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SUMMARY

Elastic closed-form solutions for the displacements and stresses in a transversely isotropic half-space
subjected to various buried loading types are presented. The loading types include finite line loads and
asymmetric loads (such as uniform and linearly varying rectangular loads, or trapezoidal loads). The planes
of transverse isotropy are assumed to be parallel to its horizontal surface. These solutions are directly
obtained from integrating the point load solutions in a transversely isotropic half-space, which were derived
using the principle of superposition, Fourier and Hankel transformation techniques. The solutions for the
displacements and stresses in transversely isotropic half-spaces subjected to linearly variable loads on
a rectangular region are never mentioned in literature. These exact solutions indicate that the displacements
and stresses are influenced by several factors, such as the buried depth, the loading types, and the degree and
type of rock anisotropy. Two illustrative examples, a vertical uniform and a vertical linearly varying
rectangular load acting on the surface of transversely isotropic rock masses, are presented to show the effect
of various parameters on the vertical surface displacement and vertical stress. The results indicate that the
displacement and stress distributions accounted for rock anisotropy are quite different for those calculated
from isotropic solutions. Copyright ( 1999 John Wiley & Sons, Ltd.

Key words: transversely isotropic half-space; buried asymmetric-loads; finite line load; uniform rectangular
load; linearly varying rectangular load; rock anisotropy

INTRODUCTION

In general, the magnitude and distribution of the displacements and stresses in rock are predicted
by using exact solutions that model rock as a linearly elastic, homogeneous and isotropic
continuum. However, for rock masses cut by discontinuities, such as cleavages, foliations,
stratifications, schistosities, joints, these analytical solutions should account for anisotropy.
Anisotropic rocks are often modelled as orthotropic or transversely isotropic materials from the
practical considerations in engineering analysis. In this paper, an elastic problem for a transverse-
ly isotropic medium is relevant.

A point load solution is the basis of complex loading problems. Solutions of the displacements
and stresses due to a concentrated force for transversely isotropic half-spaces have been presented



by several investigators.1~4 Nevertheless, the types of external loads of a half-space should be
more complex than a point load in most engineering cases. In fact, the complex external loads are
generally simplified as a finite line load, a rectangular load or a linearly varying rectangular load,
etc., for engineering analysis. Hence, the closed-form solutions for the displacements and stresses
in a half-space subjected to various loads are needed for engineering design.

Closed-form solutions for the displacements and stresses in an elastic isotropic half-space
induced by various loading types have been proposed by many investigators. Corresponding to
the isotropic solutions, the literature contributed to loading problems of transversely isotropic
media are very limited. Some studies presented the elastic solutions for the displacements, strains
or stresses in a transversely isotropic half-space subjected to infinite line loads,5~7 circular
loads,5,8~14 parabolic loads,12,15~17 ring loads,18,19 elliptical loads,20,21 infinite linearly varying
rectangular loads,22,23 and other related problems.24~26 A summary of the existing solutions is
given in Table I. Table I indicates the type of loading, the loaded direction, and the results
presented in the solutions. Although, the loading surface, the loading type and the orientation of
planes of transversely isotropy with respect to the loading surface in these solutions are complex
or variable, they are almost limited to axisymmetric or plane problems. Recently, Lin et al.7
presented the closed-form solutions for displacements and stresses in a transversely isotropic
half-space subjected to various loading types using a series of potential functions, which suggested
by Green and Zerna27 and Pan and Chou.28 In their solutions, the loads can be a point load, an
infinite line load, and a uniform load over a rectangular area, etc. Nevertheless, the solutions can
not be extended to solve the non-uniform loading problems. Hence, using Hankel and Fourier
transforms with respect to r and h in a cylindrical co-ordinate system, respectively, the authors
rederived and presented the exact solutions for the displacements and stresses in a transversely
isotropic half-space subjected to a point load with components in r, h, z directions.4 Then, in this
paper, we extend the point load solutions to present a series of exact solutions for the displace-
ments and stresses in the half-space subjected to buried asymmetric-loads by direct integrations.
The asymmetric loads include finite line loads, uniform rectangular loads, and linearly varying
rectangular loads. These solutions indicate that both of the displacements and stresses in
a transversely isotropic half-space are affected by the buried depth, the loading types, and the
degree and type of rock anisotropy. Two illustrative examples are given to investigate the effect of
rock anisotropy on the displacement and stress in the medium acting by a uniform and a linearly
varying vertical rectangular load on its horizontal surface, respectively.

