
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999 163

An Improved Optimal Algorithm for
Bubble-Sorting-Based

Non-Manhattan Channel Routing
Jin-Tai Yan

Abstract—It is well known that a non-Manhattan channel
router always uses fewer routing tracks than a Manhattan router
in a channel. To our knowledge, for a bubble-sorting-based non-
Manhattan channel routing (BSNMCR) problem, Chaudhary’s
O(kn2) heuristic algorithm [8] and Chen’s O(k2n) optimal al-
gorithm [9] have been, respectively, proposed, wheren is the
number of terminals and k is the number of routing tracks in a
channel. However, the time complexity of the two algorithms is in
O(n3) time in the worst case. In this paper, based on optimality-
oriented swap-direction selection in an optimal bubble-sorting
solution, an improved optimal algorithm for a BSNMCR problem
is proposed, and the time complexity of the proposed algorithm is
proven to be inO(kn) time and in O(n2) time in the worst case.

Index Terms—Bubble sorting, channel routing, optimal algo-
rithm, physical design.

I. INTRODUCTION

I T IS WELL known that channel routing (CR) plays an
important role in very large scale integration (VLSI) design

automation, and the CR problem has been extensively studied.
Generally speaking, most of the routers only use horizontal and
vertical wires to complete the connection of all the routing
nets in a channel, i.e., most of the channels are routed in
a Manhattan routing model [1]–[5]. As VLSI technology
advances, the fabrication process does not preclude a layout
style in a non-Manhattan routing model. In fact, a non-
Manhattan channel router always uses fewer routing tracks
than a Manhattan router in a channel. Hence, new non-
Manhattan CR problems have been formulated [6], [8], and
nonoptimum and optimal non-Manhattan algorithms [6]–[9]
have been proposed.

For a bubble-sorting-based non-Manhattan channel, the ba-
sic concept in Wang’s algorithm [7] is to interchange a pair of
adjacent nets using two wires, one in the45 direction and
the other in the 45 direction if two adjacent nets are in a
wrong order. On the other hand, the nets propagate to the next
track over vertical wires if two adjacent nets are in a right
order. Hence, the routing process in a channel is determined
by a sequence of passes of interchanging nets. In each pass, a
net is only moved one position to the left, one position to the
right, or remains at the same position. Basically, each pass of
interchanging nets can be implemented by one routing track in
a non-Manhattan channel. As a result, a bubble-sorting-based

Manuscript received December 3, 1997; revised July 8, 1998. This paper
was recommended by Associate Editor T. Yoshi.

The author is with the Computer Systems Research Center, National Chiao
Tung University, Hsinchu, 30050 Taiwan, R.O.C.

Publisher Item Identifier S 0278-0070(99)01009-X.

non-Manhattan channel will be routed by mapping each pass
onto one routing track.

To minimize the number of routing tracks in a bubble-
sorting-based non-Manhattan channel, Chaudhary’s algorithm
[8] further releases the constraint of moving at most one
position to the left or the right during one pass. Hence, the
operation of swapping nets can be propagated in one pass,
and all the nets can be moved over longer distances during one
pass. Basically, the swap-direction of any pass in Chaudhary’s
algorithm [8] depends on the number of nonzero elements in
the right and left inversion tables. If the number of nonzero
elements in the left (right) inversion table is greater than that in
the right (left) inversion table, one right (left) swap pass will be
performed from left to right (right to left). On the other hand,
if the number of nonzero elements in the left inversion table
is the same as that in the right inversion table, one left swap
pass will be performed from right to left. Hence, Chaudhary’s
algorithm takes time to route a bubble-sorting-based
non-Manhattan channel, where is the number of routing
tracks and is the number of terminals in a channel. In Fig. 1,
a Manhattan routing result and non-Manhattan routing results
by Wang’s algorithm [7] and Chaudhary’s algorithm [8] for a
channel are illustrated, respectively.

