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Abstract: The minimum mean-squared error 
(MMSE) linear detector is known to be a near- 
far resistant strategy for direct-sequence code- 
division multiple access systems. The MMSE 
linear detector can be implemented adaptively by 
the MOE adaptation algorithm or the Griffiths’ 
adaptation algorithm, which utilises the desired 
signal vector for initial adaptation instead of 
training sequences. The performance loss caused 
by the imprecise knowledge of the desired signal 
vector is investigated. A new blind adaptive 
algorithm is presented to mitigate the effect of the 
mismatch caused by the timing error in 
acquisition. Several numerical results show that 
the new algorithm can provide a resistance to the 
effect of mismatch compared to the MOE and 
Griffiths’ algorithms. 

1 Introduction 

In direct-sequence code-division multiple access (DS/ 
CDMA) communication systems, each user transmits 
the symbol modulated upon a unique spreading 
sequence. The conventional matched correlator demod- 
ulates the transmitted symbol of a specific user by cor- 
relating the received signal with a synchronised replica 
of the spreading waveform of interest [l,  21. The opti- 
mal performance of reception can be achieved only 
when all spreading waveforms are orthogonal or only 
one user exists. However, the orthogonal property can- 
not be easily obtained, owing to random timing offsets 
between users in an asynchronous system. A nearby 
interfering user of large power will deteriorate the 
reception of the highly attenuated signal. The matched 
correlator is thus vulnerable to the so-called near-far 
problem, and the system capacity is limited by the mul- 
tiple access interference (MAI). 

The minimum mean-squared error (MMSE) single- 
user detection technique [3, 41 is known to be an effec- 
tive strategy for mitigating the near-far problem by uti- 
lising the cyclostationarity of the highly structured 
MAI. This MMSE linear detector can be implemented 
by training sequences based adaptation algorithms [4] 
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or by the blind adaptation algorithms 15-81. The blind 
adaptation algorithms, the minimum output energy 
(MOE) algorithm and the Griffiths’ algorithm, utilise 
the desired signal vector instead of training sequences 
for initial adaptation. In the DS/CDMA communica- 
tion over the additive white Gaussian noise (AWGN) 
channel, the desired signal vector is merely the specific 
user’s spreading sequence, which is also required to 
implement the matched correlator. 

Unfortunately, the perfect knowledge of the desired 
signal vector is not available when there is a timing 
error in acquisition. This mismatch will cause the MOE 
algorithm to adjust the linear detector in a wrong 
direction, such that the resultant detector will cause 
signal degradation and noise enhancement [5,  61. A 
constrained MOE (CMOE) algorithm [5 ,  61 has been 
presented to solve this problem by introducing a con- 
straint on the norm of the tap-weight vector of the 
linear detector. Unfortunately, the Lagrange multiplier 
determining the constraint cannot be automatically 
decided to achieve a compromise between larger toler- 
ance to mismatch and interference suppression capabil- 
ity. In [7], the author proposed an inverse filtering 
method based on the MOE approach for blind demod- 
ulation of DYCDMA signals in the presence of multip- 
ath. Some additional constraints are made to reject 
other multipath components of the desired user in 
order to avoid the signal cancellation. However, the 
algorithm does not utilise the multipath diversity, 
which is commonly used to improve the performance 
of reception in the RAKE receiver. 

In this paper, the effect of mismatch caused by the 
timing error on the MOE and Griffiths’ algorithms is 
investigated and compared. To mitigate the effect of 
mismatch, we present a new blind adaptive algorithm 
for near-far resistant DS/CDMA demodulation in the 
presence of timing error. The proposed receiver consists 
of three parallel Griffiths’ filters and the decision statis- 
tic is formed by linearly combining the output of the 
filters. In addition, the new algorithm can result in the 
estimation of the timing error adaptively, which can be 
useful for the tracking loop. The convergence speed of 
the Griffiths’ algorithm can be accelerated using a vari- 
able step-size scheme [9]. Thus, the new blind algorithm 
is useful in practice. In [lo, 111, authors developed the 
methods of near-far resistant estimation for the code 
timing. The emphasis of our paper, however, is the 
effect of the timing error on the near-far resistant 
demodulation. 