POINT LOAD SOLUTIONS (CARTESIAN CO-ORDINATE SYSTEM)

In this paper, the solutions for the displacements and stresses in a transversely isotropic
half-space subjected to buried asymmetric-loads are directly integrated from the point load
solutions in a Cartesian co-ordinate system. The approaches4 for solving the displacements and
stresses subjected to a static point load with components (P

r
, Ph , Pz

) in a cylindrical co-ordinate,
which are expressed as the form of body forces, are shown in Figure 1. Figure 1 depicts that
a half-space is composed of two infinite spaces, one acting a point load in its interior and the other
being free loading, and zero stress conditions on the z"0 plane. The Hankel and Fourier
transforms with respect to r and h are employed for solving this problem, respectively. Hence, the
solutions can be derived from the governing equations for an infinite space (including the general
solutions (I) and homogeneous solutions (II)) by satisfying the free traction on the surface of the
half-space. Therefore, the analytical solutions for the displacements and stresses subjected to
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Table I. Existing solutions for transversely isotropic media subjected to regular loads

Type of loading Author Loaded direction Solutions

Infinite line loads Anon5 Vertical Stresses

Urena et al.6 Vertical All displacements and stresses
Horizontal All stresses

Lin et al.7 Vertical All displacements and stresses
Horizontal All displacements and stresses

Circular loads Anon5 Vertical Vertical surface displacement at
the center and edge, and vertical
stress on load axis

Barden8 Vertical Vertical stress on load axis

Gerrard and Harrison9 Vertical All displacements, strains, stresses

Nayak10 Vertical Vertical surface displacement
(incompressible conditon)

Hooper11 Vertical Vertical surface displacement

Misra and Sen12 Vertical Vertical surface displacement at the
center and edge, and vertical stress
beneath the center of load

Chowdhury13 Buried, vertical All surface displacements

Hanson and Puja14 3-D All displacements and stresses

Parabolic loads Quinlan15 Vertical Vertical surface displacement and
vertical stress on load axis

Misra and Sen12 Vertical Vertical surface displacement at the
center and edge, and vertical stress
beneath the center of load

Gazetas16 Vertical All surface displacements, and all
stresses beneath the center of load

Gazetas17 Vertical All displacements and stresses

Ring loads Hasegawa and
Watanabe18

Vertical Displacements

Hanson and Wang19 Buried, 3-D All displacements and stresses

Elliptical loads Sveklo20 Vertical Horizontal displacement
Gladwell21 Vertical Vertical surface displacement

Uniform rectangular
loads

Lin et al.7 Vertical Vertical surface displacement and all
stresses

Horizontal All stresses

Infinite linearly varying
rectangular loads

Piquer et al.22 Vertical
Horizontal

All stresses
All stresses

Moroto and
Hasegawa23

Vertical Vertical stress (Poisson’s ratios"0)
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Figure 1. The approach for solving a point load problem

Figure 2. A point load (P
x
, P

y
, P

z
) acting in the interior of a semi-infinite space

a point load (P
x
, P

y
, P

z
) acting at z"h (from the surface, as shown in Figure 2) in the interior of

a transversely isotropic half-space are transformed as follows:
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where

(a) A
ij

(i, j"1—6) are the elastic moduli29 or elasticity constants30 of the medium, and can be
expressed in terms of five independent elastic constants for a transversely isotropic material as
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whereas E and E@ are Young’s moduli in the plane of transverse isotropy and in direction normal
to it, respectively; l and l@ are Poisson’s ratios characterizing the lateral strain response in the
plane of transverse isotropy to a stress acting parallel or normal to it, respectively; G@ is the shear
modulus in planes normal to the plane of transverse isotropy.
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(z#h). If the buried depth

h"0, in other words, the load is applied at the surface.

