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Abstract

In this paper we consider a Bayesian analysis of unbalanced (general) growth curve model
with random e�ects and AR(1) errors. Three priors are proposed and put into comparisons in
parameter estimation and prediction problems. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In this paper we mainly devote ourselves to the growth curve model with random
e�ects and AR(1) errors via a Bayesian approach. The model considered here is:

Yij
pij×1

= Xij
pij×mi

�i
mi×1

+ Dij
pij×wi

uij
wi×1

+ �ij
pij×1

; j=1; 2; : : : ; Ni; i=1; 2; : : : ; r; (1.1)

where Yij is the measurement and with unequal lengths, �i is an unknown vector of
regression coe�cients of group i, Xij and Dij are known design matrices, uij is the
random e�ects error and possesses wi-variate normal distribution with mean vector 0
and covariance matrix �2�i, and the disturbance terms �ij’s are independent pij-variate
normal with mean vector 0 and AR(1) covariance matrix �2Cij , where Cij =(�

|a−b|),
a; b=1; : : : ; pij.
The covariance matrix of Yij can be written as

�ij = �2(Dij�iD′
ij + Cij)

≡ �2�ij:
(1.2)

It is noted that the random e�ects are characterized by Dij. For example, Dij equals
to 1pij for the random intercept model and equals to Xij when both intercept and slope
are random.
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The growth curve model was �rst proposed by Pottho� and Roy (1964) and sub-
sequently considered by many authors, including Rao (1987), Khatri (1966), Geisser
(1970), Lee and Geisser (1972), Lee (1988; 1991), Lee and Hsu (1997), among others.
Laird and Ware (1982) considered the random e�ects model with white noise errors and
obtained maximum likelihood (ML) and restricted maximum likelihood (REML) esti-
mates of variance–covariance components via EM algorithm. Jennrich and Schluchter
(1986) discussed various types of covariance structures, including random e�ects mod-
els and the AR(1) model separately. In Lee (1988; 1991) and Keramidas and Lee
(1990) the importance of the AR(1) dependence was demonstrated using some real data
in prediction of future observations. Chi and Reinsel (1989) considered the ML esti-
mates for the model with both random e�ects and AR(1) errors by the scoring method.
A Bayesian analysis of the AR(1) dependence was considered by Lee and Hsu (1997).
Three types of prior for Bayesian analysis of the model (1:1) are proposed in this

paper. In addition to parameter estimation, we also consider two types of prediction
problem which are practically useful. In Section 2, the motivations of the priors will be
discussed in detail. In Sections 3 and 4, Bayesian methods for parameter estimation and
prediction of future values are developed. Some approximate methods are suggested
since the exact forms of the posterior distribution functions of a few parameters are
not easy to obtain. Some numerical results with real-data analyzed by the methods
developed in Sections 3 and 4 are illustrated in Section 5. Simulations are also done to
clarify some properties of the proposed methods. Finally, in Section 6 some concluding
remarks are given.

2. Choices of prior

For convenience let �=(�1; : : : ; �r) and �=(�1; : : : ; �r). For model (1:1), the likeli-
hood function of �, �2, � and � is

L(�; �2; �; �|Y ) ∝ (�2)−(1=2)n
r∏
i=1

Ni∏
j=1

|�ij|−1=2 e−1=2�
2(Yij−Xij�i)′�−1

ij (Yij−Xij�i); (2.1)

where n=
∑r

i=1

∑Ni
j=1 pij.

To choose appropriate prior densities, we will assume �; �2; � and � are independent
a priori. We next present the three di�erent priors considered for this model.

