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Abstract--A secret sharing scheme is a method which allows a secret to be shared among a set of 
participants in such a way that only qualified subsets of participants can recover the secret. A secret 
sharing scheme is called perfect if unqualified subsets of participants obtain no information regarding 
the secret. The information rate of a secret sharing scheme is defined to be the ratio between the size 
of secret and the maximum size of the shares. In this paper, we propose some recursive constructions 
for perfect secret sharing schemes with access structures of constant rank. Compared with the best 
previous constructions, our constructions have some improved lower bounds on the information rate. 
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1. I N T R O D U C T I O N  

A secret sharing scheme is a method which allows a secret K to be shared among a set of 

participants P in such a way that only qualified subsets of participants can recover the secret [1,2]. 

The information kept by each participant is called share. The collection of subsets of participants 

that can reconstruct the secret in this way is called access structure, denoted by r. It is natural to 

require r to be monotone, that  is, if X E r and X C X '  C_ P,  then X '  E r .  A minimal qualified 
subset Y E r is a subset of participants such that  Y' ~ F, for all y t  c Y. The basis of F, denoted 
by r0, is the family of all minimal qualified subsets. For any ro C_ 2 P, the closure of Fo is defined 
to be cl(F0) = {X ~ : 3 X  • r 0 , x  c X ~ c_ p}.  Therefore, an access structure F is the same as 
the closure of its basis r0, cl(Fo). In the special case where F = {A [ A C_ P and IAI > m}, the 
secret sharing scheme is called an (m, n)-threshold scheme [3,4], where IPI = n. A secret sharing 
scheme is called perfect if unqualified subsets of participants obtain no information regarding the 
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secret [5,6]. It means that  the prior probability p(K = K0) equals the conditional probability 
p(K = Ko I given any shares of an unqualified set). The information theoretic models for 
threshold schemes and secret sharing schemes were defined by Karnin et al. [7] and Capocelli 
et al. [8], respectively. We refer to Gallager [9] and Hamming [10] for a treatment of information 
theory. Following the approach of [8], we can state the requirements for a secret sharing scheme 
by using the entropy function H as follows: 

(1) any qualified subset can reconstruct the secret 

VxerH(K  ] X) = 0, and 

(2) any unqualified subset has no information on the secret 

Vx~rH(K I X ) = g ( g ) .  

An important issue in the implementation of perfect secret sharing schemes is the size of 
shares. Let K be the secret space and S be the maximum share space. The information rate 
for a secret sharing scheme is defined as p = log 2 ]K]/log 2 ]S] (see [5]). The information rate for 
share Si is defined as p, = log 2 ]KI/log 2 ]S~], where S5 is the share space for Si. We will use 
the notation PS(F, p, q) to denote a perfect secret sharing scheme with access structure F and 
information rate p for a set of q keys. Given any access structure F, Ito et aL [2,11] showed that  
there exists a perfect secret sharing scheme to realize the structure. Benaloh and Leichter [1] 
proposed a different algorithm to realize secret sharing schemes for any given monotone access 
structures. In both constructions, the information rate decreases exponentially as a function of n, 
the number of participants. After that,  many researchers focused on studying the perfect secret 
sharing scheme for graph-based access structure F having basis F0, where F0 is the collection 
of the pairs of participants corresponding to edges [5,6,8,12-16]. Among these constructions, 
Stinson [16] proposed the idea of decomposition construction which is more general than previous 
constructions [5,8,12-15]. In addition, he proved that,  for any graph G with n vertices having 
maximum degree d, there exists a perfect secret sharing scheme for the access structure based 
on G in which the information rate is at least 2/(d + 1). Recently, Blundo et aL [17] showed that  
Stinson's lower bound is tight. 