BURIED ASYMMETRIC-LOADING SOLUTIONS

In the field of geotechnical engineering, continuous-wall foundations, retaining walls, spread or
strip footing foundations, gravity dams, and embankment structures are frequently built for
engineering safety. The external loads transferred from such structures to soils or rocks are
complex and usually modeled as various loading types, such as finite line loads, uniform
rectangular loads, linearly varying rectangular loads or any combination of these loads. Hence,
elastic solutions for the displacements and stresses in the transversely isotropic media induced by
these types of loads are needed.

In this paper, we derive the asymmetric loading solutions from directly integrating the point
load solutions. In the case of point load solutions, we define p

$1i
—p

$6i
in equations (1)— (3) and

p
41i

—p
48i

in equations (4)— (9) as the elementary functions for the displacements and stresses,
respectively. Then, the solutions for the displacements and stresses in a transversely isotropic
half-space subjected to various loading types are directly integrated from the elementary func-
tions of the point load solutions in a Cartesian co-ordinate system. The closed-form solutions for
the displacements and stresses subjected to finite line loads, uniform rectangular loads, and
linearly varying rectangular loads are presented below.

Finite line loads

A transversely isotropic half-space subjected to a perfectly flexible line load over the length w at
the buried depth of h, as demonstrated in Figure 3, is considered as follows. Taking an
infinitesimal element dg along the ½-axis, a line load could be divided into a finite number of
elementary forces with dP

j
"PM

j
dg ( j"x, y, z) (PM

j
, forces per unit length). Replacing y by (y!g)

in the elementary functions p
$1i

—p
$6i

and p
41i

—p
48i

, and integrating g between the limits 0 and w33

as follows:

C
º

pD
1
"P

w

0
C
º

p D
p
dg (12)

where [º]"[u
x
, u

y
, u

z
]T, [p]"[p

xx
, p

yy
, p

zz
, q

xy
, q

yz
, q

zx
]T (superscript T denotes that the

transpose matrix), and the superscripts 1 and p express the displacement and stress components
that are induced by a line load and a point load, respectively. By mathematics operations, the
explicit solutions of the displacements and stresses in a half-space can be regrouped as the forms
of equations (1)—(9). It means that the exact solutions of this case are the same as equations (1)—(9)
except that the displacement elementary functions p

$1i
—p

$6i
and stress elementary functions

p
41i

—p
48i

are replaced by the displacement integral functions ¸
$1i

—¸
$6i

for u1
x
, u1

y
, u1

z
and stress

integral functions ¸
41i

—¸
48i

for p1
xx

, p1
yy

, p1
zz

, q1
xy

, q1
yz

, q1
xz

, respectively. Similarly, the solutions for
various loading types given below also can be expressed as the forms of equations (1)— (9), except
for the integral functions. Hence, only the displacement and stress integral functions will be
presented in the following cases. For the case of finite line loads, the displacement and stress
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Figure 3. The case of finite line loads over the length w at the buried depth h

integral functions are given as follows:
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Figure 4. The case of uniform rectangular loads with l*w area at the buried depth h
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where y*"y!w , R
y*i
"Jx2#y*2#z2

i
.

The presented formulations of the displacements and stresses are in agreement with Urena
et al.6 and Lin et al.,7 when the loads applied at the surface (h"0) and in the state of plane strain.
If the half-space is isotropic, the closed-form solutions are similar to several isotropic solutions in
literature.34~36

Uniform rectangular loads

A uniform load, PK
j
( j"x, y, z) (forces per unit area) distributed on a rectangle with length l and

width w at the buried depth of h as shown in Figure 4 is considered. For solving the displacements
and stresses in the half-space induced by this load, an elementary force PK

j
dg d1 acting on an

elementary surface dg df is extracted from the rectangle. Replacing the concentrated force P
j
by

PK
j
df dg, y by (y!g) and x by (x!f) in equations (1)—(9), the solutions of the displacements and

stresses for the elementary force acting in the half-space are obtained. Then, the complete
solutions can be obtained by integrating the solutions induced by the elementary force with
g from 0 to w and f from 0 to l,33 respectively, as follows:

C
º

pD
r
"P

l

0
P

w

0
C
º

p D
p
dg d1 (27)

where the superscript r denotes the displacement and stress components that are induced by
a uniform rectangular load. The displacement integral functions r

$1i
—r

$6i
for ur

x
, ur

y
, ur

z
and stress
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integral functions r
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are derived and listed in the following:
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i
.

