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Abstract

An explicit and concise approximation to the wavelength in which the effect of nonlinearity
is involved and presented in terms of wave height, wave period, water depth and gravitational
acceleration. The present approximation is in a rational form of which Fenton and Mckee’s
(1990, Coastal Engng 14, 499–513) approximation is reserved in the numerator and the wave
steepness is involved in the denominator. The rational form of this approximation can be
converted to an alternative form of a power-series polynomial which indicates that the wave-
length increases with wave height and decreases with water depth. If the determined co-
efficients in the present approximation are fixed, the approximating formula can provide a
good agreement with the wavelengths numerically obtained by Rienecker and Fenton’s (1981,
J. Fluid Mech. 104, 119–137) Fourier series method, but has large deviations when waves of
small amplitude are in deep water or all waves are in shallow water. The present approximation
with variable coefficients can provide excellent predictions of the wavelengths for both long
and short waves even, for high waves. 1998 Elsevier Science Ltd. All rights reserved.
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Nomenclature

A Coefficient undetermined in the present approximation
d Water depth
E(m) Elliptic integral of the second kind
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g Gravitational acceleration
H Wave height
K(m) Elliptic integral of the first kind
kl Wave number of linear wave theory
L Wavelength
L0 Wavelength in deep water
Ls Wavelength obtained by Stokes wave theory
Lc Wavelength obtained by Cnoidal wave theory
Ln Wavelength obtained by Rienecker and Fenton’s (1981) Fourier series

method
m Parameter of elliptic functions and integrals
n Ratio of group velocity to wave celerity
T Wave period
Us Ursell number
l (1 − m2)/m2

m E(m)/m2/K(m)
n Coefficient undetermined in the present approximation

1. Introduction

Water wave motion in general occurs where disturbances propagate in various
directions interacting nonlinearly over a varying permeable bed. These grouping
waves may be decomposed into a number of components with different frequency
harmonics. Different wave numbers will lead to different wave speeds. Therefore,
in a synthesis of many components by superposition, components with different wave
numbers disperse as time goes on. The dispersion relation can be obtained to specify
wave speeds as a function of wave numbers in the dispersive waves.

A common assumption that there is only one component wave train will give the
simplest case of gravity waves propagating steadily with a constant period and wave
height over an impermeable and flat bed. In this case, the two-dimensional flow is
irrotational because it is assumed to be homogeneous and incompressible. The
resulting dispersion relation for a linear wave will become a rougher approximation
to the physical problem. In such a case the wave is assumed to be so small that the
effect of wave height on wave speed is ignored. The dispersion relation for linear
waves is still a nonlinear transcendental equation for wavelength when both wave
period and water depth are specified. The computational disadvantage prevents
engineers from solving many practical wave problems. Nevertheless, to avoid time-
consuming numerical computations, many attempts have been made to obtain explicit
expressions for the wavelength so as to provide a fast and more flexible method to
predict the wavelength.

Various methods of approximate solution for the dispersion relation of linear
waves including Eckart’s dispersion relation, iterative techniques, power series, and
Padéasymptotic form were developed. Those approximations are almost all excel-
lent, but have their limitations for waves which are longer or shorter than a certain
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length. For long waves, the approximations to wavelength given by Olson (1973),
Venezian (1980), Nielsen (1982) and Wu and Thornton (1986) are all highly accurate
for waves longer thanL/d < 3 whereL is wavelength andd is the water depth.
Those formulae are based on the same versions of the power series approximation.
Turning to the short wave formulae, Nielsen (1984) and Wu and Thornton (1986)
proposed excellent approximations only forL/d , 4. Hunt (1979) proposed a poly-
nomial solution of Pade´ form and this polynomial solution is valid for waves in all
water depths. Both Eckart (1952) and Fenton and Mckee (1990) provided accurate
approximations in a similar form over all wavelengths. The accuracy and validity
of each approximation were reviewed by Fenton and Mckee (1990) in detail.