The rank of an access structure F is the maximum cardinality of a minimal qualified subset. An 
access structure is uniform if every minimal qualified subset has the same cardinality. Therefore, 
the graph-based access structure is the case of access structure with rank two. Perfect secret 
sharing schemes with access structures of constant rank were studied by Stinson [15]. He applied 
Steiner systems to construct perfect secret sharing schemes with access structures of rank three. 
The constructed secret sharing scheme has the information rate 

4 
( n -  1 ) ( n -  2)'  

if F is nonuniform and n - 2, 4 (mod 6) or 

6 
p_> 

(n- l)(n- 2)' 
if F is uniform and n -- 2,4 (rood6), where n is the number of participants. Note that  if n 
doesn't satisfy the condition: n - 2,4 (mod6), it is necessary to find an n'  > n such that  
n'  = 2, 4 (rood 6). The degree of a participant in a secret sharing scheme with access structure 
cl(F0) is defined to be the number of subsets in F0 which contain the participant. Based on the 
edge-colourings of bipartite graphs, Stinson [15] also studied the construction of secret sharing 
schemes with access structures of rank m. The constructed secret sharing schemes have the 
information rate 

m 

( 2 m - 1 ) .  m - 2  + d  

where n is the number of participants and d is the maximum degree of any participant. 
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In this paper, we propose some recursive constructions for perfect secret sharing schemes with 

access structures of constant rank. If F is an access structure (either uniform or nonuniform) of 
rank three on n participants, we show that  there exists a secret sharing scheme with information 

rate 6 
p> 

(n - 1) 2 + 2' 

for n > 5. If F is a uniform access structure of rank m on n participants, we show that  there 
exists a secret sharing scheme with information rate 

n - m + l  > (:) 
Compared with the best previous constructions [15], our constructions have some improved lower 
bounds on the information rate. 

2. P R E L I M I N A R I E S  

Suppose F is an access structure having basis F0. A A-decomposition of F0 consists of a 
collection {F1 , . . . ,  Ft} such that  the following requirements are satisfied. 

(1) Fh C_ F0 for 1 < h < t. 
(2) For each X E F0, there exist at least A indices il  < . . .  < ix such that  X E Fij for 

I < j < A .  
Let Ph be the set of participants in a scheme with access structure cl(I"h). Stinson [16] proposed 
the Decomposition Construction (DC) for secret sharing schemes. The proposed construction is 
more general than other well-known constructions [5,8,12-14]. 

THEOREM 2.1. DECOMPOSITION CONSTRUCTION, DC. (See [16].) Let F be an access structure 
on n participants, having basis F0, and suppose that {F1 , . . . ,  Ft} is a A-decomposition of F0. 
Assume that  for each access structure cl(Fh), there exists a perfect secret sharing scheme with 
information ra te  Pih for each Pi E Ph,  and a set of q keys. Then there exists a PS (F ,  p, q~ ), where 

p = m i n  ~ (1/pih) : l < i < n . 

{h:p~EPh} 

Let's consider the case when the basis of an access structure is a graph and l"i's are complete 
multiparti te graphs. Because there exists a PS(cI(G),  p = 1, q) for any complete multipartite 
graph [5], we can obtain the following theorem. 

THEOREM 2.2. (See [6,16].) Suppose access structure G is a graph with vertex set V and edge 
set E for which a complete multipartite covering exists, say I-I = {G1 , . . . ,  Gt}. For each vertex 
v E V define P~ = [{i : v E V~}[, where V~ denotes the vertex set of Gi. For each edge e E E 
defineTe = t{i : e E Ei}[, w h e r e E i  denotes the edge set of Gi. Let  R = max{P~ : v E V} 
and T = min{Te : e E E}. Then there exists a PS(c l (G) ,p ,  qT), where q is a prime power and 

p >_ T / R .  

By decomposing graph into stars, Stinson [16] showed that  for any graph G with n vertices 
having maximum degree d, there exists a perfect secret sharing scheme for the access structure 
in which the information rate is at least 2/(d + 1). In the following, we propose a construction 
which is similar to the one proposed by Stinson [16]. 