2 Theoretical background 

2. I Asynchronous DS/CDMA 
In a DS/CDMA communication environment with K 
active users, the kth user transmits the antipodal 
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symbol bk[ll E {-1, +1} with amplitude Ak as follows: 
03 

r k ( t )  = A k b k [ j ] S k ( t  - j T b  - ' T k )  COS(Uct  + 6 k )  
3=-00 

(1) 
where 0,. is the carrier frequency, Tb is the symbol 
interval, Zk is the time delay and 0, is the carrier phase 
relative to the receiver. To share the same frequency 
spectrum, each user is assigned with a unique spreading 
waveform given by: 

N - 1  

s k ( t )  = a k [ n ] n ( t  - ~ T c )  (2) 
n = O  

where ak[n] E { + I ,  -1) is the nth element of the spread- 
ing sequence for the kth user and the chip waveform 
n(t) is usually a rectangular waveform of unit-ampli- 
tude and duration T,. In general, T, is assumed to be 
TbIN and N is the processing gain. The received signal 
is then of the form r ( t )  = ZElrk ( t )  + x( t )  where x( t )  is 
AWGN. 

If the double frequency terms are ignored, the equiv- 
alent baseband sample at the output of the chip- 
matched filter can be expressed as: 

K (m+l)T, 

r[m] = 1 / r k ( t )  ' 2 cos(U,t)dt + z[m] ( 3 )  

m T, 

where x[m] is the noise sample. Since E [O, Tb), the 
delay relative to the receiver can be written as Z~ = (ak 
+ &)T,, where 0 5 nk I N - 1 is an integer and 6, E [0, 
1). The samples within one observation interval of 
length Tb, [r[iNl, ..., r[(i + l)N - 111, can thus be 
expressed as a vector: 

k=l 

K 

r(j) b k [ j  - l]vL1 f b k [ j ] V t  + x(j) (4) 
k=l 

where 

V i 1  = A k  { ( 1  - d k ) T F - n k a k  + b k T F - n k - l a k }  

v: = AI, { (1 - G k ) T ; " a k  + G I , T G k + ' a k }  

and ak = [ak[O], ak[ l] ,  ..., ak[N - l]lT. In the above 
expression, x(i) is the AWGN vector and the terms 
cos(Ok) are absorbed into Ak. Note that TLn and TRn 
are the acyclic n-shift operators, which shift the ele- 
ments of a vector to left and right acyclically, respec- 
tively. 

2.2 Equivalent channel model 
Taking the first user to be the desired transmission 
(therefore, 2, = 8, = 0), it is convenient to describe the 
asynchronous DSKDMA channel by the following 
equivalent synchronous model as follows: 

L 

r(j) = b l [ j ] A l U l  + h [ j l A l U l  + x(j) (5) 
1=2 

where bl[l'l is the desired symbol modulated by the 
desired signal vector ul ,  and bib], for 2 I I I L, are 
interfering symbols due to intersymbol interference and 
multiple-access interference and ul are the interference 
vectors modulating these symbols with amplitude Al.  
Note that, when z1 = 0, the desired signal vector is 
equal to the spreading sequence of the desired user, 
that is, u1 = a l .  

30 

For this equivalent channel, the signal-to-noise ratio 
(SNR) is defined as SNR = A1211u1112/s?, where d is the 
variance of AWGN samples. Since llu1112 depends on 
the delay r1, for simplicity, we define the SNR to be the 
one corresponding to a symbol- and chip-synchronous 
system. That is, SNR = NA12/s?. Throughout all exper- 
iments in the subsequent Sections, each interfering user 
is assumed to have equal power and the near-far ratio 
(NFR) denotes the ratio of the power of each interfer- 
ing user to the power of the desired user. 

The MMSE linear detector_ demodulates the trans- 
mitted symbol of interest as bl[ll = sgn(wTr(i)), where 
the FIR filter w minimises the mean-squared error [3, 
41 (MSE) between the desired symbol and the test sta- 
tistic as follows J = E{(b,b] - wrr(i))2}. Since the bits 
bl[l'l are uncorrelated, the optimum tap-weight vector is 
given by 

where R I= E{r(i)rT(i)} and p = E{blb]r(i)} = Alul  are 
the correlation matrix of the received signal vectors and 
the cross-correlation between the desired symbol and 
the received signal vector, respectively. When the inter- 
ference is stationary, the correlation matrix R is posi- 
tive definite and nonsingular, and the optimum tap- 
weight vector is unique. 