Comparing with the transversely isotropic solutions of Lin et al.,7 and various isotropic
solutions,37~49 it can be found that the closed-form solutions are more general than those in
existing literature.

Linearly varying rectangular loads

For the case of subjected loads with non-uniform distributions, we use a non-uniform load
with triangular distribution on a rectangle (Figure 5) to present the results. Figure 5 depicts that
the load is linearly varied in the X-direction on a rectangle with sides l and w. The elementary
force acting on a small rectangle can be expressed as PI

j
f df dg/l ( j"x, y, z) (PI

j
are the maximum

forces per unit area). Similarly, by the same way as the case of a uniform rectangular load, the
solutions of the displacements and stresses for this case can be obtained by directly integrating33
as follows:

C
º

pD
t
"P

1

0
P

w

0
C
º

p D
p 1

l
dg d1 (42)

where the superscript t expresses the displacement and stress components that are induced by
a linearly varying rectangular load.
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Figure 5. The case of linearly varying rectangular loads

By overcoming several integrating techniques, the displacement and stress integral functions,
t
$1i

!t
$6i

for ut
x
, ut

y
, ut

z
and t

41i
—t

48i
for pt

xx
, pt

yy
, pt

zz
, qt

xy
, qt

yz
, qt

xz
are presented as

t
$1i

"Cxr
$1i

#

(x2#z2
i
)

2
ln K

R
y*i
#y*

R
i
#y K!

(x*2#z2
i
)

2
ln K

R
x*y*i

#y*

R
x*i

#y K

#

y

2
(R

i
!R

x*i
)!

y*

2
(R

y*i
!R

x*y*i
)#z

i Ay ln K
R

x*i
#z

i
R

i
#z

i
K!y* ln K

R
x*y*i

#z
i

R
y*i
#z

i
KBDN l

(43)

t
$2i

"[xr
$2i

!y (R
i
!R

x*i
)#y* (R

y*i
!R

x*y*i
)!z

i Ay ln K
R

x*i
#z

i
R

i
#z

i
K!y* ln K

R
x*y*i

#z
i

R
y*i
#z

i
KBDN l

(44)

t
$3i

"Gxr
$3i

#

x

2
(R

i
!R

y*i
)!

x*

2
(R

x*i
!R

x*y*i
)

#

(y2!z2
i
)

2
ln K

R
x*i

#x*

R
i
#x K!

(y*2!z2
i
)

2
ln K

R
x*y*i

#x*

R
y*i
#x K

!yz
i Ctan~1

y2#z
i
(R

i
#z

i
)

xy
!tan~1

y2#z
i
(R

x*i
#z

i
)

x*y D

#y*z
i Ctan~1

y*2#z
i
(R

y*i
#z

i
)

xy*
!tan~1

y*2#z
i
(R

x*y*i
#z

i
)

x*y* DHN l (45)

128 C. D. WANG AND J. J. LIAO

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 115—139 (1999)



t
$4i

"Gxr
$4i

!

z2
i
2

r
43i

!

lw

2
!z

i Ay ln K
R

x*i
#x*

R
i
#x K!y* ln K

R
x*y*i

#x*

R
y*i
#x KB

#

x2

2 Ctan~1
x2#z

i
(R

i
#z

i
)

xy
!tan~1

x2#z
i
(R

y*i
#z

i
)

xy* D
!

x*2

2 Ctan~1
x*2#z

i
(R

x*i
#z

i
)

x*y
!tan~1

x*2#z
i
(R

x*y*i
#z

i
)

x*y* D
!