We assume that  P = {Pl ,P2 , . . .Pn}  is the set of participants corresponding to the vertices of 
the graph G, and the secret/iF -- (K1, K2) is taken randomly from GF(q) x GF(q),  where q is a 
prime and q > n. Let f ( x )  = K2x + K1 (rood q). yl is computed from f ( x )  as follows: 

Yi = f ( i ) (modq) ,  for i = 1 , . . .  ,n. 
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Obviously, given yi and yj, for i ~ j ,  f ( x )  can be determined uniquely. Therefore, one who gets 
two or more yi 's can recover the secret K.  However, one without knowledge of any yi obtains no 
information on the secret. Note tha t  one who gets one Yi can obtain partial  information on the 
secret. 

The dealer selects n random numbers, r l , . . . ,  rn over GF(q). The share of participant p, is 
given by 

Si = (ai,1, • • • ,ai,t, .  • • ,aS,n), 

where 1 < t < n, 

ai,t = ri(mod q), 

ai,t = rt + yt(modq) ,  

a,,t is empty,  

i f t  = i, 

if ~ is an edge of G, and 

if t ~ i and ~ - ;  is not an edge of G. 

Thus the constructed secret sharing scheme is a perfect secret sharing scheme with access struc- 
ture G and information rate 2/(d + 1). 

THEOREM 2.3. f f  F is a uniform access structure of rank two and degree d, then there exists a 
P S ( r ,  p, q2), where p > 2/(d + 1). 

PROOF. 

(I) First, we show tha t  the above constructed secret sharing scheme for graph G is perfect. 
(a) Let X be a subset of participants and X E F. So, there exists pi ,pj  • X ( i  ~ j )  such 

tha t  PiPj is an edge of G. Therefore, participant pi owns ai# = ri and ai,j = r j  + yj, 
and participant pj owns a j j  = r j  and aj,i = ri + Yi. Thus, part icipant Pi and 
part icipant pj can recover yi and yj, and then recover the f ( x )  and the secret K.  

(b) Let X be a subset of participants and X ~ F. Therefore, for any pair of participants 
pi,pj  • X ( i  ~ j),~=(~ is not an edge of G. We assume tha t  X can recover yi. 
Therefore, there exists participant Pi who owns ai,~ = ri and part icipant pj who owns 
aj,i = ri + yi . Thus ~-pj is an edge of G. This is a contradiction to tha t  pipj is not 
an edge of G. Hence, X cannot recover any yi. Tha t  is, X obtains no information on 

the secret K.  
(II) Second, we show tha t  the above constructed secret sharing scheme has information rate 

2/(d + 1). 

The share of part icipant pi is an n-dimeusional vector. Except tha t  ai , j 's  (for all j ,  ~ ~ E(G))  
are empty, every a i j  is over GF(q).  Therefore, the size of share S~ is log(qd'+l), where di is the 
degree of vertex Pi of G. The maximal size of the shares is log(qd+l), where d is the maximum 
degree of G. The  size of the secret is log(q2). Thus, the information rate of the secret sharing 

scheme is 
2 • log q 2 

P =  (d + 1) • logq d + l  | 

3. SECRET S H A R I N G  S C H E M E S  W I T H  
ACCESS S T R U C T U R E S  OF R A N K  T H R E E  

In this section, we propose a decomposition construction of perfect secret sharing schemes with 
access structures of rank three, and evaluate the information rate of the constructed scheme. For 

an access structure of rank three, with basis Fo, we can decompose Fo into {F1, F2} such tha t  
r0 = F1 U F2 where cl(F1) is a uniform access structure of rank two and cl(F2) is a uniform access 
structure of rank three. 