W, = R - l p  ( 6 )  

2.3 Blind adaptation algorithms 
The MOE and Griffiths' algorithms are the commonly 
used blind adaptation algorithms for near-far resistant 
demodulation. Their adaptation equations are 
described briefly below. 

The MOE algorithm [5 ,  61 decomposes the impulse 
response of a linear detector into the sum of two 
orthogonal components: w = u1 + v, in which u1 is the 
matched filter corresponding to the desired user and v 
is an adaptive filter. The linear detector intends to min- 
imise the mean output energy: 

M O E ( V )  = E { (wTr(j)I2} (7) 
subject to ulTv = 0. Due to this constraint, the output 
energy due to the desired user is transparent to the 
choice of v, and the resultant detector is expected to 
suppress the interference while preserving the desired 
signal. To satisfy the constraint ulrv = 0, the stochastic 
gradient-descent adaptation rule must find the projec- 
tion of the gradient of the output energy on the linear 
subspace that is orthogonal to ul. The adaptation equa- 
tion is thus given by: 

where p is the step size, z(i) = w(i)Tr(i) is the output of 
the MOE receiver and z M A )  = uITr(i) is the output of 
the matched correlator. 

The Griffiths' algorithm [8, 131 is an approximate 
implementation of the method of steepest descent like 
the least mean-squared (LMS) algorithm [ 141. Utilising 
the property of p = Alul and replacing the correlation 
matrix R with the instantaneous estimate r(i)rT(i) yield 
the adaptation equation given by: 

where p is the step size and z(i> = wr(i)r(i) is the output 
of the detector. If the step size is sufficiently small [12], 
the Griffiths' algorithm will make the adaptive detector 
converge to w, = R-'ul, which is a scaled MMSE solu- 
tion. The scaling will not affect the binary decision of 
the transmitted symbol so the amplitude A l  is not 
required to be estimated during the adaptation. 

v( j  + 1) = v(j) - w ( j ) [ r ( j )  - K w w U 1 1  (8) 

w(j  + 1) = w(j) + d u 1  - 4 M j ) l  (9) 
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3 Mismatch 

We assumed in Section 2 that the desired signal vector 
is merely the spreading sequence of interest. This may 
not be true when there is a timing error in acquisition. 
The relationship between the timing error and the 
desired signal vector can be illustrated in Fig. 1. When 
the clock of the receiver leads that of the transmitted 
symbols by S1Tc (0 I 6, I l), the desired signal vector 
can be expressed by: 

u 1  = (1 - &)a1 + 61TAal (10) 
Alternatively, when the clock of the receiver lags 
behind by 6,TC (0 I 6, 5 l), the desired signal vector 
can be expressed by: 

u 1  = (1 - &)al + S1T;al (11) 
The desired signal vector is thus a linear combining of 
the spreading sequence of interest and its shift version. 
If al is used as the nominal desired signal vector, the 
mismatch causes the performance loss to the blind 
algorithms. 

bi ti-11 b, [il 
. . . . .  - . - .  . . . . . .  nt r - I  . .  . .  : c t  

. .  . .  . .  
. .  . .  . .  . .  signal 

' ;ST,- 

tagging? t t t t t t . t  t t t t t t t 
ST, ~ 

leading t t t t t t t : t  t t t t t t t 
Relationship between desired signal vector and timing error 

-?+ 

+c 

Fig. 1 

The effect of mismatch on the MOE algorithm has 
been investigated in [5-71. Since the adaptive filter v is 
no longer orthogonal to the exact desired signal vector, 
minimising the output energy will cancel the desired 
signal and the interference together. The continuous 
adaptation for the tap-weight vector will cancel the 
desired signal completely. The CMOE algorithm is one 
of the effective strategies for solving this problem. The 
constrained MOE solution is given by: 

wc = (R + v I ) - ~ G ~  (12) 
where U, is the nominal desired signal vector and v is 
the Lagrange multiplier for the constraint on llwc112. 

Recall that, when the step size is sufficiently small 
[12], the Griffiths' algorithm will make the resultant 
detector converge to GG = R-'U1, where U, is the nomi- 
nal desired signal vector. As long as the nominal 
desired signal vector is not orthogonal to the true one, 
the desired signal will not be cancelled completely. 
Consider two special cases: single-user case and very 
strong interference case. When only one user exists, the 
converged demodulator can be expressed by WG = (1/ 
$)(Ul - hl) where A = UlTu1/(($/A12)+Iu112). The con- 
tribution of the desired user to the demodulator output 
is thus expressed as A1WGTu1 = 2 A 1 ,  which is always 
positive and large as long as U l  and u1 have highly pos- 
itive correlation. When the interference level is very 
strong, the tap-weight vector of the converged demodu- 
lator is asymptotically orthogonal to the space spanned 
by the interference vectors [3]. The desired signal will 
not be cancelled if and only if the desired signal vector 
does not lie in the interference space. 