Recently, Chenet al. [9] proposed an optimal algorithm to
solve a bubble-sorting-based non-Manhattan channel routing
(BSNMCR) problem. Chenet al. prove a theorem,

, to explain no sorting-order in an optimal bubble-sorting
solution (BSS), and to further generate a binary decision
diagram for an optimal BSS. If a left-swap pass and a right-
swap pass are applied to a bubble-sorting problem at the same
time, Chen’s algorithm [9] takes to obtain an optimal
BSS in swap passes. Clearly, a significant improvement
in time complexity over nonoptimal approaches is achieved
as ensuring optimality. Referring to the channel in Fig. 1,
Chen’s algorithm [9] only needs five swap passes to complete
the connection of all the routing nets in two routing layers.
However, the time complexity of Chaudhary’s algorithm and
Chen’s algorithm is in time in the worst case. In this
paper, based on optimality-oriented swap-direction selection
in an optimal BSS, an improved optimal algorithm for a
BSNMCR problem is proposed, and the time complexity of
the proposed algorithm is proven to be in time and in

time in the worst case.
The rest of this paper is organized as follows: Section II con-

tains the formulation and necessary definitions for a BSNMCR
problem. In Section III, the optimality-oriented swap-direction

0278–0070/99$10.00 1999 IEEE

164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

(a) (b)

(c)

Fig. 1. Manhattan and non-Manhattan channel routing. (a) Manhattan rout-
ing result for a channel. (b) Non-Manhattan routing result by Wang’s algorithm
[7]. (c) Non-Manhattan routing result by Chaudhary’s algorithm [8].

selection in an optimal BSS is proposed. In Section IV,
an improved optimal algorithm for the two-layer BSNMCR
problem is proposed and the time complexity of the proposed
algorithm is further analyzed. Finally, the conclusions and
further works are summarized in Section V.

II. PROBLEM FORMULATION AND DEFINITIONS

A channel is a rectangular routing region with two fixed
terminal lists located at top and bottom boundaries in this
region, respectively. A CR problem is to minimize the number
of tracks for the connection of all the routing nets in a channel.
According to the terminal location of the routing nets, the
routing nets in a channel can be divided intoone-sided netsand
two-sided nets. For a one-sided net, all the terminals within this
net are located on the same boundary in a channel. In contrast
to the definition of a one-sided net, all the terminals within
one two-sided net are located on top and bottom boundaries
in a channel. On the other hand, the routing nets in a channel
can be divided intotwo-terminal netsand multiple-terminal
netsaccording to the number of terminals in one net.

For a BSNMCR problem, the terminals of all the routing
nets are located on top and bottom boundaries in a channel. By
introducing dummy and duplicated terminals into a channel
[8] and renaming the terminal numbers of all the two-sided
two-terminal nets in a channel, all the one-sided nets and
multiple-terminal nets will be transformed into two-terminal
two-sided nets. Hence, it is assumed that all the routing nets
in the BSNMCR problem are two-sided two-terminal nets. For
simplicity, according to the terminal order from left to right on
top boundary, all the routing nets in a channel are renumbered
from 1 to , where is the number of two-sided two-terminal
nets in a channel.

In Fig. 2, one-sided nets and multiple-terminal nets in a
channel are transformed into two-sided two-terminal nets by
introducing dummy and duplicated terminals and renaming the
terminal numbers of all the two-sided two-terminal nets. In this
channel, nets 1 and 4 are one-sided two-terminal nets and intro-
duce two dummy terminals on top and bottom boundaries, re-
spectively. Nets 2 and 3 are two-sided three-terminal nets and
introduce one duplicated terminal on top and bottom bound-
aries, respectively. After that, all the two-sided two-terminal
nets in this channel are renamed from 1 to 11, and the resultant
channel is used as the specification of the BSNMCR problem.

In general, two terminal lists on top and bottom boundaries
in a channel are represented as two vectors and ,
respectively. Hence, is and is obtained
according to the connection of all the nets. Refer to the
channel in Fig. 1, and

. Therefore, the BSNMCR problem will
correspond to the problem of transforming the vector into
the vector pass by pass in a bubble sorting solution.