Assume tha t  P = (Pl, P2, • • •, Pn } is the set of participants and the secret K = (K1, K2, K3, K4, 
Ks,  Ks)  is taken randomly from (GF(q)) 8, where q is a prime and q > 2n + 2. Let f ( x )  = 
K6x 5 + Ksx  4 + Kax 3 + K3x 2 + K2x I + K1 (modq).  y~ is computed from f ( x )  as follows: 

Yi = f ( i ) (m od  q), for i = 1 , . . . ,  2n + 2. 
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Thus one who gets six or more yi's can recover f (x)  and then the secret K.  However, one 

without knowledge of any yi obtains no information on the secret. 
We use G to denote the access structure cl(F1) whose rank is two. From Section 2, we know 

that  there exists a graph-based secret sharing scheme realizing cl(Fl) in which the secret is 

(Y2n+l, Y2n+2) and the share of participant p~ is Si(G). 
In addition, we define Gi, for 1 < i < n, is the graph with vertices V(Gi) and edges E(Gi), 

where 
V(GO = {p~ [ for all p3,where {p~,p~,p~} ~ F2} 

and 
E(Gi) = { ~ [  for all p--~,where {pi,pj,p~} • F2}. 

The dealer selects 2n random numbers, r l , . . . ,  r2n, over GF(q). As the construction in Section 2, 
there exists a secret sharing scheme realizing Gi in which the secret is (ri + yi, rn+i + yn+i) and 
the share of participant p1 is S~(Gi) for p~ • V(Gi). 

The share of participant pi is given by 

Si = <ri, rn+i, ai,1, . . . ,  ai , t , . . . ,  ai,n, S~(G)), 

where 1 < t < n, 

a~,t = & ( V d ,  

ai,t = (rt + yt,rn+t + Yn+t), 

ai,t is empty, 

if p~ • V(Gt), 

if ~ • E(G), 

otherwise. 

and 

Thus the constructed secret sharing scheme is a perfect secret sharing scheme realizing the access 
structure with basis F0. 

THEOREM 3.1. / [  r ~ an access structure (either uniform or nonurdform) of rank three on n 
participants, then there exists a PS(F, p, q6), where 

6 p >  
(n  - 1) 2 + 2'  

PROOF. 

PART I. First, we show tha t  the above constructed secret sharing scheme is perfect. 

(a) Let X e cl(F2) be a subset of participants. So, there exists P~,Pj,Pk E X( i  # j # k) such 
that  {Pi,pj,pk} E F=. Participant p~ owns r~, rn+~, S~(Gj), and Si(Gk). Participant pj 
owns rj, r,~+j, Sj(G~), and Sj(Gk). Participant Pk owns rk, r,~+k, Sk(Gi), and Sk(Gj). 
From Sj(G~) and Sk(G~), they can recover ri + yi,rn+i + Yn+~ because PjPk is an edge 
of G~. From S~(Gj) and Sk(Gj), they can recover rj + yj,rn+j + Yn+j because P~Pk is an 
edge of Gj. From S~(Gk) and Sj(Gk), they can recover rk + yk,r,t+k + Yn+k because p~pj 
is an edge of Gk. Thus, participants p~, pj, and Pk can recover y~, Yn+~, Yj, Y,~+j, Y~, 
and Yn+k, and then recover the f (x)  and the secret K.  
Now, we consider the case of X ~ cl(P2) but  X • cl(F1). Let X be a subset of participants 
which satisfies X ~ cl(F2) but  X • cl(F1). So, there exists Pi,pj • X( i  # j) such that  
{p~,pj} • F1. Participant p~ owns r~, rn+~, a~,j = (rj + yj,rn+j + y,~+j), and S~(G). 
Participant pj owns r j ,  rn+j,  aj,~ = (r~ + y~,rn+~ + yn+~), and Sj(G). They  can recover 
Yi, Yn+i, yj, Yn+j, Y2,~+1, and yo.n+2, and then recover f (x)  and the secret K.  

