IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999 163

An Improved Optimal Algorithm for
Bubble-Sorting-Based
Non-Manhattan Channel Routing

Jin-Tai Yan

Abstract—It is well known that a non-Manhattan channel non-Manhattan channel will be routed by mapping each pass
router always uses fewer routing tracks than a Manhattan router onto one routing track.
in a channel. To our knowledge, for a bubble-sorting-based non- i ; ; _
Manhattan channel routing (BSNMCR) problem, Chaudhary’s T(.) minimize the number of routing tracks in ? bubbl.e
O(kn?) heuristic algorithm [8] and Chen's O(kn) optimal al- sorting-based non-Manhattan chz_;mnel, ChaL_tharys algorithm
gorithm [9] have been, respectively, proposed, where: is the [8] further releases the constraint of moving at most one
number of terminals and & is the number of routing tracks in a  position to the left or the right during one pass. Hence, the
char)ne!. HQWEVEF, the time comple_xity of the two algorithr_ns iS_ in operation of swapping nets can be propagated in one pass,
O(n*) time in the worst case. In this paper, based on optimality- 5 4| the nets can be moved over longer distances during one

oriented swap-direction selection in an optimal bubble-sorting Basically. th directi f in Chaudhary’
solution, an improved optimal algorithm for a BSNMCR problem pass. basically, the swap-direction of any pass in Lhaudhary's

is proposed, and the time complexity of the proposed algorithm is algor_ithm [8] depe_nds on the number of nonzero elements in
proven to be in O(kn) time and in O(»?) time in the worst case. the right and left inversion tables. If the number of nonzero

Index Terms—Bubble sorting, channel routing, optimal algo- elem_ents inth.e left (_right) inversion_ table is greater than thatin
rithm, physical design. the right (left) inversion table, one right (left) swap pass will be
performed from left to right (right to left). On the other hand,
if the number of nonzero elements in the left inversion table
|. INTRODUCTION is the same as that in the right inversion table, one left swap
T IS WELL known that channel routing (CR) plays arpass will be performed from right to left. Hence, Chaudhary’s
important role in very large scale integration (VLSI) desigalgorithm takesO(kn?) time to route a bubble-sorting-based
automation, and the CR problem has been extensively studirdn-Manhattan channel, whede is the number of routing
Generally speaking, most of the routers only use horizontal atrelcks anch is the number of terminals in a channel. In Fig. 1,
vertical wires to complete the connection of all the routing Manhattan routing result and non-Manhattan routing results
nets in a channel, i.e., most of the channels are routedbp Wang’s algorithm [7] and Chaudhary’s algorithm [8] for a
a Manhattan routing model [1]-[5]. As VLSI technologychannel are illustrated, respectively.
advances, the fabrication process does not preclude a layoukecently, Cheret al. [9] proposed an optimal algorithm to
style in a non-Manhattan routing model. In fact, a norsolve a bubble-sorting-based non-Manhattan channel routing
Manhattan channel router always uses fewer routing traci8SNMCR) problem. Cheret al. prove a theoremLRV =
than a Manhattan router in a channel. Hence, new noRZYV, to explain no sorting-order in an optimal bubble-sorting
Manhattan CR problems have been formulated [6], [8], ar@lution (BSS), and to further generate a binary decision
nonoptimum and optimal non-Manhattan algorithms [6]-[Hiagram for an optimal BSS. If a left-swap pass and a right-
have been proposed. swap pass are applied to a bubble-sorting problem at the same
For a bubble-sorting-based non-Manhattan channel, the aie, Chen’s algorithm [9] take®(k2n) to obtain an optimal
sic concept in Wang’s algorithm [7] is to interchange a pair 8ss in k swap passes. Clearly, a significant improvement
adjacent nets using two wires, one in thé5° direction and jn time complexity over nonoptimal approaches is achieved
the other in the—45° direction if two adjacent nets are in agg ensuring optimality. Referring to the channel in Fig. 1,
wrong order. On the other hand, the nets propagate to the ngKen’s algorithm [9] only needs five swap passes to complete
track over vertical wires if two adjacent nets are in a righhe connection of all the routing nets in two routing layers.
order. Hence, the routing process in a channel is determ”ﬁ@wever, the time complexity of Chaudhary’s algorithm and
by a sequence of passes of interchanging nets. In each pagspén's algorithm is inO(?) time in the worst case. In this
net is only moved one position to the left, one position to the,her hased on optimality-oriented swap-direction selection
right, or remains at the same position. Basically, each pass;of 5, optimal BSS, an improved optimal algorithm for a
interchanging nets can be implemented by one routing trackdis\vcRr problem is proposed, and the time complexity of
a non-Manhattan channel. As a result, a bubble—sorting-ba§ﬁg proposed algorithm is proven to beGi{kn) time and in
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12345678 1 2345678 In Fig. 2, one-sided nets and multiple-terminal nets in a
; - | I,.. | | channel are transformed into two-sided two-terminal nets by
/ / introducing dummy and duplicated terminals and renaming the
] //// | terminal numbers of all the two-_sided two-terminal nets. In f[his
T / / / channel, nets 1 and 4 are one-sided two-terminal nets ar_1d intro-
/ / / "I duce .two dummy terminals on top.and bottom boyndarles, re-
/ 'l | / / §pectlvely. Nets 2 a}nd 3 are tvyo-3|ded three-terminal nets and
7 3 2 8 6 5 41 introduce one duplicated terminal on top and bottom bound-
aries, respectively. After that, all the two-sided two-terminal
- nets in this channel are renamed from 1 to 11, and the resultant
channel is used as the specification of the BSNMCR problem.