All formulae mentioned above do not allow for any effect of nonlinearities. In
problems where the waves are not very high or where great accuracy is not required,
it is more reasonable to use an approximate explicit solution, such as cnoidal wave
theories for shallow water or Stokes wave theories for deep water. However, the
Stokes wave theories are an acceptable method to use to predict the wavelength of
short waves, but are a poor method to use to predict the wavelength of long waves.
In contrast, cnoidal wave theories are an acceptable method to use to predict the
wavelength of long waves, but are a poor method to use to predict the wavelength
of short waves. Because of the nonlinear nature of the governing equations, highly
accurate solutions for steady high water waves have been found when these solutions
have been only based on numerical methods, such as Schwartz (1974), Williams
(1981) and Rienecker and Fenton (1981) etc. The Fourier approximation method
introduced by Rienecker and Fenton (1981) is usually applied to solve the wave
problem of a gravity wave propagating over a constant depth. This approximation
method is obtained as a function of position and it can provide a comprehensive
solution for the values of stream function and surface elevations. This numerical
model is known for its mathematical validity because it can satisfy the governing
equation and boundary conditions to the required degree of accuracy. Therefore, the
Fourier approximation method, hereafter called the RF method, was applied with
high accuracy to calculate the wavelengths of gravity waves in a constant water
depth, taking into consideration the effects of nonlinearities.

The numerical method is not convenient for practical applications because it needs
computer programming and gives an implicit solution. A simple yet accurate formula
of approximation to wavelength is then required for engineering purposes. An
approximate formula for the wavelength of a nonlinear gravity wave will be intro-
duced in this paper. This approximation is easy to explicitly calculate when the wave
height and wave period are given. Meanwhile, this approximation is superior to the
existing theories because it does not require time-consuming computation and
because it is valid for all water depths.

2. The effect of wave height on wavelength

The motion of progressive waves of permanent form which can be uniquely
defined by water depthd, wave heightH, and wave periodT (or wavelengthL) are
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steady in a frame of reference moving at the phase speedC. Stokes (1847) used the
perturbation method to determine the solutions of finite amplitude waves both in
water of finite constant depth and in deep water. The first-order solution of Stokes
wave theory coincides with the small amplitude wave theory proposed first by Airy
(1845). The local wavelength,L = Ll, for linear progressive waves over constant
depth can be determined by the dispersion relation, which for a wave with period,
T, in water of depth,d, may be written as

Ll =
g

2p
T2tanhkd (1)

wherek is the wave number and is defined to bek = 2p/L. The strongly nonlinear
interactions occur in waves when the wave height increases so that the linear wave
theory is not longer valid for higher waves. Therefore, higher order solutions are
required so that better predictions of large wave-amplitude motion can be made.

Two of the fifth-order solutions obtained by Isobe et al. (1978) and Fenton (1985)
are convenient for numerical calculation, since wave steepness (kH/2) is used as the
perturbation parameter instead of the unknown Fourier coefficientka, wherea is a
length scale which is equal to the amplitude of the wave in the linear wave theory.
The dispersion relation with no current of the fifth-order wave theory presented by
Isobe et al. (1978) based on the second definition of wave celerity is written as

Ls =
g

2p
T2tanhkdF1 + SkH

2 D2S9ct4 − 10ct2 + 9
16

−
ct

2kdD + SkH
2 D4

S − 405ct10 − 117ct8 + 2454ct6 − 2194ct4 + 351ct2 + 39
1024

(2)

−
ct( − 9ct6 − 3ct4 − 7ct2 + 3)

64 DG2

where

ct = cothkd. (3)

The wavelength is quantified to the fifth order, as indicated by Eq. (2) in which
the neglected terms of order (kH/2)6 and higher are not shown. By omitting the
higher order terms in Eq. (2), the wavelength simply approaches Eq. (1).

ProvidedT, H and d are known, the wavelength can be found from Eq. (1) or
Eq. (2) by a numerical method for solving transcendental equations. From a compari-
son with the terms of Eqs. (1) and (2), the wavelength is shown to quadratically
increase with wave height. Eq. (2) is valid for waves which are not so high as to
be close to breaking and for waves which are not long. Ursell parameter should be
smaller than 25 for the fifth-order Stokes wave theory to be valid.