The performance loss caused by the timing error in 
acquisition to the blind algorithms can be investigated 
by examining the signal-to-interference ratio (SIR). The 
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SIR is the ratio of the desired signal power to the 
power sum of noise and MA1 at the output of the filter 
w. That is, 

Considering the leading case, the SIR values for the 
MMSE demodulator and the converged detectors via 
the CMOE and Griffiths' algorithms are shown in 
Fig. 2 as a function of the timing offset. The simula- 
tion parameters are K = 8, NFR = 10dB and SNR = 
20dB. Each user is modulated by a unique Gold code 
sequence with code length N = 15, which is generated 
from a pair of polynomials gl(x) = 1 + x + x4 and g2(x)  
= 1 + x3 + x4. As indicated from the plots, the timing 
error causes a significant performance loss to these 
blind algorithms, especially in the presence of large 
timing error. Consequently, a blind algorithm for near- 
far resistant demodulation is required, that also can 
mitigate the effect of timing error. 

IO, 

timing offset, T, 
Effect of mismatch against timing error Fig.2 

0-0 MMSE bound 
0-0 Griffiths' algorithm 
0-0 CMOE algorithm 
A-A CMOE algorithm 
*-% CMOE algorithm 

4 Model-based Griffiths' algorithm 

When the timing error is introduced, the desired signal 
vector can be expressed in the form of eqn. 10 or 
eqn. 11. Under the timing error the resultant MMSE 
demodulator is thus given by: 

WO = A1 ((1 - h ) W N  + 61WR) 

W O  = A1 ((1 - & ) W N  + &WL) 

(14) 

(15) 

or: 

where w R  = R-'Td al, wL = R-'TL1al and wN = R-'al. 
Following the structure of the MMSE demodulator, we 
propose a model-based Griffiths' algorithm (MBGA) 
demodulator, as illustrated in Fig. 3. The MBGA 
demodulator adopts three adaptive FIR filters in paral- 
lel, which are implemented by the Griffiths' algorithm 
using TR1al, TL1al, and al,  respectively, as the nominal 
desired signal vectors. If the step-size is sufficiently 
small [12], the three adaptive FIR filters will converge 
to wR, wL and wN, respectively. Furthermore, if the tim- 
ing error 6, can be estimated and whether the receiver 
clock leads or lags behind the timing of the desired user 

31 



can be decided, the new algorithm can result in the 
demodulator by linearly combining wR and w N  or WL 
and wN 

Fig. 3 
demodulator 

Block diagrurn of model-bused Griffiths’ adaptation algorithm 

The timing error can be estimated recursively via the 
Godard algorithm, which minimises the cost function 
given by: 

(16) 
where zR(i>, z,&) and zLQ) are the output values of 
wR(j), w d )  and wL(j), respectively. Note that aR(j) and 
aL(j) are the gain factors corresponding to the leading 
and lagging cases, respectively. Whether the receiver 
clock leads or lags behind the timing of the desired user 
can be decided by comparing the accumulated decision 
errors during the adaptation process. Table 1 presents 
the summary of the new blind adaptive algorithm. 

In the following simulations the simulation parameters 
are N = 15, K = 8, NFR = lOdB and SNR = 20dB. 
The delay rl of the desired transmission is selected for 
different simulation cases, while the delays Zk, k = 2, ..., 
8, are chosen randomly in [0, Tb) and then kept fixed. 
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Table 2 shows the SIR values of the matched correla- 
tor, the MMSE demodulator and the inverse filtering 
demodulator [7] for different q. The inverse filtering 
demodulator w is designed to minimise the mean out- 
put energy subject to Cw = f, where C = [7‘,’a1 al 
TR1aIlT and f = [0 I 0IT. The cosine of the angle 
between uI and u l ,  denoted by K, is used to indicate 
how close the nominal desired signal vector is to the 
exact one. 