Consider a vector for a BSS, two neigh-
boring elements and are not in a proper order if

, for , and is completely sorted if all the
elements in are in a proper order. Thus, if two neighboring
elements are not in a proper order, the two elements will be
swapped in a BSS. In general, if a sequence of swapping
operations is considered in from right to left, the smallest
number in will be moved toward the left. Such a sequence
of right-to-left swapping operations will be defined asa left-
swap passfor . If is completely sorted by a sequence of
left-swap passes, the sorting solution will be defined as aleft
bubble-sorting solution (LBSS). Similarly, a sequence of left-
to-right swapping operations will be defined as aright-swap
passfor . If is completely sorted by a sequence of right-
swap passes, the sorting solution will be defined as aright
bubble-sorting solution (RBSS). For two vectors and ,
is defined as aleft (right) adjacent vectorof if is obtained
by applying a left-swap (right-swap) pass to. Hence, an
LBSS (RBSS) can be represented by a sequence of left (right)
adjacent vectors, , such that and

.
Refer to the channel in Fig. 1, an LBSS is represented by

a sequence of left adjacent vectors,

and . An RBSS
is represented by a sequence of right adjacent vectors,

and . For the vector (7, 3,
2, 8, 6, 5, 4, 1), an LBSS needs six left-swap passes and an
RBSS needs seven right-swap passes.

As mentioned in Chen’s algorithm [9], if a left-swap pass
and a right-swap pass are allowed to be applied to a BSS at
the same time, a BSS with minimum swap passes is defined as
an optimal BSS. For a BSNMCR problem in two-layer routing
model, each swap pass in an optimal BSS is implemented
by one routing track in a bubble-sorting-based non-Manhattan
channel. All the routing nets in the channel are connected

YAN: ALGORITHM FOR BUBBLE-SORTING-BASED NON-MANHATTAN CHANNEL ROUTING 165

Fig. 2. Channel transformation for one-sided nets and multiple-terminal nets.

(a) (b)

(c)

Fig. 3. Routing results for (7, 3, 2, 8, 6, 5, 4, 1). (a) Result by an LBSS. (b)
Result by an RBSS. (c) Result by an optimal BSS.

by using vertical, horizontal, 45 or 45 wires. Hence,
the number of routing tracks in a bubble-sorting-based non-
Manhattan channel is equal to the number of swap passes
in an optimal BSS. It is clear that the BSNMCR problem
in two-layer routing model corresponds to the problem of
finding an optimal BSS, that is, a minimal sequence of vectors

such that , , and is a
left or right adjacent vector of , for .

Refer to the channel in Fig. 1, an optimal BSS is rep-
resented by a minimal sequence of left or right adjacent
vectors,

and . By using
both left-swap passes and right-swap passes on (7, 3, 2, 8, 6,
5, 4, 1), an optimal BSS only needs five swap passes, that is,
only five routing tracks are used to route the channel. Fig. 3
illustrates the routing results in an LBSS, an RBSS, and an
optimal BSS for the channel in Fig. 1, respectively.

According to the formulation of the BSNMCR problem,
it is clear that minimizing the number of routing tracks
in a bubble-sorting-based non-Manhattan channel will corre-
spond to finding an optimal BSS for a corresponding vector.

Since an optimal BSS is to minimize the number of swap
passes, an optimal BSS will depend on an optimality-oriented
swap-direction selection. In the following, some necessary
definitions in an optimality-oriented swap-direction selection
are described for finding an optimal BSS.

Definition 1: For a given vector , if
and , then one pair is called asan inversion
in . Furthermore, one table is
defined asa left inversion tablein if the
value in is the number of elements that are
greater than to the left of , for . Similarly,
one table is defined asa right inversion table
in if the value in is the
number of elements that are smaller thanto the right of ,
for .

For a given vector , the left and right in-
version tables, and , are unique,
and the values in and the values

in roughly reflect the number
of swap passes in an LBSS or RBSS. As a left-swap pass
is applied to , the vector will
be modified by the left-swapping operations, and a new right
inversion table will be obtained by decreasing all the nonzero
values in by one. Similarly, as a right-swap
pass is applied to , the vector
will be modified by the right-swapping operations, and a new
left inversion table will be obtained by decreasing all the
nonzero values in by one.