If the waves are long, but not higher than about 40% of the water depth, the
cnoidal wave theory can be used to give a better dispersion relation than Stokes
wave theory. The first-order cnoidal wave theory was derived by Korteweg and de
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Vries (1895) for a shallow water wave by taking into account the effects of finite
depth and finite amplitude. Various versions of higher-order cnoidal wave theories
were presented, such as Laitone (1960), Chappelear (1962), Isobe et al. (1978) and
Fenton, 1979), etc. The dispersion relation of the third-order cnoidal wave theory
proposed by Isobe et al. (1978) is given as

Lc = T√gd[1 + SH
dDS1 + 2l − 3m

2 D
+ SH

dD2S − 6 − 16l + 5m − 16l2 + 10lm + 15m2

40 D
+ SH

dD3

(150 + 1079l − 203m + 2337l2 − 2653lm

+ 350m2 + 1558l3 − 2653l2m + 700lm2 + 175m3)/2800] (4)

wherel = (1 − m2)/m2, m = E(m)/m2/K(m) andK(m) andE(m) are the complete ellip-
tic integrals of the first and second kind, respectively. Them is the modulus of the
elliptic integrals. Onced, T, and H are given, the modulusm can be implicitly
determined by the following formula

UsF1 + SH
dDS − 1 − 2l

4 D + SH
dD2S8 + 33l − 10m + 33l2 − 20lm

40 DG
−

16m2K2(m)
3

= 0 (5)

whereUs is the Ursell parameter in the long wave approximation and is defined to
be Us = gHT2/d2. Lc denotes the wavelength calculated from Eq. (4) in cnoidal wave
theory to distinguish it from the wavelength,Ls, as a result of Stokes wave theory.
It is a tedious computation to findLc, because the extensive Jacobian elliptic func-
tions and its integrals are difficult to calculate. In the case of the limit ofm→1, the
Lc is particularly difficult to calculate because of very poor numerical convergence.
The wavelength,Lc, of cnoidal wave theory is shown to linearly increase with wave
height, but not like Stokes wave theory to perform a quadratic increase with wave
height. The terms of higher order quantities in Eq. (4) are dropped out when the
nonlinearities are ignored. Then, Eq. (4) becomes

Lc = T√gd (6)

Eq. (6) is a well-known formula for linear long waves. In the case of long waves,
whenkd→0 and tanhkd→kd, Eq. (1) is easily shown to have the same form of Eq. (6).

Since the expansion of cnoidal wave theory is affected by (d/L)2, the cnoidal wave
theory is not suitable in the conditions of deep water in a manner complementary
to that in which Stokes theory is not suitable in the conditions of shallow water.
Both Eqs. (2) and (4) indicate that the wavelength depends on not only wave period
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and water depth, but also wave height. However, the drawbacks of both Stokes and
cnoidal wave theories have been a major reason that they have not been widely
believed to be accurate for all waves. To overcome the limitation of those wave
theories and to obtain highly accurate results, it would be necessary to obtain very
high-order expansions for physical quantities in waves.

The Fourier series is a very common method and is capable of accurately approxi-
mating any periodic quantity. However, expanding to even higher orders by the per-
turbation method becomes extremely formidable. For this reason, it is desirable to
have wave theories that could be developed on the computer to any order. The first
such theory was developed by Chappelear (1961) who used the velocity potential
and introduced a Fourier series for the surface elevations. Dean (1965) used the
stream function to develop the stream function wave theory, which was compu-
tationally simpler than Chappelear’s technique.

