of the input-value set

into input-value subsets
based on the -cuts of the equivalence relation

, where
, and is the number of input-

value subsets obtained from theth input-value
set of the input linguistic variable .

Step 8: Derive the input membership function
of the input fuzzy set

of the input linguistic variable based on
the -cut of the input fuzzy set

with respect to the input-value subset
of the input linguistic variable , where

and ,
and is the number of input-value
subsets obtained from theth input-value set

of the input linguistic variable .
Step 9: Generate the fuzzy rules based on the hier-

archical relationship between the output fuzzy
set of the output linguistic variable and
the corresponding input fuzzy set of the
input linguistic variable , where

, and .
Step 10: Calculate the equality degree

between the input
fuzzy sets and of the input
linguistic variable based on (25), where

,
and .

Step 11: If , , where
is specified by the user,

, and then

Construct the new input fuzzy set
of the input linguistic variable

by merging the input fuzzy sets
and of the input

linguistic variable ;
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TABLE I
THE TRAINING DATA SET OF THE INSURANCE FEE PROBLEM [11]

Replace the input fuzzy sets and
of the input linguistic variable

in the antecedent parts of the fuzzy
rules by the new input fuzzy set

IV. A N EXAMPLE

In the following, we use the example shown in [11] to
demonstrate the proposed fuzzy learning algorithm for con-
structing membership functions and generating fuzzy rules
from the numerical training data set.

Example 4.1:An insurance company evaluates the insur-
ance fee of a person based on the age and the property
of the person. Assume that the eight training examples are
available as shown in Table I. Each input–output pair consists
of two input linguistic variables, “Age” and “Property,” and
one output linguistic variable, “Insurance Fee.” The unit of the
property is ten thousand dollars. We will learn the membership

functions of the two input linguistic variables “Age” and
“Property,” and the output linguistic variable “Insurance Fee”
and generate fuzzy rules from the eight training samples based
on the proposed algorithm.

[Step 1]: /* Sort the training data set in ascending order
according to the output values of the output
linguistic variable */

Since the output values of the output linguistic
variable “Insurance Fee” of the training data set
shown in Table I have been arranged in ascending
order, by performing Step 1 of the algorithm, the
sorted training data set is shown as follows:

[Step 2]: /* Construct the equivalence relation between
the output values of the output linguistic variable
*/

According to (3), the compatibility relation
between the output values of the output linguistic
variable “Insurance Fee” is constructed as shown
in (30) and (31), at the bottom of the page, where
the equivalence relation between the output
values of the output linguistic variable “Insurance
Fee” in the sorted training data set can be
derived by the max–min transitive closure of the
compatibility relation as shown in (32), at the
bottom of the page.

[Step 3]: /* Divide input–output pairs of the sorted training
data set into different subsets based on the

(30)

(31)

(32)
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-cuts of the equivalence relation between the
output values of the output linguistic variable */

Assume that the threshold valueis 0.8, then
the sorted training set can be divided into three
subsets , and based on the 0.8-cut of
the equivalence relation as follows:

Furthermore, the output-value sets , and
of the output linguistic variable “Insurance

Fee,” the input-value sets , and
of the input linguistic variable “Age,” and the
input-value sets , and of the in-
put linguistic variable “Property” are obtained as
follows:

[Step 4]: /* Derive the membership functions of the output
fuzzy sets of the output linguistic variable from
different -cuts of the output fuzzy sets corre-
sponding to the output-value sets */

Assume that the threshold value of the-cut
of the output fuzzy set of the output

linguistic variable “Insurance Fee” corresponding
to the output-value set of the output linguistic
variable “Insurance Fee” equals to 0.8, where

. Then, based on (9)–(11), we can obtain
the membership function of the output fuzzy set

of the output linguistic variable “Insurance
Fee” represented by the triplet , where

. The triplet of the output
fuzzy set of the output linguistic variable
“Insurance Fee” can be obtained as follows:

Thus, the membership function of the
output fuzzy set can be represented by the

triplet as follows:

if

if

otherwise.

The triplet of the output fuzzy set
of the output linguistic variable “Insurance Fee”
can be obtained as follows:

Thus, the membership function of the
output fuzzy set can be represented by the
triplet as follows:

if

if

otherwise.

The triplet of the output fuzzy set
of the output linguistic variable “Insurance Fee”
is obtained as follows:

Thus, the membership function of the
output fuzzy set is represented by the triplet

as follows:

if

if

otherwise.

The membership functions of the output fuzzy
sets , and of the output linguistic
variable “Insurance Fee” are shown in Fig. 8.