Definition 2: For a given vector , let
and be the left and right

inversion table of , respectively. Furthermore,
the maximal left inversion value in
will be defined as , and the
maximal left element - in will
be defined as one element in with the
left inversion value . Similarly, the maximal right
inversion value in will be defined as

, and the maximal right element
- in will be defined as one element

in with the right inversion value .
Referring to the channel in Fig. 1, considering the vector

(7, 3, 2, 8, 6, 5, 4, 1), the left and right inversion tables are
(7, 2, 1, 4, 3, 2, 0, 0) and (0, 1, 2, 1, 2, 3, 6, 4), respectively.
Clearly, the maximal left inversion value is 7 and the
maximal right inversion value is 6.

For a complete sorted vector , both the left
and right inversion tables are . Considering a

166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

BSS for , the number of swap passes depends
on the transformation of the left and right inversion tables
from and to and

, respectively. According to the modification of the
right (left) inversion table, ,
in a left-swap (right-swap) pass, the number of swap passes is

if a right-swap pass is only allowed to be applied to an
RBSS, and the number of swap passes is if a left-swap
pass is only allowed to be applied to an LBSS. Hence, an upper
bound of swap passes in an optimal BSS can be obtained as

. Since a left-swap pass and a right-swap pass
are allowed to be applied to an optimal BSS at the same time,
the swapping phenomenon of a left-swap pass and a right-
swap pass will be considered to select an optimality-oriented
swap direction in an optimal BSS.

Definition 3: For a given vector , if
, and there

exists no such that and ,
for , then one list is
defined asa left-swap list in . Similarly, if

, and there
exists no such that and , for

, then one list is defined as
a right-swap list in .

For the vector (7, 3, 2, 8, 6, 5, 4, 1), a vector (1, 3, 2,
7, 6, 5, 4, 8) is obtained by using a left-swap pass and a
right-swap pass. Consider the vector (1, 3, 2, 7, 6, 5, 4, 8), a
left-swap list is (1, 2, 4, 8), and a right-swap
list is (1, 3, 7, 8).

According to the definitions of a left-swap (right-swap) list
in , it is clear that the elements in a left-swap
(right-swap) list are swapped from right to left (from left to
right) in a left-swap (right-swap) pass. In a left-swap (right-
swap) list is
swapped from right to left (from left to right) until
occurs. For a left-swap (right-swap) pass, the number of the
swapping operations in will be defined as aleft-swap
(right-swap) distance .

Definition 4: For a given vector , let
and be a left-swap list

and a right-swap list of , respectively. The
left-swap distance of in is
defined as

for
for

Similarly, the right-swap distance of in
is defined as

for
for

Consider the vector (1, 3, 2, 7, 6, 5, 4, 8), the left-swap
distances , and of the left-
swap list (1, 2, 4, 8) are 0, 1, 3, and 0, respectively, and
the right-swap distances , and

of the right-swap list (1, 3, 7, 8) are 0, 1, 3, and
0, respectively.

Furthermore, for the element in
, the number of such elements, which

are for and (and
) will be defined as aleft-swap (right-swap)

feedback value of .
Definition 5: For a given vector , let

and be a left-swap list
and a right-swap list of , respectively. Theleft-
swap feedback value of in
is defined as

for
for

Similarly, theright-swap feedback value of in
is defined as

for
for

Consider the vector (1, 3, 2, 7, 6, 5, 4, 8), the left-swap
feedback values , and of the
left-swap list (1, 2, 4, 8) are 0, 0, 1, and 3, respectively, and
the right-swap distances , and

of the right-swap list (1, 3, 7, 8) are 1, 3, 0, and
0, respectively.

III. SWAP-DIRECTION SELECTION IN AN

OPTIMAL BUBBLE-SORTING SOLUTION

For a given vector , one vector generated by applying
one left-swap pass in a BSS to is represented as .
Similarly, one vector generated by applying one right-swap
pass in a BSS to is represented as . Furthermore, one
vector generated by applying a sequence ofleft-swap passes
in a bubble-sort solution to is represented as , i.e.,

. Similarly, one vector generated by

applying a sequence of right-swap passes in a BSS to
is represented as , i.e., .