Rienecker and Fenton (1981) presented a method and a computer program that
gave somewhat simpler equations, which were identically satisfied with both
dynamic and kinematic boundary conditions at a number of points on the surface,
rather than Dean’s stream function wave theory which minimizes errors there. More-
over, it is valid for all depths and for finite-amplitude waves. The Fourier series of
only 10–20 terms, even for waves close to the highest, was demonstrated by
Rienecker and Fenton (1981) to be an accurate solution to water wave problems.
Their comparison of experimental data of particle velocity shows that the theoretical
predictions satisfactorily correspond to the experimental results. This method pro-
vides a stable convergence and therefore, when accuracy is important in steady water
wave problems, it is the best method to use.

In this paper, the RF method with a series of 32 terms was used to obtain more
accurate wavelengths with considerations of strong nonlinearities. The wavelength
obtained by the RF method is denoted byLn. There were 492 cases of waves calcu-
lated with a periodT = 8 s of different amplitudes in various water depths. Twenty-
five relative depths were considered,d/L, approximately varying from a range of
1/35 | 1/2 and included the conditions from shallow water to deep water. About 20
waves ranging from small amplitude to the highest were chosen for each water depth.

3. A new approximation

A convenient approximation to the wavelength from the linearized dispersion
relation was introduced by Fenton and Mckee (1990) as follows:

Ll = L0tanh
1
n S2pd

L0
D n

2
(7)

in which L0 = gT2/2p is the deep-water wavelength. The value ofn was found to
be 3/2 by minimizing the value of the maximum error over all wavelengths of linear
waves. Eq. (7) satisfies both long and short wave limits and has a maximum relative
error of only 1.7% between those limits when the effect of nonlinearities is ignored.
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Eqs. (2) and (4) are demonstrated to relate the wavelength to wave height with a
linear or quadratic increase and as a function of cothkd. We can use the 492 wave-
lengths obtained by the RF method to give a rational approximation which can pro-
vide a concise expression. Following the Fenton and Mckee’s (1990) approximation
to wavelength for linear waves, we suggest a Pade´ approximation in which the Fenton
and Mckee’s (1990) approximation is preserved in the numerator and the wave height
is involved in the denominator as in the form of

L =
L0tanh

1
nS2pd

L0
D n

2

1 − ASH
L0
Dcoth

2
nS2pd

L0
D n

2
(8)

whereA and n are the coefficients to be determined. The expansion of Eq. (8) in

terms of a power-series polynomial when the value ofASH
L0
Dcoth

2
n S2pd

L0
D

n

2

is small

gives an alternative form of Eq. (8) as

L = L0tanh
1
nS2pd

L0
D n

2 H1 + FASH
L0
Dcoth

2
nS2pd

L0
D n

2 G + FASH
L0
Dcoth

2
nS2pd

L0
D

n

2G2

+ FASH
L0
Dcoth

2
n S2pd

L0
D n

2 G3

+ …J. (9)

That the wavelength increases with wave height is clearly shown in Eq. (9) and
implies that in Eq. (8) the wavelength increases also with wave height. After trying
many values ofA andn, we found that the minimum value of maximum error over
492 wavelengths in Eq. (8) wasA = 1.13 andn = 1.19. This approximation has a
maximum error of 6.5% and a mean error of only 1.9% for 492 wavelengths. The
approximating wavelengths are depicted by open circles in Fig. 1, in which the
abscissa denotes the relative wavelengths obtained by the RF method and the ordinate
indicates the predicted wavelengths by Eq. (8). Small deviations from theLn are
shown from Fig. 1 by a declined slope for small-wavelength waves in each shallow
water. However, the predicted wavelength is underestimated for waves of small
amplitude but large wavelength. For an excellent agreement between the results
obtained by the RF method and by using Eq. (8), the open circles in Fig. 1 will lie
on a line of which the slope has a value of 1. By best linearly fitting to the open
circles, we find that the equation of the line can be given by
L/L0 = 1.023Ln/L0 − 0.014. This linear equation has a slope of 1.023 which is near
the value of 1. For all wavelengths, Eq. (8) provides the same satisfactory results
as obtained by the RF method.