2.1. Prior 1

This joint prior is noninformative in nature. The noninformative prior distributions
for � and � are easily seen to be proportional to constants since all of the elements
of � are just real numbers and � is con�ned within (−1; 1): For �2; we choose �−2
as its prior because �2¿0. For �, we may consider each of its elements as a ratio
of the variance–covariance components of the covariance matrix of uij to the main
variation �2, so every element of � should be within a �nite interval such that neither
random e�ects nor the AR(1) errors dominate the other. Utilizing the ‘principle of
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stable estimation’ suggested by Edwards et al. (1963), uniform prior is appropriate for
�. Therefore, coupling with the spirits of Zellner and Tiao (1964), the joint prior for
�, �2, � and � can be written as

�(�; �2; �; �)∝ �(�)�(�2)�(�)�(�)∝ �−2: (2.2)

It is worth noting that the usual noninformative prior for �i, |�i|−(wi+1)=2, is not
appropriate here since it induces nonintegrable posterior densities. An explanation for
this is that such a prior just down-weighs one of the two components (random e�ects)
of the covariance. However, the properties of being strictly positive de�nite of �ij is
guaranteed by �2Cij so there’s no mechanism in the likelihood to cease the intendency
for �i to decrease. Finally |�i| approaches 0 and thus reduces the model simply to the
AR(1) model. This also could lead to the question whether it is reasonable to assume
� and � to have independent distributions, since both of them are used to explain the
‘variations’ of the data whereas the total ‘variations’ of the data is just �xed!

2.2. Prior 2

Following Box and Tiao (1973), assume r=1; wi=w and omitting subscripts for
Cij and Dij; we may also choose the prior as

�(�; �2; �; �)∝ �−2|� + (D′C−1D)−1|−(w+1)=2: (2.3)

2.3. Prior 3

Another approach to determine the prior is to introduce an informative prior such
as the inverse Wishart distribution, IW(
; �), for �. The parameters 
 and � may
be roughly estimated from the data. We will set � as small as possible, i.e., m + 2.
The 
 could be set as diagonal with diagonal elements being the sample variances of
the corresponding regression coe�cients when each individual regresses on the design
matrix Xij with white noise errors.
In the following Bayesian inference, we shall denote the prior of � and � as �(�; �)

without specifying which prior being used in the theoretical development. However,
three di�erent priors will be utilized for �(�; �) in numerical illustrations.

3. Parameter estimation

Combining Eq. (2.1) with the prior and integrating w.r.t. �2; �1;�2; : : : ; �r , we get the
following joint posterior of � and �:

P(�; �|Y )∝ �(�; �)
[
r∏
i=1

Ni∏
j=1

|�ij|−1=2
]
B−1=2(n−

∑r
i=1mi)

×
r∏
i=1

∣∣∣∣∣
Ni∑
j=1

X ′
ij�

−1
ij Xij

∣∣∣∣∣
−1=2

; (3.1)
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where

B=
r∑
i=1

Ni∑
j=1
(Yij − Xij�̂i)′�−1

ij (Yij − Xij�̂i);

�̂i=

(
Ni∑
j=1

X ′
ij�

−1
ij Xij

)−1
Ni∑
j=1

X ′
ij�

−1
ij Yij: (3.2)

The posterior density of �i can be approximated by

P(�i|Y ) := P(�i|�̂; �̂; ; Y ); (3.3)

where (�̂; �̂) is the mode of P(�; �|Y ), if P(�; �|Y ) is concentrated and nearly sym-
metric, as pointed out by Ljung and Box (1980).
Thus, we have the following approximate posterior distribution for �i:

�i|Y ·∼Tmi


�̂∗i ; B̂

((
n−

r∑
j=1
mj

)
Ni∑
j=1

X ′
ij�̂

−1
ij Xij

)−1
; n−

r∑
j=1
mj


 ; (3.4)

where �̂∗i ; B̂; �̂ij and Ĉij are the �̂i ; B; �ij and Cij, de�ned earlier, with � and � replaced
by �̂ and �̂, respectively, and Tp(�; �; �) has the density

f(y)=K(�; p)|�|−1=2[1 + �−1(y − �)′�−1(y − �)]−(p+�)=2; (3.5)

K(�; p)=�((�+ p)=2)=�(�=2)(��)p=2; and �̂ and �̂ maximized P(�; �|Y ); as given in
Eq. (3.1).
Hence, an approximate posterior region for �i can be obtained from

(�i − �̂∗i )′
(
Ni∑
j=1

X ′
ij�̂

−1
ij Xij

)
(�i − �̂∗i )6

miB̂
n−∑r

i=1 mi
F�

(
mi; n−

r∑
i=1
mi

)
;

(3.6)

where F�(�1; �2) is the upper 100�% point of the F distribution with �1 and �2 degrees
of freedom.
Also,

�2|Y ·∼ IG

(
n−∑r

i=1 mi
2

;
B̂
2

)
: (3.7)

4. Prediction of partially observed future values

In this section we consider the prediction of ylk , a future q-dimensional values of
measurement Ylk . To accomplish this task, the covariance structure must be extendable
to the future values of all observed individuals. The covariance structure considered in
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this paper satis�es this requirement. We will �rst state the following lemma which is
useful in this section.