Basically, an -pass BSS completes the sorting process
by applying a sequence of left-swap
and right-swap passes to , where or , for

. Hence, an -pass BSS is represented as
. To simplify the representation of

a BSS, Theorem 1 in Chen’s paper [9] is applied in this paper
and formulated as Lemma 1.

Lemma 1: Given a vector , the vector generated by ap-
plying one left-swap pass followed by one right-swap pass
to and the vector generated by applying one right-swap
pass followed by one left-swap pass toare the same, i.e.,

.
Proof: The proof is done in [9].

By using the result , a BSS is represented
as a sequence of left-swap and right-swap
passes to . Hence, any -pass BSS can be further
represented as , for . For an -pass BSS

, the number of left-swap (right-swap) passes is uniquely
determined if the number of right-swap (left-swap) passes in

is known. Two -pass BSS’s, and , are equivalent if
they have the same number of left-swap (right-swap) passes
in and . Clearly, the sorting result only depends on the
number of left-swap passes or right-swap passes rather than

YAN: ALGORITHM FOR BUBBLE-SORTING-BASED NON-MANHATTAN CHANNEL ROUTING 167

the permutation of the left-swap passes and right-swap passes
in a BSS.

As mentioned above, as a left-swap pass is applied to
, the vector will be modified

by the left-swapping operations, and a new right inversion
table will be obtained by decreasing all the nonzero values
in by one. Similarly, as a right-swap pass is
applied to , the vector will
be modified by the right-swapping operations, and a new left
inversion table will be obtained by decreasing all the nonzero
values in by one. Hence, the inversion values

and of - and - can be applied to de-
cide an optimality-oriented swap direction in an optimal BSS.

Lemma 2: For a given vector , let
and be a left-swap list

and a right-swap list of , respectively. The
element - in will be included in

and the element - in
will be included in .
Proof: For a vector , assume that
- in is not included in
. Let - is less than , or is less than
and is greater than , i.e., or

for . By the definition of a left-swap list, it is
clear that . By the definition of a left inversion
table, since and is greater than

. Clearly, - . This is a contradiction. Hence,
the element - in will be included
in . Similarly, the element - in

will be included in .
Lemma 3: For a given vector , let

and be a left-swap list and
a right-swap list of , respectively. Theleft
inversion value of in is
obtained as

where and are the left-swap distance
and the left-swap feedback of in ,
respectively. On the other hand, theright inversion value

of in is obtained as

where and are the right-swap distance
and the right-swap feedback of in ,
respectively.

Proof: For a vector , let
and be a left-swap list and a right-swap

list of , respectively. For the inversion values
in a left-swap list, by the definitions of the swap distance and

the swap feedback of any left-swap element, it is clear that

...

and

...

Therefore, the left inversion value of in
is obtained as

where and are the left-swap distance
and the left-swap feedback of in ,
respectively.

For the inversion values in a right-swap list, by the defi-
nitions of the swap distance and the swap feedback of any
right-swap element, it is clear that

...

and

...

Therefore, the right inversion value of in
is obtained as

where and are the right-swap distance
and the right-swap feedback of in ,
respectively.

By Lemma 3, the inversion values in
and are obtained by computing the swap
distances and the swap feedback of all the elements in

and . By Lemma 2,
and are obtained from the inversion values

in and . Hence, the
algorithm MAX_Value is designed to obtain a maximal left
inversion value and a maximal right inversion value
in as shown at the bottom of the next page.

Theorem 1: For a vector , the algorithm
Max_Value obtains the maximal left inversion value
and the maximal right inversion value , and the time
complexity of the algorithm is in time, where is the
number of elements in .