[Step 5]: /* Sort the input values of the input-value sets of
the input linguistic variable */

The two input linguistic variables “Age” and
“Property” are denoted by and . In the
input-value sets , and of the input
linguistic variable “Age,” the sorted input-value
sets , and are the same as the input-
value sets , and , respectively. In the
input-value sets , and of the input
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Fig. 8. The fuzzy sets of the output linguistic variable “Insurance Fee.”

linguistic variable “Property,” the sorted input-
value sets are represented by , and .
That is

[Step 6]: /* Construct the equivalence relation between the
input values of the input-value set of the input
linguistic variable */

Based on (13), the compatibility relations
, and are derived from the

input-value sets , and of the input
linguistic variable “Age,” respectively,

where

Inf

where Inf means positive infinity.
The equivalence relations , , and

of the input-value sets , , and of the
input linguistic variable “Age” can be obtained by
the max–min transitive closure of compatibility
relations , and , respectively

where

By the same way, the compatibility relations
of the input-value sets , and of
the input linguistic variable “Property” can be
obtained as follows:

Then, the equivalence relations of the sorted
input-value sets , and of the input
linguistic variable “Property” can be obtained as
follows:

[Step 7]: /* Divide the input-value set into different input-
value subsets based on the-cuts of the equiv-
alence relation between the input values of the
input-value set */

Indeed, the training examples are so few that it
is not necessary to partition input values again.
The input-value subsets of the input linguistic
variables “Age” and “Property” are the same
with their corresponding input-value sets, and
the number of subsets for each input-value set
equals to one.

. Hence, the
input-value subsets of the input linguistic variable
“Age” are obtained as follows:

The input-value subsets of the input linguistic
variable “Property” are obtained as follows:
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[Step 8]: /* Derive the membership functions of the input
fuzzy sets of the input linguistic variable from the

-cut of the input fuzzy set corresponding to the
input-value subset */

The input-value subsets can be thought
of as the -cut set of the input fuzzy
set of the input linguistic variable “Age,”
where , and . Assume that
the threshold value of the-cut set is
equal to 0.7. Thus, we can derive the membership
function of the input fuzzy set of the input
linguistic variable “Age” based on (17)–(19). The
triplet of the input fuzzy
set of the input linguistic variable “Age”
can be obtained as follows:

The membership function of the in-
put fuzzy set of the input linguistic vari-
able “Age” can be represented by the triplet

as follows:

if

if

otherwise.

The triplet of the input
fuzzy set of the input linguistic variable
“Age” can be obtained as follows:

The membership function of the in-
put fuzzy set of the input linguistic vari-
able “Age” can be represented by the triplet

as follows:

if

if

otherwise.

The triplet of the input
fuzzy set of the input linguistic variable
“Age” can be obtained as follows:

where the value of is equal to the average
of the larget element of and the smallest
element of , i.e.,

Max Min

Fig. 9. The fuzzy sets of the input linguistic variable “Age.”

The membership function of the in-
put fuzzy set of the input linguistic vari-
able “Age” can be represented by the triplet

as follows:

if

if

otherwise.

The input fuzzy sets , and
of the input linguistic variable “Age” are shown
in Fig. 9. The membership functions ,

, and of the input fuzzy
sets of the input linguistic
variable “Property” can be obtained as follows:

if

if

otherwise.

if

if

otherwise.

if

if

otherwise.

The input fuzzy sets , and
of the input linguistic variable “Property” are
shown in Fig. 10.

[Step 9]: /* Construct fuzzy rules based on the hierarchical
relationships between the output fuzzy sets of the
output linguistic variable and the corresponding
input fuzzy sets of the input linguistic variables
*/
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Fig. 10. The fuzzy sets of the input linguistic variable “Property.”

Fig. 11. The hierarchical relationship between the output fuzzy setAj of
the output linguistic variable “Insurance Fee,” the input fuzzy setA1; j; k

of the input linguistic variable “Age,” and the input fuzzy setA2; j; k of
the input linguistic variable “Property.”

The hierarchical relationship between the out-
put fuzzy set of the output linguistic variable
“Insurance Fee,” the input fuzzy set of
the input linguistic variable “Age,” and the input
fuzzy set of the input linguistic variable
“Property” is shown in Fig. 11.

Based on the hierarchical relationship between
the output fuzzy set of the output linguistic
variable “Insurance Fee,” the input fuzzy set

of the input linguistic variable “Age,”
and the input fuzzy set of the input
linguistic variable “Property,” the fuzzy rules
of the Insurance Fee problem are generated as
follows:

Age is Property is

Insurance Fee is

Age is Property is

Insurance Fee is

Age is Property is

Insurance Fee is

[Step 10]: /* Calculate the equality degree between the
input fuzzy sets of the input linguistic variable
*/

Based on (25), we can calculate the
equality degree between the input fuzzy sets

of the input linguistic
variable “Age” as follow.

First, the area of the intersection of the two
distinct input fuzzy sets and can
be calculated from Fig. 9 as follows:

The area of the union of the two distinct input
fuzzy sets and can be calculated
as from Fig. 9 as shown in (33) at the bottom of
the page. Based on (25), the equality degree be-
tween fuzzy sets and is obtained
as follows:

By the same way, the equality degrees,
and , are

calculated as shown in (34) at the bottom of
the next page. The equality matrix of the
input fuzzy sets of the input linguistic variable
“Age” is obtained as follows:

Based on (25), we can calculate the
equality degree between the input fuzzy sets

of the input linguistic
variable “Property” as shown in (35) at the
bottom of the next page. The equality matrix

of the input fuzzy sets of the input
linguistic variable “Property” is obtained as
follows:

Assume that the value of specified by
the user is 0.5, then we can see that the equality
degrees between the input fuzzy sets of the

(33)
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input linguistic variables “Age” and “Property”
in the equality matrices and ,
respectively, are less than 0.5. It is not necessary
to perform the merge operation.