(b) Let X ~ F be a subset of participants. Therefore, there do not exist three participants 
p~, pi,  and p~ in X such that  {p~,pl,p~} • Fo., or two participants p~ and p~ in X such 
that  {p~,pj} • F1. We assume that  X can recover the value y~ for some i • {1 , . . .  ,2n}. 
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Hence, there exist participant p~ who owns ri,  and participants pj and Pk who can recover 
ri  + Yi (or participant pj who owns ri + y~). Thus PjPk is an edge of Gi (or PiPj is an 
edge of G). Thus {P~,Pj,Pk} 6 F2 or {Pi,Pj} 6 F1. This is a contradiction. Hence X 
obtains no information on y~ for 1 < i < 2n. In addition, X obtains no information on 

Y2n+l, Y2n+2 because it does not contain two participants Pi and pj in X such that  PiPj is 
an edge of G. Therefore, X obtains no information on Yi, for 1 < i < 2n + 2, and hence 
the secret K.  

PART II. Second, we show that  the information rate of the above constructed secret sharing 
scheme is at least 

6 
(n - 1)2 + 2" 

The share of participant Pi is 

Si = (ri, rn+i, ai,1, . . . , ai,t, . . . , ai,n, Si( G) ) . 

or log(q 2) if ~ 6 E(G). 
log(q d'(v)+l) if p~ 6 V(G), 

share Si is equal to 

Let di(Gt) be the degree of vertex pi in Gt. The size of a~,t is equal to log(q d'(a')+l) ifpi  6 V(Gt) 
The the size of S~(G) is equal to 0 if p~ ~ V(G), or is equal to 
where di(G) is the degree of vertex pi in G. Hence, the size of 

i fpi  ¢ V(a) ,  or 

log (q~t:P~eat (ddG*)+l)+2) , 

log (qE~:p~e~ (d,(Gt)+l)+d,(G)+3), 
if Pi 6 V(G). Because the size of the secret is equal to log(q6), the information rate of the share 

Si, Pi is equal to 
6 

E (d,(a,)  + 1) + 2 '  
t:pl EGt 

if pi ~ V(G), or is equal to 

if Pi 6 V(G). 

(a) 

(d~(at) + 1) + d~(G) + 3' 
t:p~6Gt 

F is uniform: if F is a uniform access structure of rank three, then p~ is equal to 

6 

(di(Gt) + 1) + 2" 
t:p~EGt 

Because p = mini{p~}, the information rate of the proposed secret sharing scheme is equal 
to 

6 

{ } max E (d~(Gt) + l) + 2  
i t:p~EGt 

where G~ is the graph with vertices 

V(G~) = {pj for all p j ,where {p~,pj,pk} 6 F0} 

and edges 
E(Gi) = {p--~-£ for all p - '~ ,where  {Pi,Pj,Pk} 6 Fo}. 
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(b) 

In  t h e  wors t  case  when  di(Gt) = n - 2 for all  i and  t,  t he  lower b o u n d  of  t he  in format ion  

r a t e  6 

(n  - 1)5 + 2 

can  be  achieved,  where  n is the  number  of  pa r t i c ipan t s .  

F is nonuni form:  by  the  same  way  in (a), we can  prove t h a t  

6 
Pi >_ (n - 1) 2 + 2 '  

i f p i  q~ V(G). I f p ~  E V(G) a n d ~  E E ( G ) ,  t h e n  d~(Gt) = 0. I f p i  e V(G) and  

PiPt q~ E(G), t h e n  di(Gt) <_ n - k - 2, where  k = dr(G), 1 < k < n - 2. Therefore ,  

6 
Pi >- (n - 1) 2 + 2 '  

if Pi q~ V(G), or 
6 

Pi _> ( n - k - 1 ) 2  + k  + 3 ' 

i f p i E V ( G ) .  B e c a u s e ( n - I )  2 + 2 > ( n - k - I )  2 + k + 3 w h e n n E 5 a n d k > l ,  

{ ° ° ) ° 
p i > _ m i n  ( n - l )  2 + 2 '  ( n - k - l )  2 + k + 3  = ( n - l )  2 + 2 '  

Therefore ,  
6 

p = min{pi}  _> 
( n  - 1) 2 + 2" 

C o m p a r e d  w i th  t h e  lower b o u n d  p rov ided  by  St inson [15] in some cases, our  lower b o u n d  is 

b e t t e r  t h a n  S t inson ' s  lower bound .  T h e  compar i son  can  be  seen in Table  1 and  Table  2. 