Proof: For a vector , by Lemma 2,
the element - in is included in

and the element - in
is included in . By Lemma 3,

the left inversion value of the element

168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

in is obtained as
, where and

are the left-swap distance and the left-swap
feedback of in , and the right inversion
value) of in is obtained
as , where

and are the right-swap distance and
the right-swap feedback of in . Hence,
the algorithmMax_Valueobtains the maximal right inversion
value and the maximal right inversion value in

.
For the analysis of time complexity inMax_Value, the step

of finding a left-swap list and a right-swap
list in takes time, the
step of finding all the left-swap distances and all
the left-swap feedback in takes

time, and the step of finding all the right-swap distances
and all the right-swap feedback in

takes time, where is the number of
elements in . Furthermore, the step to compute
all the inversion values

in and all the inversion
values in

takes time. Finally, the step of finding
the element with and the element with takes
time in the worst case. Therefore, the time complexity of the
algorithm is in time, where is the number of elements
in .

Based on the computation of the inversion values
and in , the selection of an optimality-
oriented swap-direction in an optimal BSS is further formu-
lated.

Lemma 4: For a given vector , let
and be the left inversion table

and the right inversion table of , respectively.
Two conditions are used to decide an optimality-oriented
swap-direction in an optimal BSS as follows.

1) If , at least one left-swap passis included
in an optimal BSS.

2) If , at least one right-swap pass is
included in an optimal BSS.

Proof: For a vector , an optimal BSS
is represented as , where is the number of left-
swap passes and is the number of right-swap passes in an

optimal BSS. For the proof in Condition (1), assume that if
, no left-swap pass is included in an optimal

BSS. Hence, an optimal BSS is , i.e., .
However, it is clear that there exists a BSS . Since

, the solution will have fewer passes than the
solution . Clearly, the solution is not an optimal BSS.
This is a contradiction. Therefore, if , at least one
left-swap pass is included in an optimal BSS. Similarly,
for the proof in Condition (2), if , at least one
right-swap pass is included in an optimal BSS.

IV. BUBBLE-SORTING-BASED

NON-MANHATTAN CHANNEL ROUTING

For a BSNMCR problem, the routing process is based on an
optimal BSS. If an optimal BSS is obtained, all the swapping
operations in each pass will be implemented by routing ver-
tical, horizontal, 45 or 45 wires. Hence, the BSNMCR
problem is divided intooptimal bubble-sorting solutionand
bubble-sorting-based non-Manhattan channel routing.

A. Optimal Bubble-Sorting Solution

For a vector and are obtained
from and , respectively. By
Lemma 4, there are two conditions to decide an optimality-
oriented swap-direction for in an optimal
BSS. Therefore, the algorithmOBSSis designed to obtain an
optimal BSS as shown at the bottom of the next page.

Theorem 2: The algorithmOBSSobtains an optimal BSS
and the time complexity of the algorithm is , where
is the number of swap passes in an optimal BSS andis the
number of elements in .

Proof: For a vector , by Theorem 1, the
algorithmMax_Valueobtains the maximal left inversion value

and the maximal right inversion value . By Lemma
4, based on the comparison of the values , and ,
a swap-direction in is correctly decided for
an optimal BSS. Hence, the algorithmOBSScan obtain an
optimal BSS.

For the analysis of time complexity inOBSS, by Theorem
1, the time complexity of the algorithmMax_Valueis in
time, where is the number of elements in .
In the decision of a swap-direction in , the
time complexity of comparing the values and and
assigning the values and is in time. Since the
number of swap passes in an optimal BSS is, the number of

Algorithm MaxValue;
Input: a vector ;
begin

Find a left-swap list and a right-swap list in ;
Find all the left-swap distances and all the left-swap feedback in ;
Find all the right-swap distances and all the right-swap feedback in ;

Compute all the inversion values in

and all the inversion values in ;

Output the maximal right inversion value and the maximal right inversion value ;
end

YAN: ALGORITHM FOR BUBBLE-SORTING-BASED NON-MANHATTAN CHANNEL ROUTING 169

iterations in this loop will be . Therefore, the time complexity
of the algorithm OBSS is , where is the number
of swap passes in an optimal BSS andis the number of
elements in .

Referring to the channel in Fig. 1, (7, 3, 2, 8, 6, 5, 4, 1) is
transformed into (1, 2, 3, 4, 5, 6, 7, 8) pass by pass in a BSS.
By running the algorithmOBSS, an optimal BSS is obtained
by the passes shown at the bottom of the page.