7 3 > 8 6 5 4 1 In general, two terminal lists on top and bottom boundaries
@ ) in a ch_annel are repre_sented as two vectBiDéf and B_V,
respectively. HenceT'V is (1,2,---,n) and BV is obtained
123456 78 according to the connection of all the nets. Refer to the
X channel in Fig. 1, TV = (1,2,3,4,5,6,7,8) and BV =
(7,3,2,8,6,5,4,1). Therefore, the BSNMCR problem will
correspond to the problem of transforming the ved®f into
the vectorI’V pass by pass in a bubble sorting solution.

s e Consider a vectoV, (a;, az, - -, a,) for a BSS, two neigh-

| @ [ P ¢ ¢ boring elementss; and a;,+; are not in a proper order if

732865 41 a; > a;41, for 1 < ¢ < n, andV is completely sorted if all the
() elements inV” are in a proper order. Thus, if two neighboring

Fig. 1. Manhattan and non-Manhattan channel routing. (a) Manhattan roelements are not in a proper order, the two elements will be
ing result for a channel. (b) Non-Manhattan routing result by Wang'’s algorithgwapped in a BSS. In general, if a sequence of Swapping
[7- (©) Non-Manhattan routing resuit by Chaudhary's algorithm [8]. operations is considered W from right to left, the smallest

L . . . number inV" will mov ward the left. h n
selection in an optimal BSS is proposed. In Section IVLI ber inV’ be moved toward the left. Such a sequence

i . . df right-to-left swapping operations will be defined adeft-
an improved optimal algorithm for the two-layer BSNMCFEC:(ag pasgor V. lfp‘B is?cor;npletely sorted by a sequence of

problem is proposed and the time complexity of the propos t-swap passes, the sorting solution will be defined &fta
algorithm is further analy;ed. .Finally,. the conclusions a bble-sorting sc;lution (LBSS$imilarly, a sequence of left-
further works are summarized in Section V. to-right swapping operations will be defined asight-swap
passfor V. If V' is completely sorted by a sequence of right-
i ) ) ) ~ swap passes, the sorting solution will be defined aght