Lemma 4.1. Let X∗
p×q and Z

∗
p×(p−q) be matrices of ranks q¡p and (p− q); respec-

tively; such that X ∗′Z∗=0. If �∗
p×p is a positive matrix; then

�∗−1
=�∗−1

X ∗(X ∗′�∗−1
X ∗)−1X ∗′�∗−1

+ Z∗(Z∗′�∗Z∗)−1Z∗′:

Let x and d be the q × ml and q × wl design matrices corresponding to ylk . Then
we have

E
(
Ylk
ylk

)
=
(
Xlk
x

)
�l;

Cov
(
Ylk
ylk

)
= �2(D∗�lD∗′ + C∗)= �2�∗= �2

[
�∗
11 �∗

12

�∗
21 �∗

22

]
;

where

D∗=
(
Dlk
d

)
; C∗=(�|a−b|); a; b=1; : : : ; plk + q:

Let

Y ∗
lk =

(
Ylk
ylk

)
; X ∗=

(
Xlk
x

)
:

Combining the conditional density function of ylk given Ylk ; �l; �2; �l and � with
the posterior density of �; �2; � and �, and integrating w.r.t. �2 and �, applying
Lemma 4.1 and after some algebraic manipulations we have the following joint poste-
rior density of ylk; � and �:

P(ylk ; �; �|Y )∝ �(�; �)
[
r∏
i=1

Ni∏
j=1

|�ij|−1=2
]
|�∗
22:1|−1=2

∏
i 6=l

∣∣∣∣∣
Ni∑
j=1
X ′
ij�

−1
ij Xij

∣∣∣∣∣
−1=2

×|Q|−1=2[B1+B2+B3+(ylk − �)′G22(ylk−�)]−1=2(n+q−
∑r

i=1
mi);

(4.1)

where

G =�∗−1
X ∗Q−1

2 Q1Q
−1Q2Q−1

2 X
∗′�∗−1

+ Z∗(Z∗′�∗Z∗)−1Z∗′

=
(
G11 G12
G21 G22

)
;

G11:2 = G11 − G12G−1
22 G21;

� = x�̂l1 − G−1
22 G21(Ylk − Xlk �̂l1);
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Q = Q1 + Q2;

Q1 =
∑
j 6=k
X ′
lj�

−1
lj Xlj;

Q2 = X ∗′�∗−1
X ∗;

B1 =
∑
i 6=l

Ni∑
j=1
(Yij − Xij�̂i)′�−1

ij (Yij − Xij�̂i);

B2 =
∑
j 6=k
(Ylj − Xlj�̂l1)′�−1

lj (Ylj − Xlj�̂l1);

B3 = (Ylk − X �̂l1)′G11:2(Ylk − X �̂l1);

�̂i =

(
Ni∑
j=1

X ′
ij�

−1
ij Xij

)−1
Ni∑
j=1

X ′
ij�

−1
ij Yij; i 6= j;

�̂l1 =

(∑
j 6=k

X ′
lj�

−1
lj Xlj

)−1∑
j 6=k

X ′
lj�

−1
lj Ylj;

�̂l2 = (X ∗′�∗−1
X ∗)−1X ∗′�∗−1

Y ∗
lk ;

�̂l = Q−1(Q1�̂l1 + Q2�̂l2):

Integrating w.r.t. ylk we have the following posterior density of � and �:

P(�; �|Y )∝ �(�; �)
[
r∏
i=1

Ni∏
j=1

|�ij|−1=2
]
|�∗
22:1|−1=2

×∏
i 6=l

∣∣∣∣∣
Ni∑
j=1
X ′
ij�

−1
ij Xij

∣∣∣∣∣
−1=2

|Q|−1=2|G22|−1=2

× [B1 + B2 + B3]−1=2(n−
∑r

i=1
mi): (4.2)