Table 2: SIR of the matched correlator, the inverse filter- 
ing demodulator and the MMSE demodulator for differ- 
ent z, 

0.0 1.0000 0.80 11.44 15.86 
0.15 0.9854 -1.73 10.00 13.57 
0.30 0.9170 -4.44 8.25 10.66 
0.40 0.7512 -6.58 6.04 7.23 

The first experiment demonstrates the trajectory of 
the averaged SIR values against time when the perfect 
knowledge of the desired signal vector is acquired (that 
is, z1 = 0.0). The averaged SIR at the jth iteration is 
calculated by: 

where the subscript ‘r’ denotes the particular run and 
the number of runs is M = 500. The plots in Figs. 4 
and 5 show that both the MOE and the Griffiths’ algo- 
rithms are expected to adapt the detector close to the 
MMSE solution under no mismatch. 

I 
o b  20 40 60 80 100 

iteration/l 00 

Fig.4 
signal vector,for MOE algorithm 
M MMSE bound 

~ stepsize = 0.0008 
~~~~ stepsize = 0.0016 
_ _ _  stepsize = 0.0032 

Convergence of average SIR with perfect knowledge of desired 

The second experiment demonstrates the convergence 
trajectory of the averaged SIR values against time 
under mismatch due to the imperfect timing synchroni- 
sation. The Lagrange multiplier used for the con- 
strained MOE algorithm is v = 0.1. The plots in 
Figs. 6-8 show that the MOE algorithm fails to imple- 
ment the demodulator in the presence of large timing 
error. The output SIR decreases to an unacceptable 
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tive to the MMSE bound. The MBGA demodulator 
can provide the significant improvement in output SIR 
over all other adaptation algorithms. Due to the misad- 
justment in adaptive implementation, there is some per- 
formance loss in the MBGA demodulator compared to 
the MMSE bound. However, the SIR of the MBGA is 
always larger than that of the inverse filtering demodu- 
lator. The trajectory of the estimated timing offset is 
shown in Fig. 9. 

8 - “ -  
1 1 - -  

- 
0‘ I 
0 20 40 60 80 100 

iteration/100 
Convergence of average SIR with perfect knowledge of desired Fig.5 

signal vector for Griffiths ’ algorithm 
U 4  MMSE bound 

~ stepsize = 0.0008 
_ _ _ _  stepsize = 0.0016 
_ _ _  stepsize = 0.0032 

iterationsll00 

Fig.8 Convergence of average SIR for dgerent blind algorithms in 
presence OJ mismatch for z, = 0.45Tc 
0 4  MMSE bound 

MGBA, 
__ constrained MOE 
_ _ _  Griffiths’ 
_ _ - -  MOE 

“ t  ft’ N I j !  
6 4  

0 20 40 60 80 100 
iteration/l 00 

Convergence of average SIR for dflerent blind algorithms in Fig.6 
presence of mismatch for Z, = 0.15Tc 
0-0 MMSE bound 

MGBA 
__ constrained MOE 
_ _ _  Griffitbs’ 

MOE _ _ _ _  

1 2 d  10 

I 
20 40 60 80 100 

iteration/lW 
Fig.7 
presence of mismatch for z, = 0.30Tc 
-0 MMSE bound 
_ _ _  MGBA, 
__ constrained MOE 
_ _ _  Griffiths’ 

Convergence of average SIR for dflerent blind algorithms in 

MOE _ _ _ _  

level after a large number of iterations. The CMOE 
and the Griffiths’ algorithms are robust against the 
effect of the mismatch in comparison with the MOE 
algorithm. However, their performance is worse rela- 
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-0.2 1 
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iterationdl 00 
Trajectory of estimated riming offset by MBGA demodulator Fig.9 

~ timing offset = O.IST, 
_ _ _ -  timing offset = 0.30T‘ 
_ _ _ -  timing offset = 0.4STc 

6 Conclusion 

In this paper, the performance of the MOE and the 
Griffiths’ algorithms was investigated and compared. 
The CMOE and the Griffiths’ algorithms are robust 
against the effect of mismatch in adaptation of the 
receiver, compared to the MOE algorithm. A new blind 
adaptive algorithm was proposed to mitigate the effect 
of mismatch caused by the timing error in synchronisa- 
tion. The new algorithm can provide a significant 
improvement in the output SIR over the Griffiths’ 
algorithm and modified MOE algorithms. The timing 
error is also estimated adaptively and the estimation 
can be used for further improving the accuracy in syn- 
chronisation. 
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