A channel is a rectangular routing region with two fixegypple-sorting solution (RBSSjor two vectorsV; andV;, V;
terminal lists located at top and bottom boundaries in thig gefined as &ft (right) adjacent vectoof V; if V; is obtained
region, respectively. A CR problem is to minimize the numbeyy applying a left-swap (right-swap) pass ¥o. Hence, an
of tracks for the connection of all the routing nets in a channglgss (RBSS) can be represented by a sequence of left (right)

According to the terminal location of the routing nets, thgdjacent vectorsy;, Vi, -- -, Vi, such thatVy = BV and
routing nets in a channel can be divided intee-sided netand v, — 7V

two-sided nets-or a one-sided net, all the terminals within this Refer to the channel in Fig. 1, an LBSS is represented by

net are located on the same boundary in a channel. In contiaslequence of left adjacent vectovs, = (7,3,2,8,6,5,4,1),
to the definition of a one-sided net, all the terminals withiy, — (1,7,3,2,8,6,5,4), Vo = (1,2,7,3,4,8,6,5), Va =
one two-sided net are located on top and bottom boundar'(q§2737774757876)7 Vi = (1,2,3,4,7,5,6,8), V5 = (1,2,
in a channel. On the other hand, the routing nets in a changel 5 7 6, 8), and V5 = (1,2,3,4,5,6,7,8). An RBSS
can be divided intawo-terminal netsand multiple-terminal s represented by a sequence of right adjacent vectors,
netsaccording to the number of terminals in one net. Vo = (7,3,2,8,6,5,4,1), Vi = (3,2,7,6,5,4,1,8), Vo =

For a BSNMCR problem, the terminals of all the routing2.3,6,5,4,1,7,8), V3 = (2,3,5,4,1,6,7,8), Vi = (2,3,
nets are located on top and bottom boundaries in a channel.8Y, 5 6,7,8), V5 = (2,3,1,4,5,6,7,8), Vs = (2,1,3,4,5,
introducing dummy and duplicated terminals into a channg|7,8), and V; = (1,2,3,4,5,6,7,8). For the vector (7, 3,
[8] and renaming the terminal numbers of all the two-sideg, 8, 6, 5, 4, 1), an LBSS needs six left-swap passes and an
two-terminal nets in a channel, all the one-sided nets aRBSS needs seven right-swap passes.
multiple-terminal nets will be transformed into two-terminal As mentioned in Chen’s algorithm [9], if a left-swap pass
two-sided nets. Hence, it is assumed that all the routing neitsd a right-swap pass are allowed to be applied to a BSS at
in the BSNMCR problem are two-sided two-terminal nets. Fahe same time, a BSS with minimum swap passes is defined as
simplicity, according to the terminal order from left to right oran optimal BSSFor a BSNMCR problem in two-layer routing
top boundary, all the routing nets in a channel are renumbemaddel, each swap pass in an optimal BSS is implemented
from 1 ton, wheren is the number of two-sided two-terminalby one routing track in a bubble-sorting-based non-Manhattan
nets in a channel. channel. All the routing nets in the channel are connected

Il. PROBLEM FORMULATION AND DEFINITIONS
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Fig. 2. Channel transformation for one-sided nets and multiple-terminal nets.
123456738 Since an optimal BSS is to minimize the number of swap
-] passes, an optimal BSS will depend on an optimality-oriented
swap-direction selection. In the following, some necessary
definitions in an optimality-oriented swap-direction selection
are described for finding an optimal BSS.

Definition 1: For a given vectofa;, az, -, a,), if i < j
- anda; > a;, then one paifa;, a;) is called asan inversion
s o, o, in (ay,az,---,a,). Furthermore, one tablg,,l>,---,1,,) is
: 3 2 s 6 5 4 IL B B defined asa left inversion tablein (ai,a2,---,a,) if the

73 286 5 41 valuel; in (I1,l2,---,1,) is the number of elements that are
(@ (b) greater thari to the left of ¢, for 1 < ¢ < n. Similarly,
one table(ry,rq, -+, 7,) is defined as right inversion table
- in (ai,az,---,a,) if the valuer; in (ry,r2,---,7,) is the
J number of elements that are smaller thato the right ofi,
for 1 < i < n.