With arguments similar to those in Eq. (3.4), we also have the following approximate
predictive density of ylk :

ylk |Y ·∼Tq
(
�̂; (B̂1 + B̂2 + B̂3)

((
n−

r∑
i=1
mi

)
Ĝ22

)−1
; n−

r∑
i=1
mi

)
; (4.3)

where (�̂; �̂) is the mode of P(�; �|Y ); as given in Eq. (4.2), and the quantities �̂, B̂1;
B̂2; B̂3 and Ĝ are, respectively, �; B1, B2, B3, and G evaluated at (�̂; �̂):
An approximate 1− � predictive region for ylk can be obtained from

(ylk − �̂)′Ĝ22(ylk − �̂)6q(B̂1 + B̂2 + B̂3)n−∑r
i=1 mi

F�

(
q; n−

r∑
i=1
mi

)
;

where F�(�1; �2) is the upper 100�% point of the F distribution with �1 and �2 degrees
of freedom.
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5. Numerical illustrations

Some of the results developed in this paper are illustrated with a real-data set and
some simulations. The real-data set, the obese data, was analyzed by Reinsel (1984)
with a random e�ects model and by Chi and Reinsel (1989) with the model considered
in this paper when the parameters are estimated by the ML method. Similar to Chi
and Reinsel (1989) we will consider the random slope and AR(1) model for this data
set. The moderate simulations are performed with input parameters roughly matching
the obese data for the model considered.
In the illustrations, all the observations are assumed to be in the same group, i.e.,

r=1, for both real data and simulations.

5.1. Parameter estimation

The parameter estimates of the obese data are listed in Table 1. For practical cal-
culations, � are transformed into f′f where f is a w×w upper-triangular matrix.
It is seen that estimates from di�erent priors lead to very di�erent estimate for the
components of the covariance structure. Generally speaking, prior 1 gives estimates
closer to those by the ML method. Priors 2 and 3 put more weights on the variations
from AR(1) errors and random e�ects, respectively. But all the methods considered
here give similar estimates for �.
In Fig. 1, the posterior density functions of f and �; as given in Eq. (3.1), corre-

sponding to the three priors for the obese data are plotted. It is noted that all three are
unimodal and concentrated, so we may expect that Eq. (3.4) would give good approx-
imations to the exact posterior density functions of �. Fig. 2 shows the posterior and
con�dence regions of � constructed by the Bayesian methods, as given in Eq. (3.6),
and by the ML method. Since � is a 3-variate vector, only projections on the �3 plane
is presented. The posterior regions constructed with priors 1 and 2 are just a bit larger
than and surrounds the region by the ML method. The posterior region constructed
by prior 3 is the largest and very di�erent in orientation from the other three. Results
from simulations with 1000 replications for the coverage probabilities of these regions
are shown in Tables 2 and 3. The input parameters are roughly the ML estimates for
the obese data. It is seen that all the coverage probabilities do not reach 0.95 but
increase with sample size except those by prior 3. The con�dence regions by the ML
method are always the smallest and have the smallest coverage probabilities. For smaller

Table 1
Parameter estimates of obese data

�̂1 �̂2 �̂3 �̂2 f̂ �̂

ML 4.5062 −0.6742 0.2787 0.2511 1.0264 0.6683
Prior 1 4.5065 −0.6738 0.2784 0.2604 1.0167 0.6830
Prior 2 4.5077 −0.6728 0.2776 0.3010 0.8135 0.7237
Prior 3 4.5050 −0.6756 0.2799 0.2081 1.5240 0.6104
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Fig. 1. Posterior densities of f and rho given Y (obese data).

sample sizes, the posterior regions by prior 3 have coverage probabilities closer to 0.95.
But for larger sample sizes, the posterior regions by priors 2 and 3 have coverage prob-
abilities larger than the other two.
Using Eq. (3.6), we may construct 0.95 con�dence regions as shown in Fig. 3. For

this data set these regions are di�erent in sizes but uniform in orientation. Simulations
for coverage probabilities reveal similar characteristics as previously discussed for the
obese data.