Table i. Bounds on the information rate for uniform access structures of rank three 
on n participants for n )_ 5, where • denotes the method providing the better bound. 

n Stinson's Method Our Method 

n ~ 0 (mod6) 

n-~ 1,3 (mod6) 

n - -  2,4 (rood6) 

n -- 5 (rood6) 

6 p > _ w  
n(n + 1) 

6 p > w  
n(n -  1) 

6 
p ~  * 

(n - 1)(n - 2) 

6 p_> 
(n --k 1)(n + 2) 

6 
P>- ( n _  1)2 + 2 "  

6 p>_ 
(n -- 1) 2 + 2" 

6 p >  
(n -- i )2@2 

6 p >  • 
(n - 1) 2 + 2 

Table 2. Bounds on the information rate for nonuniform access structures of rank 
three on n participants for n > 5, where • denotes the method providing the better 

bound. 

n Stinson's Method Our Method 

n -= 0 (mod6) 

n ~ 1 , 3  (mod6) 

n - - 2 , 4  (mod6) 

n - 5 (mod6) 

4 p _ > ~  
n(n -}- 1) 

4 p > _ w  
n(n-  1) 

4 p >  
( n - 1 ) ( n -  2) 

4 p ~  
(n + 1)(n + 23 

6 > P (n + 1) 2 -{- 2* 
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4 .  S E C R E T  S H A R I N G  S C H E M E S  W I T H  

U N I F O R M  A C C E S S  S T R U C T U R E S  O F  R A N K  m 

In this section, we propose a decomposition construction of secret sharing schemes with uniform 
access structures of rank m. We construct secret sharing schemes with uniform access structures 
of rank m by using the secret sharing schemes with uniform access structures of rank m -  1. Let F 

be a uniform access structure of rank m on n participants. Assume tha t  P = { P l , P 2 , . . .  ,Pn} is 
the set of participants and the basis of F is Fo. We can decompose Fo into the union of F~'s, 

for 1 < i < n, where F~ = {X : X E Fo and X contains participant Pi}. Thus F = cl(Fo) = 
cl(F1) U. . .  U cl(Fn). We define F* = {X : X U {Pi) E Fi}, i.e., F* is the set of Fi which participant 
Pi is removed from each element in Fi. Therefore, each cl(F*) is a uniform access structure of rank 
m - 1. Here we define h(i) to be a function which indicates the secret space of the secret sharing 
schemes with uniform access structures of rank i to be (GF(q) )  h(i). We assume tha t  the secret 
K = (K1, K 2 , . . . ,  Kin),  where each Ki, for 1 < i < m, is taken randomly from (GF(q) )  h(m-1). 

The dealer selects a polynomial f ( x )  of degree m .  h ( m  - 1) - 1 with coefficients K and computes 

y~ as follows: 

Yi = f ( i )  (modq) ,  for i = 1,. . . , n  . h ( m  - 1). 

Thus one who gets m .  h(rn - 1) or more y~'s can recover f ( x )  and then the secret K.  However, 
one without knowledge of any y~ obtains no information on the secret. We use Y 1 , Y 2 , . . . ,  Y,~ 

over (GF(q) )  h('n-1) to denote these n .  h(ra - 1) yi's. The dealer selects n random numbers 

R1, R 2 , . . . ,  Rn over (GF(q) )  h(m-1). We assume that  there exists a secret sharing scheme realizing 

cl(F~) in which the secret is P~ + Yi and the share of participant P1 is Sj(F*). 