For a given vectora;,az,---,a,), the left and right in-
version tables(ly,ls, - -,1,) and(ry, 72, - -, r,), are unique,
and the value$,,ls,---.l, in (1,12, ---,1,) and the values
BEEREE 71,72, T N (r1,792,--+,7,) roughly reflect the number
73286541 of swap passes in an LBSS or RBSS. As a left-swap pass

(© is applied to(ay, az, - - -, a, ), the vector(a, az, - -, a,) will
Fig. 3. Routing results for (7, 3, 2, 8, 6, 5, 4, 1). (a) Result by an LBSS. (He modified by the left-swapping operations, and a new right
Result by an RBSS. (c) Result by an optimal BSS. inversion table will be obtained by decreasing all the nonzero
values in(ry,72,---,r,) by one. Similarly, as a right-swap
e, Pass is applied t@a, as, - - - ,a,), the vector(ay, as,- -+, a,)

by using vertical, horizontal;+45° or —45° wires. Henc - i . _ ;
the number of routing tracks in a bubble-sorting-based noWlII be modified by the right-swapping operations, and a new

Manhattan channel is equal to the number of swap pasé%fé mversmln ta_blc; Vl\"” belobtgmed by decreasing all the
in an optimal BSS. It is clear that the BSNMCR problerT'?OBZ?.r(?t.V"’l uze.sFlr( L2 n) ytone. let
in two-layer routing model corresponds to the problem ogfl efinition 2: For a given vector (ay,az, -, a,), le

)

finding an optimal BSS, that is, a minimal sequence of vect |nv7el?s’i'o'r'| 7tzlgleac?f(da (7;’ 712" ) 'C'L’ ;n)resl,)eec;['[ril\?elIeflt:u?t%derr:%rr]é
Vo,Vi,---, Vi such thatVy = BV, Vi, = TV, and Vi, is a L, 62, ") Gn) (€SP y. ’

. . ) the maximal left inversion valud,.. in (I{,ls,---,1,
left or right adjacent vector o¥;, for 0 < ¢ < k. will be defined as! — Max{ly,ly, - (l 1, and th)e
Refer to the channel in Fig. 1, an optimal BSS is reg; i1 |oft element a s 0N 7(@17 a2’.’f; . ) will

resented by a minimal sequence of left or right adjaceBE defined as one element ifus,as,---,a,) with the

vectors, Vo = (7,3,2,8,6,5,4,1), Vi = (3,2,7,6,5,4,1,8), |eft inversion value Iy, Similarly, the maximal right

Vo = (1,3,2,7,6,5,4,8), Vs = (1,2,3,4,7,6,5,8), V4_: inversion valuery,,x in (r1,7r2, --,7,) Will be defined as

(1,2,3,4,5,7,6,8), and V5 = (1,2,3,4,5,6,7,8). By using . — Max{r,, ry,---,r,}, and the maximal right element

both left-swap passes and right-swap passes on (7, 3, 2, 8a11§a',x-right in (a1, az,---,a,) will be defined as one element

5, 4, 1), an optimal BSS only needs five swap passes, that"iﬁ(ab as, -+, a,) with the right inversion value,,..

only five routing tracks are used to route the channel. Fig. 3Referring to the channel in Fig. 1, considering the vector

illustrates the routing results in an LBSS, an RBSS, and @n, 3, 2, 8, 6, 5, 4, 1), the left and right inversion tables are

optimal BSS for the channel in Fig. 1, respectively. (7,2,1,4,3,2,0,0)and (0, 1, 2, 1, 2, 3, 6, 4), respectively.
According to the formulation of the BSNMCR problemClearly, the maximal left inversion valug,.. is 7 and the

it is clear that minimizing the number of routing trackgnaximal right inversion value.,.. is 6.