To improve the accuracy of Eq. (8), we find the coefficientsA9s andn9s from the
wavelengths computed by Rienecker and Fenton’s method for each water depth. The
values ofA and n vary with the water depths and their trends related to relative
depth, d/L0, were plotted in Fig. 2 by symbols of solid circles and open circles,
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Fig. 1. Comparison of the computed wavelength by the present approximation with constant coefficients
of A = 1.13 andn = 1.19 with those obtained by Rienecker and Fenton’s (1981) method for all waves
in both shallow water and deep water.

Fig. 2. PredictedA andn and their best fitting values in different water depths.
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respectively. The performance of coefficientA is similar to the shoaling coefficient
of the linear wave theory. The coefficientn has a steep decrease whend/L0 , 0.015
and then increases to reach a maximum value. The characteristics of coefficientA
and n as function ofd/L0 can be represented by formulae to estimate their values
for practical use. The suggested approximating formula for coefficientA is given as

A = !1
n

1
tanhkld

+ 0.1, 0.008# d/L0 # 0.1

= !1
n

1
tanhkld

, d/L0 > 0.1 (10)

n =
1
2 S1 +

2kld
sinh2kld

D (11)

kl =
2p

L0tanh2/3S2pd
L0

D3/4
(12)

wherekl is the wave number in which the approximate wavelength was obtained by
Eq. (7) when the linear dispersion relation was used andn is the ratio of group
velocity to wave celerity for linear waves. Eq. (10) indicates that the value ofA
deviates the shoaling coefficient from 0.1 whend/L0 lies between 0.008 and 0.1. The
coefficientns are divided into two regions. One region is for the value ofd/L0 being
smaller than 0.02 and the other is for the value ofd/L0 larger than 0.02. The values
of n for the shallow water region can be expressed by a inversed power law. Using
the least-square method, a quadratic polynomial can be used to represent the values
for deep water. Then can be conclusively given as

n =
0.342

(d/L0)0.266 , d/L0 , 0.02

= − 4.30(d/L0)2 + 2.51(d/L0) + 1.03,d/L0 $ 0.02 (13)

Fig. 2 shows that there is a good agreement between the RF method results, and
Eqs. (10) and (13) for the values of coefficients ofA andn, respectively. The purpose
of Eqs. (10) and (13) is to obtain the coefficients ofA and n. After A and n are
known for any wave of a given wave height in any water depth, it is easy to obtain
the wavelength by applying Eq. (8), using the variable values of coefficientsA and
n. The wavelength predicted by using Eqs. (8), (10) and (13) were compared with
those obtained by the RF method and were plotted in Fig. 3.

The relationship between the wavelengths predicted by using Eq. (8) with variable
values ofA and n for different waves and those predicted by using the RF method
can make a line of which its slope is 0.996, as shown in Fig. 3. The acceptable
deviation is less than 4.5% and its mean error is 0.8%. The slight disparity in Fig.
1 for both small and large relative wavelengths is adapted as shown in Fig. 3. Fig.



156 H.-K. Chang, S.-C. Lin /Ocean Engineering 26 (1999) 147–160

Fig. 3. Comparison of the wavelength computed by the present approximation with variable coefficients
with those obtained by the Rienecker and Fenton’s (1981) method for all waves in both shallow water
and deep water.

3 shows a minimal disparity and this verifies the high merit of using Eq. (8) with
variable values of coefficientsA and n to approximate wave lengths for nonlinear
waves.