The share of part icipant p~ is given by 

I ~ $  • $ • • s, = s , (  , ) , . . ,  s,(r,_,), 

Thus, the constructed secret sharing scheme is a perfect secret sharing scheme with access struc- 

ture F. 

THEOREM 4.1. Let  F be a uniform access s tructure  o f  rank  m on n part icipants .  Then  there 

e ~ s t s  a 

for q > n .  (m - 1)!. 

PROOF. 

(i) First we show tha t  the above constructed secret sharing scheme is a perfect secret sharing 
scheme realizing the uniform access structure F of rank m. 

(a) Let X be a subset of participants and X E F. Wi thout  loss of generalization, we 
assume tha t  X = {Pl ,P2, . . .  ,Pro}. Because X \ { p i }  E F~, X can recover P~ +Yi,  for 
1 _< i < rn. In addition, each participant Pi owns P~. Therefore, they can recover Y~, 
for 1 < i < m, and then recover the f ( x )  and the secret K.  

(b) Let X be a subset of participants and X ~ F. We assume tha t  X can recover y~. 
Then X must  be able to recover r~ and r~ + y~. Thus, p~ E X and there exists a 
subset X ~ of X such tha t  X ~ E F~. Therefore, X ~ U {p~} E F~. Tha t  is, X ~ U {pi} 
is a qualified subset. Because X ~ U {Pi} C_ X, X is also a qualified subset. This is a 
contradiction. Hence X cannot recover any y~. Thus X obtains no information on 
the secret K.  
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(II) Second, we show that  the information rate of the above constructed secret sharing scheme 
is at least 

n - m + l  

(:) 
The secret space (GF(q)) h(m), of the constructed secret sharing scheme is equal to (G F  

(q))m.h(m-1). Therefore, h(re) = re.  h(m - 1). From Section 2, we know that  there exist 
secret sharing schemes with access structure of rank two in which h(2) is equal to 2. Therefore, 
we can obtain h(re) = re!. Tha t  is, the secret space of the constructed secret sharing scheme is 
equal to (GF(q)) m!. We define p(re, n) to be the lower bound of the information rate of secret 
sharing schemes with uniform access structures of rank re on n participants. Therefore, 

p('Tn,, n) 

Because 

0 <_ p ( r e -  1 , n -  1) < 1, 

We can obtain 

m 
( n - l ) .  ( 1 / p ( m - l , n - 1 ) ) + l "  

p(re, ) 
p(m - 1, n - 1) 

m m 

( n -  1 ) + p ( m -  1, n -  1) - n 

m 
p(m,n) k n " P(m-- l ' n - - 1 )  k 

From Section 2, we know that  

Therefore, 

m. ( m -  1) . . . . -3  
n . ( n -  1 ) . . . . . ( n -  k + 3 )  

p ( 2 , n -  k + 2 )  
n - k + 2 "  

• p ( 2 , n -  k + 2 ) .  

m ! . ( n - r e +  l)! n - m +  l 
p(m, n) > = | o, ( : )  

Compared with the best previous lower bound of p(m, n), studied by Stinson [15], which is 
m 

( 2 m - l ) .  m - 2  + d  

where d is the maximum degree of any participant, our lower bound is bet ter  than Stinson's lower 
bound when 

3+ 8v - 1 
m >  

4 

5. C O N C L U S I O N S  

Based on the secret sharing schemes with graph-based access structures, we propose a decom- 
position construction to realize the perfect secret sharing schemes with uniform access structures 
of rank 3. In addition, we give a recursive construction for perfect secret sharing schemes with 
uniform access structures of constant rank. If F is an access structure (either uniform or nonuni- 
form) of rank three on n participants, we show that  there exists a secret sharing scheme with 
information rate 

6 
p >  

(n - 1) 5 + 2' 

for n _> 5. If F is a uniform access structure of rank m on n participants, we show that  there 
exists a secret sharing scheme with information rate 

n - m + l  

Compared with the best previous constructions, our constructions have some improved lower 
bounds on the information rate. 
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