in a bubble-sorting-based non-Manhattan channel will corre-For a complete sorted vectdi,2,---,n), both the left

spond to finding an optimal BSS for a corresponding vectand right inversion tables aréo,0,---,0). Considering a

1 23 45 6 7 8

1 23 456 738
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BSS for(a1, a2, - -, an), the number of swap passes dependse for j < p;_1 anda,,_, < a; < ap, (j > g1 and
on the transformation of the left and right inversion tables,, < a; < a,,,,) Will be defined as deft-swap (right-swap)
from (I1,15,---,1,) and (ry,72,---,7,) t0 (0,0,---,0) and feedback valudies (ap,) (Frign(aq,)) Of ap, (ag,).
(0,0,---,0), respectively. According to the modification of the Definition 5: For a given vector (a1, asz,---,a,), let
right (left) inversion table(ry,ra,---,7) {1, la, -, 1)} (Gpy,Gpy, -5 ap,) @Nd (ag,,aq,,- -, aq ) be a left-swap list
in a left-swap (right-swap) pass, the number of swap passesus a right-swap list ofay, az, - - -, a,,), respectively. Théeft-
Imax If @ right-swap pass is only allowed to be applied to aswap feedback valuies(a,, ) of ap, in (ap,,ap,, -, ap,)
RBSS, and the number of swap passes,is, if a left-swap is defined as

pass is only allowed to be applied to an LBSS. Hence, an upper a —a.  —1 forl<i<s.

bound of swap passes in an optimal BSS can be obtained as et (ap,) = Opz e fori=1.

Min{limax, max } - Since a left-swap pass and a right-swap pass ’

are allowed to be applied to an optimal BSS at the same tinfMmilarly, theright-swap feedback valugign:(ay;) of ay, in

the swapping phenomenon of a left-swap pass and a rigftts, » 4., - -, aq,) iS defined as
swap pass yV|II pe cons@ered to select an optimality-oriented Qg —ag —1, forli<i<t.
swap direction in an optimal BSS. Frigii(aq,) = 0 fori —t.

Definition 3: For a given vectol(ay, az,- -, ay), if p1 <
p2 < - < ps (=n), ap, < a,, < --- < a,, and there  Consider the vector (1, 3, 2, 7, 6, 5, 4, 8), the left-swap
exists noi such thatp; < i < p;41 anda,, < a; < ap,,,, feedback valuesic (1), Fiew(2), Fler:(4), andFle(8) of the
for 1 < j < s — 1, then one list(a,,,ap,, -, ap,) iS left-swap list (1, 2, 4, 8) are 0, 0, 1, and 3, respectively, and
defined asa left-swap listin (a;,as,---,a,). Similarly, if the right-swap distancesiigu (1), Frigni(3), Fiigni(7), and
(=1 < q < < g,aq < ag < - < a,, and there Frign:(8) o_f the right-swap list (1, 3, 7, 8) are 1, 3, 0, and
exists noi such thaty; < i < ¢;4+1 anda,, < a; < a,,,,, for 0, respectively.

1< j<t—1,then one list{a,,a,,.---,a,) is defined as
a right-swap listin (a1, ag, -, ap). IIl. SWAP-DIRECTION SELECTION IN AN
For the vector (7, 3, 2, 8, 6, 5, 4, 1), a vector (1, 3, 2, OPTIMAL BUBBLE-SORTING SOLUTION

7, 6, 5, 4, 8) is obtained by using a left-swap pass and a
right-swap pass. Consider the vector (1, 3, 2, 7, 6, 5, 4, 8)
left-swap list(a;, as, az,as) is (1, 2, 4, 8), and a right-swap
list (al,ag,a4,ag) is (1, 3,7, 8)