y2

2 Ctan~1
y2#z

i
(R

i
#z

i
)

xy
!tan~1

y2#z
i
(R

x*i
#z

i
)

x*y D
#

y*2

2 Ctan~1
y*2#z

i
(R

y*i
#z

i
)

xy*
!tan~1

y*2#z
i
(R

x*y*i
#z

i
)

x*y* DHN l (46)

t
$5i

"Cxr
$5i

#

x2

2 K
R

y*i
#z

i
R

i
#z

i
K!

x*2

2
ln K

R
x*y*i

#z
i

R
x*i

#z
i
K#

y2

2
ln K

R
x*i

#z
i

R
i
#z

i
K!

y*2

2
ln K

R
x*y*i

#z
i

R
y*i
#z

i
K

!

z
i

2
(R

i
!R

x*i
!R

y*i
#R

x*y*i
)]/l (47)

t
$6i

"t
$1i

#t
$2i

(48)

t
41i

"(!r
$2i

#xr
41i

#z
i
r
45i

)/l (49)

t
42i

"(!r
$3i

#xr
42i

!z
i
r
44i

)/l (50)

t
43i

"(xr
43i

!z
i
r
41i

)/l (51)

t
44i

"A!r
$5i

#xr
44i

!x ln K
R

y*i
#z

i
R

i
#z

i
K#x* ln K

R
x*y*i

#z
i

R
x*i

#z
i
KBNl (52)

t
45i

"Axr
45i

!z
i
r
41i

!y ln K
R

x*i
#z

i
R

i
#z

i
K#y* ln K

R
x*y*i

#z
i

R
y*i
#z

i
KBNl (53)

t
46i

"t
43i

!t
45i

(54)

t
47i

"C!r
$2i

#xr
47i

#y A
x

R
i
#z

i

!

x*

R
x*i

#z
i
B!y* A

x

R
y*i
#z

i

!

x*

R
x*y*i

#z
i
BDN l (55)

t
48i

"Cxr
48i

!z
i
r
44i

!y2 A
1

R
i
#z

i

!

1

R
x*i

#z
i
B#y*2 A

1

R
y*i
#z

i

!

1

R
x*y*i

#z
i
BDNl (56)

The transversely isotropic solutions of Piquer et al.22 and isotropic solutions42,50 indicate that
the displacements or stresses in a half-space subjected to a linearly varying rectangular load are
limited to plane problems. Only a few isotropic solutions36,51, 52 provided the displacements or
stresses at some specific points in a finite plane. Hence, those solutions are the special cases of this
study.
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Another practical problem is a load with trapezoidal distribution, which models the load
caused by the body force of an embankment. Using the principle of superposition, the displace-
ments and stresses at any point below this transversely isotropic footing can be calculated.

ILLUSTRATIVE EXAMPLES

In this section, a series of parametric study is conducted to verify the solutions derived and
investigate the effect of the loading types, degree of rock anisotropy on the displacements and
stresses. Illustrative examples include a vertical uniform and a vertical non-uniform load with
triangular distribution acting on a rectangle region, as depicted in Figures 6 and 7, respectively.
Several types of isotropic and transversely isotropic rocks are considered to constitute the
foundation materials. Their elastic properties are listed in Table II with E/E@ and G/G@ ranging
between 1 and 3 and v/v@ varying between 0.75—1.5. The values adopted in Table II of E and v are
50 GPa and 0.25, respectively. The chosen domains of variation are based on the suggestions of
Gerrard53 and Amadei et al.54 The loads act on the horizontal surface (h"0) of a transversely
isotropic half-space for both examples. The degree of anisotropy including the ratio E/E@, t/t@ and
G/G@ is accounted for investigating its effect on the displacements and stresses.