For , an optimal BSS is
. Hence, an optimal BSS

is , i.e., . If two layers are available in
a bubble-sorting-based non-Manhattan routing model, by
mapping each left-swap or right-swap pass in on one
routing track from bottom to top track by track, a physical
routing result shown will be obtained and shown in Fig. 4.

Fig. 4. Physical routing result for an optimal BSS of (7, 3, 2, 8, 6, 5, 4, 1).

B. Bubble-Sorting-Based Non-Manhattan Channel Routing

Consider bubble-sorting-based non-Manhattan channel rout-

ing, first, all the one-sided nets and multiple-terminal nets

in a channel are transformed into two-terminal two-sided

Algorithm OBSS
Input: a vector ;
begin
while (the vector is unsorted)

begin
Run the algorithm MaxValue to obtain the maximal left inversion value and

the maximal right inversion value ;
If , a left-swap pass is applied to ;
If , a right-swap pass is applied to ;
If , a left-swap pass or right-swap pass is applied to ;

end
Output an optimal BSS;

end

Pass 1:
Left inversion table Right inversion table Left-swap list Right-swap list

Condition: , Decision: a left-swap pass to
If a left-swap pass to , then

Pass 2:
Left inversion table Right inversion table Left-swap list Right-swap list

Condition: , Decision: a right-swap pass to
If a right-swap pass to , then

Pass 3:
Left inversion table Right inversion table Left-swap list Right-swap list

Condition: , Decision: a left-swap pass or right-swap pass to
If a left-swap pass to , then

Pass 4:
Left inversion table Right inversion table Left-swap list Right-swap list

Condition: , Decision: a left-swap pass or right-swap pass to
If a left-swap pass to , then

Pass 5:
Left inversion table Right inversion table Left-swap list Right-swap list

Condition: , Decision: a left-swap pass or right-swap pass to
If a left-swap pass to , then

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

Fig. 5. Recovery of one-sided nets and multiple-terminal nets in a bubble-sorting-based non-Manhattan channel.

nets by introducing dummy and duplicated terminals into this
channel and renaming all the terminal numbers of all the two-
terminal two-sided nets in this channel. Refering to Fig. 2,
for a channel specification, and

, nets 1 and 4 in one-sided nets
introduce two dummy terminals on top and bottom boundaries,
respectively. On the other hand, nets 2 and 3 in multiple-
terminal nets introduce one duplicated terminal on top and
bottom boundaries, respectively. Hence, a new channel specifi-
cation is obtained as
and . Furthermore,
by renaming all the terminal numbers of all the two-terminal
two-sided nets in this channel, a final new channel specification
is obtained as and

.
Basically, BSNMCR is based on an optimal BSS. If an

optimal BSS is obtained by the algorithmOBSS, this solution
will be represented as , where is the number of left-
swap passes and is the number of right-swap passes in an
optimal BSS, respectively. As mentioned above, BSNMCR
uses the result of an optimal BSS to yield a physical routing
result for a given channel. In this BSNMCR problem, all the
routing nets in a channel are connected by using vertical,
horizontal, 45 or 45 wires. If two layers are available in a
bubble-sorting-based non-Manhattan routing model, a physical
routing result will be yielded by mapping each left-swap or
right-swap pass in on one routing track from bottom to
top track by track. For the vector (5, 6, 10, 11, 8, 4, 9, 7, 1, 3,
2), an optimal BSS is obtained by running the algorithm
OBSS. Furthermore, a physical routing result will be obtained
by mapping seven left-swap passes inon seven tracks from
bottom to top track by track.

Finally, according to a physical routing result of all the
two-sided two-terminal nets in a channel, the routing of
all the one-sided nets and multiple-terminal nets must be
recovered from that of all the two-sided two-terminal nets
in a channel. Basically, the routing of each one-sided net is
obtained by eliminating dummy terminals and redundant wires
and introducing vias on crossing points of two nets. After
this, a rewiring process may be used to improve the routing
result. On the other hand, the routing of each multiple-terminal
net is obtained by merging duplicated terminals, eliminating
redundant wires and introducing vias on the endpoints of
merged wires. After this, a track-reassignment and rewiring
process may be used to improve the routing result.