We will compare the validity of the different wave theories and approximations
for wavelength of nonlinear waves by choosing four kinds of water depth ranging
from shallow water to deep water. The wave theories chosen for wavelength are the
Stokes wave theory for short waves, the cnoidal wave theory for long waves and
the RF method for all waves. The wavelength formulae in Stokes wave theory and
cnoidal wave theory are equated by Eq. (2) and Eq. (4), respectively. The first case
is for the relative depth,d/L, approaching 1/2. The computed wavelengths of the
small-amplitude and of the highest waves by using different wave theories and the
present approximations are depicted in Fig. 4. In Fig. 4, open circles denote the
wavelength obtained by the RF method; the solid line with solid circles is by the
Stokes wave theory; and the solid line and the dashed line indicate the present
approximation, Eq. (8), with constant or variable coefficients, respectively. The
change of wavelength due to wave heights is seen in Fig. 4 by a 17% increase from
the shortest wavelength to the largest one. The cnoidal wave theory fails to give
any prediction for wavelength in this case. The present approximation with variable
coefficientsA and n provides the closest prediction to the RF’s wavelengths. The
present approximation with constantA andn performs slightly worse than the present
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Fig. 4. The wavelength predicted by the Stokes wave theory, the RF method and the present approxi-
mations with constant and with variable coefficients in a water depthd/L < 1/2 (d = 50 m, T = 8 s).

approximation with variable coefficients. The wavelengths computed by the Stokes
wave theory have remarkable deviations from those computed by the RF method.
The present approximation to wavelengths no matter whether the coefficients ofA
and n are constant or variable, appears to be not accurate for waves of very small
amplitude in deep water.

Fig. 5 shows the wavelengths of different wave heights in a water depth ofd/L
< 1/4.4. The present approximation with variable coefficients is also the best one
to predict the wavelengths. However, the present approximation with constant coef-
ficients has slight disparity for the small-amplitude waves.

The wavelengths in a water of relative depth beingd/L < 1/10 are depicted in
Fig. 6. The cnoidal wave theory can provide the worst prediction to wavelengths
among the considered models. A fair agreement between wavelengths obtained by
the Stokes wave theory and those computed by the RF method is found for waves
of small-amplitude. Furthermore, Stokes wave theory fails to predict the wavelengths
of large waves in this water depth. For the present approximation, very small devi-
ations are found in Fig. 6, whether the coefficients ofA and n are constant or not.

When the water depth becomes shallow, the waves belong to long waves. Fig. 7
shows the wavelengths of long waves propagating in a water ofd/L < 1/25. The
Stokes wave theory fails even for small-amplitude waves. The cnoidal wave theory
is valid only for small-amplitude waves, but fails for large waves in shallow water.
The present approximation with variable coefficients is the best prediction to wave-
lengths for waves from small-amplitude to highest. When the approximation with
constant coefficients is used to predict wavelength in shallow water, a increasing
deviation with wave height is found in Fig. 7.
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Fig. 5. The wavelength predicted by the Stokes wave theory, the RF method and the present approxi-
mations with constant and with variable coefficients in a water depthd/L < 1/4.4 (d = 20 m, T = 8 s).

Fig. 6. The wavelength predicted by the Stokes wave theory, the RF method and the present approxi-
mations with constant and with variable coefficients in a water depthd/L < 1/10 (d = 5 m, T = 8 s).
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Fig. 7. The wavelength predicted by the Stokes wave theory, the RF method and the present approxi-
mations with constant and with variable coefficients in a water depthd/L < 1/25 (d = 1 m, T = 8 s).

4. Conclusion

In coastal hydrodynamics, many physical quantities, such as group velocity, radi-
ation stress etc., will be obtained until wavelengths of waves are known. An explicit
approximation to the wavelength is needed for practical engineering use to avoid
numerical programming and algorithm in order to solve a nonlinear equation of dis-
persion relation. The effects of wave height on wavelength are rather important from
comparing wavelengths of small amplitude waves with those of higher waves. There
is a difference between these wavelengths of about 15–20%. A simple and efficient
approximation to the wavelength in which the effect of nonlinearity is considered is
introduced in a rational form. The present approximation with variable coefficients,
which were determined by the best fitting, can give an excellent prediction to wave-
lengths for both long and short waves, even for high waves. The limitations of Stokes
wave theory and cnoidal wave theory to predict wavelengths considering the effects
of nonlinearities are also constrained to deep water and shallow water, respectively.
Meanwhile, the Stokes wave theory and the cnoidal wave theory are not valid to
predict wavelengths for large waves in intermediate water. The present approxi-
mation has no limiting disadvantages and is valid for all waves in all water depths.
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