A FORTRAN program based on equations (1)— (9) for various loading types was written to
calculate the displacements and stresses. In this program, all the components of displacement and
stress at any point in the half-space can be calculated. In this study, only the vertical surface
displacement and vertical stress at/below the right corner of the loaded area was presented.
Figures 6 and 7 show the results for both examples. The normalized vertical surface displacement
(ur

z
/lPK

z
, ut

z
/lPI

z
) at the corner induced by a uniform rectangular load and a linearly varying

rectangular load vs. the non-dimensional ratio of the loaded side (w/l) is given in Figures 6(a) and
7(a), respectively. Knowing the loading types and magnitudes, the dimensions of loaded area, and
rock types, the vertical surface displacement at that point can be estimated from the figures. The
others in Figures 6 and 7 show that the induced vertical stress below the point for different rock
types and dimensions of the loaded area. The relation of two non-dimensional factors, l/z vs.
pr
zz

/PK
z
and l/z vs. pt

zz
/PI

z
is reported in Figures 6(b)—6(d) and Figures 7(b)—7(d), respectively. Also,

the vertical stress at a given depth below the corner can be obtained from these figures. In these
figures, the other non-dimensional factor w/z is adopted for investigating the influence of loading
region on the vertical stress. The loads can be assumed as a strip load (plane strain condition)
when the ratio of w/z approaching to infinity. Based on the results reported in Figures 6 and 7, the
effect of degree of rock anisotropy and the loading types on the displacements and stresses
induced by surface loads is investigated below.

Figures 6(a) and 7(a) indicate that for a given shape, the vertical displacement increases with the
increase of E/E@ with l/l@"G/G@"1 (Rocks 1—3), l/l@ with E/E@"G/G@"1 (Rocks 1, 4, and 5),
and G/G@ with E/E@"l/l@"1 (Rocks 1, 6 and 7). Especially, the increases of the ratio of E/E@ and
G/G@ do have a great influence on the vertical displacement. It reflects the fact that the vertical
surface displacement increases with the increase of deformability in the direction parallel to the
applied load. Figures 6(b) and 7(b) present the induced vertical stress for Rocks 1—3 with variable
non-dimensional factors (m, n). The results indicate that for a given depth and loaded region, the
magnitude of the vertical stress decreases with the increase of E/E@ (l/l@"G/G@"1). Figures 6(c)
and 7(c) report the effect of l/l@ with E/E@"G/G@"1 (Rocks 1, 4, and 5) on the vertical stress. The
figures show that the induced stress is little affected by the value of l/l@. Comparing with Figures
6(d) and 7(d), it can be seen that the non-dimensional vertical stress increases with the increase of
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Figure 6. Effect of rock anisotropy on vertical surface displacement and vertical stress induced by a vertical uniform rectangular load PK
z
: (a) vertical surface

displacement for all rocks; (b) vertical stress for Rocks 1, 2, 3 with E/E@"1, 2, 3, and l/l@"G/G@"1, respectively; (c) vertical stress for Rocks 1, 4, 5 with l/l@"1,
0.75, 1.5, and E/E@"G/G@"1, respectively; (d) vertical stress for Rocks 1, 6, 7 with G/G@"1, 2, 3, and E/E@"l/l@"1, respectively
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Figure 6. Continued
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Figure 7. Effect of rock anisotropy on vertical surface displacement and vertical stress induced by a vertical linearly varying rectangular load PI
z
: (a) vertical

surface displacement for all rocks; (b) vertical stress for Rocks 1, 2, 3 with E/E@"1, 2, 3, and l/l@"G/G@"1, respectively; (c) vertical stress for Rocks 1, 4, 5 with
l/l@"1, 0)75, 1)5, and E/E@"G/G@"1, respectively; (d) vertical stress for Rocks 1, 6, 7 with G/G@"1, 2, 3, and E/E@"l/l@"1, respectively
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Figure 7. Continued
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Table II. Elastic properties and root types for different rocks

Rock type E/E@ l/l@ G/G@ Root type

Rock 1. Isotropic 1)0 1)0 1)0 Equal
Rock 2. Transversely isotropic 2)0 1)0 1)0 Complex
Rock 3. Transversely isotropic 3)0 1)0 1)0 Complex
Rock 4. Transversely isotropic 1)0 0)75 1)0 Complex
Rock 5. Transversely isotropic 1)0 1)5 1)0 Distinct
Rock 6. Transversely isotropic 1)0 1)0 2)0 Distinct
Rock 7. Transversely isotropic 1)0 1)0 3)0 Distinct

G/G@ (Rocks 6 and 7). The results of this study indicate that the displacements and stresses
induced by surface loads strongly depend on the type and degree of material anisotropy.