For a given vectorV, one vector generated by applying
ofte left-swap pass in a BSS g is represented adV.
Similarly, one vector generated by applying one right-swap
X ;o . . pass in a BSS td/ is represented aBV. Furthermore, one
According to the definitions of a left-swap (right-swap) I'Ssector generated by applying a sequence tfft-swap passes

in (a1,az, -, a,), itis clear that the elements in a left-swag, ;' hhje-sort solution td” is represented a&*V, ie.,
(right-swap) list are swapped from right to left (from left O 1 LIV = LV Similarly, one vector generated by
right) in a left-swap (right-swap) pass. In a left-swap (righb—k/—/ '
swap) list(ap, , ap, -~ ap,) ((aq,: g5~~~ 0q,)); ap,(a4.) 1 applying a sequence df right-swap passes in a BSS 16
swapped from right to left (from left to right) unté,, ., (aq,,,) g represented aB*V, i.e., RRR--- RRV = R*V

occurs. For a left-swap (right-swap) pass, the number of the M
swapping operations i, (a,,) will be defined as #eft-swap  Basically, anm-pass BSSS completes the sorting process

(right-swap) distanceDyes(a,,) (Diight(aq, ). by applying a sequence,,Dy,_1---D>D; of left-swap
Definition 4: For a given vector (ay,as,---,a,), let and right-swap passes t§, where D; = L or R, for
(Apyr Qpyy -5 ap,) AN (ag, , aq,,- -+, aq,) be a left-swap list 1 < i < m. Hence, anm-pass BSSS is represented as
and a right-swap list of(a;,as,---,a,), respectively. The § = D, D,,_;---D,D;. To simplify the representation of
left-swap distanceicsi(ay,;) of ap, in (ap,,a,,,---,a,,) IS aBSS, Theorem 1 in Chen’s paper [9] is applied in this paper
defined as and formulated as Lemma 1.
forl <i < s. Lemma 1: Given a vectorV, the vector generated by ap-

D (a ):Pi—pi—l—L - .
left \ @p; pi— 1, for i = 1. plying one left-swap pass followed by one right-swap pass

to V and the vector generated by applying one right-swap
Similarly, the right-swap distance Drigni(ay,) 0f ag, in pass followed by one left-swap pass ftoare the same, i.e.,
(agi,0q,, -, aq,) is defined as LRV = RLV.
Proof: The proof is done in [9]. O

By using the resul. RV = RLV, a BSSS is represented
as a sequencél --- LRR--- R of left-swap and right-swap

Consider the vector (1, 3, 2, 7, 6, 5, 4, 8), the left-swapasses toV. Hence, anym-pass BSSS can be further
distanceDes; (1), Diert(2), Dieri(4), and Dycs(8) of the left- represented ag’R™~¢, for 0 < i < m. For anm-pass BSS
swap list (1, 2, 4, 8) are 0, 1, 3, and O, respectively, arff] the number of left-swap (right-swap) passes is uniquely
the right-swap distanceB.igh: (1), Dright(3), Dright(7), and determined if the number of right-swap (left-swap) passes in
Diighi (8) of the right-swap list (1, 3, 7, 8) are 0, 1, 3, ands is known. Twom-pass BSS’sS1 and S2, are equivalent if
0, respectively. they have the same number of left-swap (right-swap) passes

Furthermore, for the element,, (a,,) in (ap,,ap,,---,a,,) N S1 andS2. Clearly, the sorting result only depends on the
((agy, 045, 0g,)), the number of such elements, which number of left-swap passes or right-swap passes rather than

. g —q—1, forl<i<t.
Drigue(aq,) = 7 for i = .
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the permutation of the left-swap passes and right-swap pastgesswap feedback of any left-swap element, it is clear that

in a BSS. .