5.2. Prediction of partially observed future value

Here, we consider two types of prediction problem, which are usually of practical
interest. The �rst type, called conditional prediction, involves the following settings:

p1 = · · · =pi−1 =pi+1 = · · · =pN−1 =p; pi=p− 1; i ∈ {1; : : : ; N}

and the goal is to predict yip.
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Fig. 2. Posterior and con�dence regions of tau (obese data).

The other, called extended prediction, is set as

p1 = · · · =pN =p− 1; i ∈ {1; : : : ; N}

and yip is to be predicted.
In conditional prediction, we use the leave-one-out procedure. That is, the last point

of each vector measurement is taken out as the true value and to be predicted each
time. In extended prediction, the points of the last row are taken out to be predicted.
Fig. 4 shows comparisons among the conditional predictive densities of the last point

of the �rst measurement in the obese data induced from the three priors. It is seen
that prior 3 gives a slight location shift from the other two. In Fig. 5 comparisons are
shown for exact and approximate predictive density functions using all three priors. It
convinces us of the adequacy of the approximation given in Eq. (4.3).
To compare the performances of di�erent prediction methods, we use the following

three criteria as measures of discrepancy: mean-square deviation (MSD), mean absolute
deviation (MAD), and mean absolute relative deviation (MARD) of the predictions
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Table 2
Comparison of coverage probabilities (Random intercept model)

Prior 1 Prior 2 Prior 3 ML

N =10 91.5 91.3 92.5 88.3
N =20 93.8 93.4 93.9 92.4
N =30 95.2 95.4 95.2 94.4

Here 1− �=0:95,

�=

(
4:5

−0:68
0:28

)
; X =

(
1 1 1 1 1 1 1 1
0 0:5 1 1:5 2 2 2 2
0 0 0 0 0 1 2 3

)′
;

D= (1 1 1 1 1 1 1 1)′, �2 = 0:25; f=1:02; �=0:6: and the number of replications is 1000.

Table 3
Comparison of coverage probabilities (Both intercept and slope random)

Prior 1 Prior 2 Prior 3 ML

N =10 86.8 85.3 91.9 83.8
N =20 91.0 91.0 94.1 89.7
N =30 92.9 92.3 94.6 92.5

Here 1− �=0:95; parameters as in Table 2 and the number of replications is 1000.

Fig. 3. Ninty-�ve percent con�dence regions for tau (simulated data).

from the actuals. Tables 4 and 5 show all these quantities for all methods for the
obese data. It is seen that for the obese data the Bayesian method with priors 1 and
2 and the ML method are somewhat comparable, while with prior 3 does not perform
as well.
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Fig. 4. Conditional predictive densities (8th point of 1st measurement in the obese data).

Fig. 5. Comparisons of exact and approximate posterior densities for conditional prediction (obese data).

Table 4
Comparison of prediction accuracy in conditional prediction (obese data)

Prior 1 Prior 2 Prior 3 ML

MSD 0.0614 0.0598 0.0677 0.0624
MAD 0.2071 0.1992 0.2219 0.2170
MARD 0.0538 0.0517 0.0576 0.0563
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Table 5
Comparison of prediction accuracy in extended prediction (obese data)

Prior 1 Prior 2 Prior 3 ML

MSD 0.0648 0.0632 0.0720 0.0611
MAD 0.2093 0.1989 0.2275 0.2099
MARD 0.0532 0.0504 0.0581 0.0539

In addition to point prediction, we also address the interval prediction. Generally
speaking, priors 1 and 2 perform comparably with or even better than the ML method
both in point and interval predictions. Prior 3 does not perform as well in point pre-
diction but still gives better interval predictions than the ML method.