In Fig. 5, for the vector (5, 6, 10, 11, 8, 4, 9, 7, 1, 3, 2),
a physical routing result has seven tracks by mapping seven
left-swap passes in . For the recovery of one-sided nets, nets
1 and 4 are routed by eliminating two dummy terminals and
redundant wires and introducing one via on crossing points of
two nets, respectively. For the recovery of multiple-terminal
nets, nets 2 and 3 are routed by merging one duplicated
terminal, eliminating redundant wires, and introducing one
via on the endpoints of merged wires, respectively. Finally,
a track-reassignment and rewiring process is used to reduce
the number of routing tracks and total wire length.

V. CONCLUSIONS AND FURTHER WORKS

For a bubble-sorting-based non-Manhattan channel routing
(BSNMCR) problem, Chaudhary’s heuristic algorithm
[8] and Chen’s optimal algorithm [9] have been
respectively proposed, whereis the number of terminals and

is the number of routing tracks in a channel. However, the

YAN: ALGORITHM FOR BUBBLE-SORTING-BASED NON-MANHATTAN CHANNEL ROUTING 171

time complexity of the two algorithms is in time in the
worst case. In this paper, based on optimality-oriented swap-
direction selection in an optimal BSS, an improved optimal
algorithm for a BSNMCR problem is proposed, and the time
complexity of the proposed algorithm is proven to be in
time and in time in the worst case.

Basically, the main goal of a BSNMCR problem is to
minimize total routing area in a channel. It is clear that total
routing area in a bubble-sorting-based non-Manhattan channel
depends on routing modeling and the number of tracks. In
further works, designing an optimal routing model for a
bubble-sorting-based non-Manhattan channel and proposing an
effective bubble-sorting-based approach to reduce the number
of tracks will be studied for a BSNMCR problem.

REFERENCES

[1] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel
assignment within large apertures,” inDesign Automation Workshop,
1971, pp. 214–224.

[2] R. L. Rivest and C. M. Fiduccia, “A greedy channel router,” in
ACM/IEEE Design Automation Conf., 1982, pp. 418–424.

[3] T. Yoshimura and E. S. Kuh, “Efficient algorithms for channel routing,”
IEEE Trans. Computer-Aided Design, vol. 1, pp. 25–35, 1982.

[4] M. Burstein and R. Pelavin, “Hierarchical channel router,” inACM/IEEE
Design Automation Conf., 1983, pp. 591–597.

[5] D. N. Deutsch, “A dogleg channel router,” inACM/IEEE Design
Automation Conf., 1976, pp. 425–433.

[6] E. Lodi, F. Luccio, and L. Pagli, “A preliminary study of a diagonal
channel-routing model,”Algorithmica, vol. 4, pp. 585–597, 1989.

[7] D. Wang, “Novel routing schemes for IC layout—Part I: Two-layer
channel routing,” inACM/IEEE Design Automation Conf., 1991, pp.
49–53.

[8] K. Chaudhary and P. Robinson, “Channel routing by sorting,”IEEE
Trans. Computer-Aided Design, vol. 10, pp. 754–760, 1991.

[9] C. Y. R. Chen, C. Y. Hou, and U. Singh, “Optimal algorithms for bubble
sort based non-Manhattan channel routing,”IEEE Trans. Computer-
Aided Design, vol. 13, pp. 603–609, 1994.

Jin-Tai Yan received the B.S., M.S., and Ph.D.
degrees in computer and information science from
National Chiao-Tung University, Hsinchu, Taiwan,
R.O.C., in 1988, 1990, and 1995, respectively.

From 1995 to 1997 he served in the Chinese
Navy, Kaohsiung, Taiwan, as an Information Officer
working on ship information management systems.
Since 1997, he has been with National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C., and is
currently a Post-Doctor Researcher working on CPU
design and the flow control of CAD tools in the

Computer Systems Research Center. His current research interests are high-
level synthesis, logic synthesis, and physical design of VLSI circuits, paral-
lel/distributed computing, interconnection networks, and network performance
analysis.