As mentioned above, as a left-swap pass is applied to ' L Vahete(ay,) = Diete (0p,) = Fiess (7, )
(a1, a2, -+, an), the vector(ar, as, - - -, a,) will be modified i =2 Valir(ap,) = Valier (ap, ) + Diere (a,)
by the left-swapping operations, and a new right inversion — Fleft(apz),
table will be obtained by decreasing all the nonzero values
in (r1,r2,---,7,) by one. Similarly, as a right-swap pass is :
applled to (alv az, -, GN)r the VeCtor(alv Az, 7GN) will and ¢=s Valeg (CLPS) = Valjes (apsfl) + Diegy (CLPS)

be modified by the right-swapping operations, and a new left

: . . : : - B .
inversion table will be obtained by decreasing all the nonzero le“(aps)
values in(l1,l2,---,1,) by one. Hence, the inversion valuesTherefore, the left inversion vali€alies (ap, ) of ap, in (ay, ,
lmax @NArmax Of Guax-teft @ANAamax-righe CaAN be applied to de- a,,,,-- -, a,, ) is obtained as
cide an optimality-oriented swap direction in an optimal BSS. i
Lemma 2:For a given vector(ag, gz, -+, an), let (apl.’ Valjeg: (apf) = Z [Dleft(apj) - -Fleft(apj)]

Apys - - 0p,) aNd (ag, a4, - -,a,) be a left-swap list =
and a right-swap list of{a;,as,---,a,), respectively. The .
element auaetere iN (a1, as,---,a,) will be included in where Dyt (a,,) and Fir(a,,) are _the left-swap distance
(apl s Opyytt 7y aps) and the elememmax-right in (ala az, -, and the Ieft-swap feedback ijj n (apl 1Ap2y " apS)'
a,) will be included in(a,,,ag,, -, ag). respectively. o _ ,

Proof: For a vector (aj,as,---,a,), assume that For the inversion values in a right-swap list, by the defi-
Gmax-lef, 1N (a1, a2, -, ay) iS NOt mcluded m(am’am’... nitions of the swap distance and the swap feedback of any
ap,). L€t @; = Gumax-lefi, 4 IS less thanp, or i is less than fight-swap element, it is clear that
pj+1 andi is greater tharp;, i.e.,¢ < p1; Or p; <4 < pj1 i=t Valyight (ag, ) = Deigni (aq,) — Frigni (ag, ),

for 0 < j < s. By the definition of a left-swap list, it is

clear thata; > a, . By the definition of a left inversion i=t—1 Valyu(ag_.) = Valugn (aq,)

table, sincei < p;11 anda; > ay,,,, lp;41 is greater than + Dyigti (aq, 1) — Frigne (aq, ).
;. Clearly, a; # amax-lerz- ThiS iS a contradiction. Hence,
the elementayax-tere N (@1,a2,---,a,) will be included
in (am,am,---,aps). Similarly, the elementamax_rigllt in and i=1 Valuiglt (aq, ) = Valiigne (aq, ) +Drighe (ag, )
(a1,02, -, a,) Will be included in(a,,,ap,, -, a4). O — Figui (0,)-
Lemma 3: For a given vector(a,as,---,a,), let (a,
pyr - 0p.) AN (ag,, gy, > 0g,) bE @ |eft -swap list and Therefore, the right inversion valu¥al,ign(a,,) of a,,
a right-swap list of(ay,az, -, a,), respectively. Theleft (aq,aq,, ", aq,) is obtained as
inversion valueValies(ay,) of a, in (ap,,ap,, -, ap,) is ¢
obtained as Valsigni (ag,) = Z [Diigui (aq,) — Frigu (aq,)]
j=i
i where D;igi(agq,) and Fiigni(ay, ) are the right-swap distance
Valieri(ap,) = > [Diere (ap;) — Fiere (ap, )] and the right-swap feedback af;, in (ag,,aq,, ),
j=1 respectively. O
By Lemma 3, the inversion values ifw,, ,ap,, -, ap,)