From Figures 6 and 7, the effect of the loading type on the displacement and stress is explicit.
The trend of these figures for both loading types is similar. It also can be found that for a given
load, the vertical surface displacement induced by a linearly varying rectangular load is only
one-half of that induced by a uniform load (Figures 6(a) and 7(a)). However, comparing Figure
6(b)—6(d) with Figures 7(b)—7(d), the influence of the loading type on the vertical stress is not clear.
In Figures 6(a) and 7(a), the vertical surface displacement increases with the increase of the ratio
w/l for all the constituted rocks. It implicates that the displacement calculated from plane strain
solution is larger than that obtained from three-dimensional solution. The similar results can also
be found in Figures 6(b)—(d) and Figures 7(b)—(d) for the induced vertical stress.

Employing the two examples, the results show that the displacement and stress in the medium
subjected to various loading types (on the surface or in the interior) are easy and correct to be
calculated by the presented solutions. Also, the results indicate that the displacements and
stresses are affected by the effect of rock anisotropy. Hence, the traditional isotropic or plane
strain solutions are not suitable for estimating the displacements and stresses in a transversely
isotropic medium subjected to a finite load.

CONCLUSIONS AND DISCUSSIONS

Using the Fourier and Hankel transforms, the point load solutions in a Cartesian co-ordinate
system for the displacements and stresses in a transversely isotropic half-space were rederived and
expressed in terms of several elementary functions. Integrating of these elementary functions, the
point load solutions can be extended to derive the solutions of the displacements and stresses in
a transversely isotropic half-space subjected to various buried loading types. The loading types
include finite line loads, uniform rectangular loads, and linearly varying rectangular loads. These
solutions indicate that the displacements and stresses are influenced by several factors. Factors
include the buried depth, the loading types and the degree and type of material anisotropy. These
closed-form solutions are the same as some isotropic solutions when the medium is isotropic, and
are also in agreement with a few anisotropic solutions when loads applied at the surface or plane
strain conditions assumed.

Based on the results of parametric studies, the following conclusions are made: (1) The vertical
surface displacement under a surface load increases with the increase of deformability in the
direction parallel to the applied load. (2) The vertical stress for transversely isotropic rocks
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subjected to a uniform or linearly varying rectangular load decreases with the increase of E/E@
(t/t@"G/G@"1), and increases with the increase of G/G@ (E/E@"t/t@"1), but is little affected by
the value of t/t@ (E/E@"G/G@"1). (3) The displacements and stresses calculated from plane
strain solutions are larger than that obtained from these three-dimensional solutions.

In engineering practices, an elastic half-space is usually subjected to an arbitrarily shaped load.
The loaded area can be divided into many regularly shaped areas, such as triangles. However, no
solutions of the displacement/stress due to such loaded areas have been proposed for a trans-
versely isotropic medium. The point load solutions presented in this paper can also be extended
to solve the displacements and stresses for three-dimensional uniform, linear, or quadratic
pressures acting on a triangular region in the interior of a transversely isotropic half-space. The
results will be presented in the forthcoming papers.
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APPENDIX

Notation

A
ij
(i, j"1—6) elastic moduli or elasticity constants

dg, df infinitesimal element along ½- or X-axis, respectively
E, E@, l, l@, G@ elastic constants of a transversely isotropic rock
h the buried depth, as seen in Figures 1—5
i complex number ("J!1)
k, m

1
, m

2
, ¹

1
, ¹

2
, ¹

3
, ¹

4
coefficients

l, w length along X-axis and width along ½-axis, respectively
¸
$1i

—¸
$6i

, ¸
41i

—¸
48i

integral functions for the displacements and stresses induced by finite
line loads, respectively

p
$1i

—p
$6i

, p
41i

—p
48i

elementary functions for the displacements and stresses induced by
a point load, respectively

P
j
( j"x, y, z) a point load (force)