Finally, the fuzzy rules generated by the pro-
posed fuzzy learning algorithm are listed as
follows:

Age is Property is

Insurance Fee is

Age is Property is

Insurance Fee is

Age is Property is

Insurance Fee is

V. EXPERIMENTAL RESULTS

There are three kinds of flowers in the Iris data [7], i.e.,
Setosa, Versicolor, and Verginica, where each flower can be
identified by the four kinds of input variables, i.e., sepal length,
sepal width, petal length, and petal width. The unit of each
input variable is centimeters. The Iris data set contains 150
data. Based on the proposed fuzzy learning algorithm, we
have implemented a program on a Pentium PC to generate the
membership functions and the fuzzy rules from the Iris training
data automatically and then evaluate the average accuracy rate
of the proposed fuzzy learning algorithm with the testing data
set. We use the MATLAB software to develop the program
and randomly choose 50% of the Iris data as the training data
set and the other 50% as the testing data set. The membership
functions of the input variables are derived under the 0.5-cut
of the equality relations and shown in Figs. 12–15. The final
generated fuzzy rules are shown in Table II.

Fig. 12. Fuzzy sets of the input variable “Sepal Length.”

Fig. 13. Fuzzy sets of the input variable “sepal width.”

Fig. 14. Fuzzy sets of the input variable “petal length.”

The simplified fuzzy rules are as follows.

: IF sepal length is AND sepal width is
AND petal length is AND petal width is
THEN the flower is Setosa.

(34)

(35)
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Fig. 15. Fuzzy sets of the input variable “petal width.”

TABLE II
SIMPLIFIED FUZZY CLASSIFICATION RULES FOR THE IRIS DATA

TABLE III
THE AVERAGE ACCURACY RATE OF THE

PROPOSEDFUZZY ALGORITHM FOR THE IRIS DATA

TABLE IV
A COMPARISON OF THENUMBER OF FUZZY RULES

AND THE NUMBER OF INPUT FUZZY SETS BETWEEN

HONG-AND-LEE’S ALGORITHM AND THE PROPOSEDALGORITHM

: IF sepal length is AND sepal width is
AND petal length is AND petal width

is THEN the flower is Versicolor.
: IF sepal length is AND sepal width is

AND petal length is AND petal width
is THEN the flower is Virginica.

The average accuracy rate of the proposed fuzzy learning
algorithm after 200 runs is listed in Table III.

A comparison of the proposed fuzzy learning algorithm and
Hong and Lee’s algorithm [11] in terms of the number of the
fuzzy rules and the number of the input fuzzy sets are shown
in Table IV.

A comparison of the experiment results between Hong and
Lee’s algorithm [11] and the proposed algorithm is listed in
Table V.

From Tables IV and V, we can see that the average accuracy
rate of the proposed algorithm is better than that of Hong
and Lee’s algorithm. The number of rules generated by the
proposed algorithm is less than the number of rules generated

TABLE V
A COMPARISON OF THEAVERAGE ACCURACY RATE BETWEEN

HONG-AND-LEE’S ALGORITHM AND THE PROPOSEDALGORITHM

by Hong and Lee’s algorithm. Furthermore, the proposed algo-
rithm does not need to predefine any membership functions of
the input variables and the output variables. The membership
functions and fuzzy rules are generated by the proposed fuzzy
learning algorithm from the numerical training data.

VI. CONCLUSIONS

In this paper, we have presented a new fuzzy learning
algorithm based on the -cuts of equivalence relations and
the -cuts of fuzzy sets to construct membership functions
and to generate fuzzy rules from numerical training data.
Furthermore, we also apply the proposed algorithm to the Iris
data classification problem. Based on the proposed algorithm,
we have implemented a program on a Pentium PC using
MATLAB Version 4.0 to deal with the Iris data classification
problem. The experimental results are compared with the re-
sults of Hong and Lee’s learning algorithm [11]. The proposed
algorithm is better than the one presented in [11] due to the
following facts.

1) The proposed algorithm could get a better average
accuracy rate than the one presented in [11]. From the
experimental results shown in the previous section, we
can see that the average accuracy rate of the proposed
algorithm is 96.21%, where the average accuracy rate of
Hong and Lee’s algorithm is 95.57%.

2) The proposed algorithm generates fewer fuzzy rules than
the one proposed in [11]. From the experimental results
shown in Section V, we can see that the number of fuzzy
rules generated by the proposed algorithm is 3, but the
number of fuzzy rules generated by Hong and Lee’s
algorithm is 6.21.

3) We do not need to partition the input spaces and the
output spaces into fuzzy regions or predefine any mem-
bership functions as shown in [11]. The membership
functions and fuzzy rules can be automatically derived
from the numerical training data by the proposed algo-
rithm.
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