6. Conclusions

The Bayesian method presented in this paper provides an alternative way of dealing
with the general growth curve model having random e�ects and AR(1) errors. From
the analysis in Section 5 it is evident that model (1:1) is very suitable for the obese
data and some related biological measurements.
It is noted that the approximate Bayesian method presented here, especially with

prior 1, provides a superior way of constructing more reliable predictive intervals for
future values than the ML method, while the forecast accuracies for future values are
at least comparable. Also, the approximate Bayesian method is obtained by simply
substituting the posterior joint mode of the conditioning variables. The approximation
turns out to be quite reasonable for this model.
Finally, it is fair to say that the proposed approximate Bayesian method should be

very useful in dealing with growth curve data when the prior is appropriately chosen.
Here we recommend prior 1, i.e., the uniform prior, since it is easy to execute and has
good performance.

Appendix A. Estimation and prediction based on the ML method

For simplicity we consider balanced data set, in which pij =p; Yij =Yi; Xij =X; Y =
(Y1; : : : ; YN ):

A.1. Parameter estimation

We have the following lemma similar to Lee (1988).

Lemma A.1. For model (1:1) with balanced design and covariance matrix satisfying
Eq. (1.2), the MLEs of � and �2, denoted by �̂ and �̂2, are:
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�̂=
1
N
(X ′�̂−1X )−1X ′�̂−1 N∑

i=1
Yi; (A.1)

�̂2 =
1
pN

[tr(X ′�̂−1X )−1X ′�̂−1S�̂−1X + tr(Z ′�̂Z)−1Z ′YY ′Z];

where Z is a known p× (p− m) matrix with rank p− m such that X ′Z =0,

S =Y (I − 11′=N )Y ′

and �̂ is obtained with �̂ and �̂ maximizing the pro�le likelihood function

Lmax(�; �)= (�̂2)−pN=2|D�D′ + C|−N=2

subject to �̂2 given by Eq. (A.1) with (�̂, �̂) replaced by (�; �).

A.2. Con�dence region for �

Approximately, a 1− � con�dence region for � can be constructed from

(�− �̂)′
[
�̂2

N
(X ′�̂−1X )−1

]−1
(�− �̂)6�2m(�);

where �2m(�) is the 100(1 − �)th the percentile of �2 distribution with m degree of
freedom.

A.3. Conditional prediction

In this case, we estimate parameters as �̂c; �̂2c ; �̂c and �̂c by Eq. (A.1) with sam-
ple Y (i)c =(Y1; : : : ; Yi−1; Yi+1; : : : ; YN ). The approximate mean, denoted by ŷip, of the
distribution of yip given Y

(i)
c is

ŷip=X
(2)�̂c + �̂21�̂

−1
11 (Y

(1)
i − X (1)�̂c);

where

X =
(
X (1)

X (2)

)
; �=

(
�11 �12
�21 �22

)
;

X (1) is (p− 1)× m; �11 is (p− 1)× (p− 1); �12 is (p− 1)× 1 and �22 is 1× 1:
The variance of the prediction error for yip given �2; �, and � is

�2cf = �
2
[
�22 − �21�−1

11 �12 +
1
N
Hc
(
X ′�−1X

)−1
H ′
c

]
;
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where Hc=X (2) − �21�−1
11 X

(1): An approximate interval is

ŷip ± z�=2�̂cf;

where �̂2cf is �
2
f evaluated at �̂

2
c ; �̂c and �̂c, and z�=2 is the 100(1− �=2)th percentile

of the standard normal distribution.

A.4. Extended prediction

Here, we set

Y =(Y1; : : : ; YN )=
(
Y (1)

Y (2)

)
;

where Y (1) is (p−1)×N; Y (2) is 1×N and yip is the ith element of Y (2): We use Y (1)

as the sample to get parameter estimates �̂e; �̂2e ; �̂e and �̂e. Again the approximate
mean of the distribution of yip given Y (1) is

ŷip=X
(2)�̂e + �̂21�̂

−1
11 (Y

(1) − X (1)�̂e):
The variance of the prediction error for yip given �2; �; and � is

�2ef = �
2
[
�22 − �21�−1

11 �12 +
1
N
He
(
X (1)

′
�−1
11 X

(1)
)−1

H ′
e

]
;

where He =X (2) − �21�−1
11 X

(1). An approximate interval is

ŷip ± z�=2�̂2ef ;

where �̂2cf is evaluated at �̂
2
e ; �̂e and �̂e.
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