PM
j
( j"x, y, z) finite line loads (forces per unit length)

PK
j
( j"x, y, z) uniform rectangular loads (forces per unit area)

PI
j
( j"x, y, z) linearly varying rectangular loads (maximum forces per unit area)

q, s coefficients (see equation (11))
r, h, z a cylindrical co-ordinate system
r
$1i

—r
$6i

, r
41i

—r
48i

integral functions for the displacements and stresses induced by uni-
form rectangular loads, respectively

t
$1i

—t
$6i

, t
41i

—t
48i

integral functions for the displacements and stresses induced by linearly
varying rectangular loads, respectively

u
1
, u

2
, u

3
roots of the characteristic equation

u-
x
, u-

y
, u-

z
displacements induced by finite line roads

up
x
, up

y
, up

z
displacements induced by a point load

ur
x
, ur

y
, ur

z
displacements induced by uniform rectangular loads
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ut
x
, ut

y
, ut

z
displacements induced by linearly varying rectangular loads

º displacement components
X, ½, Z a Cartesian co-ordinate system

Greek letters

p stress components
p-
xx

, p-
yy

, p-
zz

, q-
xy

, q-
yz

, q-
xz

stress induced by finite line loads
pp
xx

, pp
yy

, pp
zz

, qp
xy

, qp
yz

, qp
xz

stress induced by a point load
pr
xx

, pr
yy

, pr
zz

, qr
xy

, qr
yz

, qr
xz

stress induced by uniform rectangular loads
pt
xx

, pt
yy

, pt
zz

, qt
xy

, qt
yz

, qt
xz

stress induced by linearly varying rectangular loads

Superscripts

l displacements and stresses induced by finite line loads
p displacements and stresses induced by a point load
r displacements and stresses induced by uniform rectangular loads
t displacements and stresses induced by linearly varying rectangular

loads
T transpose matrix
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linéairement répartie sur une air rectangulaire’, C. R. Acad. Sc. Série A, Paris, 268, 191—193 (1969).
46. J. P. Giroud, ‘Stresses under linearly loaded rectangular area’, J. Soil Mech. Found. Div. ASCE, 96(1), 263—268

(1970).
47. N. N. Groth and C. R. Chapman, Computer Evaluation of Deformations Due to Subsurface ¸oads in a Semi-Infinite

Elastic Medium, ¹hesis, presented to the University of Sydney, Australia, in partial fulfillment of the requirements for
the degree of Bachelor of Engineering, 1969.

48. H. Vaziri, B. Simpson, J. W. Pappin and L. Simpson, ‘Integrated forms of Mindlin’s equations’, Geotechnique, 32(3),
275—278 (1982).

49. N. Ahmadi, L. M. Keer, T. Mura and V. Vithoontien, ‘The interior stress field caused by tangential loading of
a rectangular patch on an elastic half space’, J. ¹ribology ASME, 109(10), 627—629 (1987).

138 C. D. WANG AND J. J. LIAO

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 115—139 (1999)



50. H. Gray, ‘Stress distribution in elastic solids’, Proc. 1st Int. Conf. on Soil Mech. and Found. Engng., Vol. 2, 1936,
pp. 157—168.

51. H. Gray, ‘Stresses and displacements from loads over rectangular areas’, Civil Engng., 13(5), 227—229 (1943).
52. R. Jelinek, ‘Setzungsberechnung ausmittig belasteter fundamente’, Bauplannung und Bautechnik, 3(4), 117 (1949).
53. C. M. Gerrard, ‘Background to mathematical modeling in geomechanics: The roles of fabric and stress history’, Proc.

Int. Symp. on Numer. Methods, Karlsruhe, 1975, pp. 33—120.
54. B . Amadei, W. Z. Savage and H. S. Swolfs, ‘Gravitational stresses in anisotropic rock massess’, Int. J. Rock Mech.

Min. Sci. Geomech. Abstr., 24(1), 5—14 (1987).

ELASTIC SOLUTIONS FOR A TRANSVERSELY ISOTROPIC HALF-SPACE 139

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 115—139 (1999)