_ and (a,,,a,,, -, a, ) are obtained by computing the swap
where Dieri(a,,) and Fiei(ap,) are the left-swap distancedistances and the swap feedback of all the elements in
and the left-swap feedback af,, in (ap,ap,, ", ap,), (Gpys Gy 0p,) aNd (ag,, gy, -, aq,). By Lemma 2,
reSpeCtiVer. On the other hand, th‘@ht inversion value lmax and Tmax are obtained from the inversion values
Valrigui(ag,) 0f ag, in (ag,,aq,,- -+, aq,) is obtained as N (ap,,ap,, -, ap,) and (aq,aq,, -, aq). Hence, the

algorithm MAX_Valueis designed to obtain a maximal left
. inversion valud .. and a maximal right inversion valug, ,x

_ _ _ _ in (a1,a9,---,ay,) as shown at the bottom of the next page.
Valsgue (aq,) = Z [Deieau(0q,) = Frigne (aq,)] '?'heorem 1: Fo)r a vector(ay,ay,---,a,), the algorithm
Max_Value obtains the maximal left inversion valug,,x
and the maximal right inversion value,.., and the time
where Dyigni (aq,) and Fiigne(agy,) are the right-swap distancecomplexity of the algorithm is irD(n) time, wheren is the
and the right-swap feedback af, in (ag,a,, -, a,), number of elements ifiay,az,- -, an).
respectively. Proof: For a vector (a1,as,---,a,), by Lemma 2,

Proof: For a vector(ay,az,--,a,), let (a,, ,a,,, -, the elementayaxiere in (ar,a2,---,a,) is included in
ap,) and(a,, , aq,, - -, a,, ) be aleft-swap list and a right-swap(a, , ap,, - -, a,,) and the element,,ax-rigne i (a1, a2, -,
list of (a1, a9, -,a,), respectively. For the inversion values:,) is included in (ag ,aq,,---,a4). By Lemma 3,
in a left-swap list, by the definitions of the swap distance artle left inversion value Valis(a,,) of the element

j=i
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ap;, N (ap,,ap,, -+,ap,) IS obtained asValir(ap,) = optimal BSS. For the proof in Condition (1), assume that if
Zz:i[Dleft(apj) — FBex(ap,)], where Dig(a,) and lmax > Tmax, NO left-swap pasd is included in an optimal
Fleg(ay,) are the left-swap distance and the left-swaPSS. Hence, an optimal BSS1 is Rlmex e, S1 = Rlmex,
feedback ofa,, in (a,,,ap,, -, a,,), and the right inversion However, it is clear that there exists a BS3 = L™, Since
value Valyigni(ag,) Of ag in (ag,,aq, -, a,) is obtained lmax > Tmax, the solutionS2 will have fewer passes than the
as Valyigni(aq,) = Ej;l[Drigllt(aq-) — Frigni(ag,)], where solution S1. Clearly, the solutionS1 is not an optimal BSS.
Dyigii(aq,) and Fugi{a,,) are the right-swap distance andrhis is acontradl_cuqn. Therefore,ltjwtX > Tmax, at Iee_lst.one
the right-swap feedback af,, in (ag,,aq,, -, a4, ). Hence, left-swap passl is mc;lgded in an optimal BSS. Similarly,
the algorithmMax_Valueobtains the maximal right inversionfor the proof in Condition (2), iflax < rmax, at least one
value . and the maximal right inversion valug,,, in fight-swap passt is included in an optimal BSS. O
(as, a2, -+, an). _ o IV. BUBBLE-SORTING-BASED

Eor _the analysis of time complexity ||Ivtlax_VaIue_the step NON-MANHATTAN CHANNEL ROUTING
of finding a left-swap lis{a;, ,a;,, - - -, ap,) and a right-swap ) ]
list (ag, ,aq,, - ag,) in (a1, az, - a,) takesO(n) time, the For a BSNMCR problem, the routing process is based on an
step of finding all the left-swap distancé.g(a,,) and all opumgl BS_S. If an optimal _BSS is obtained, all the swapping
the left-swap feedbackic (a,,) in (ap, s ap,, -, ap, ) takes operations in each pass will bellmplemented by routing ver-
O(n) time, and the step of finding all the Tight-swap distancdic@l, horizontal,+45° or —45° wires. Hence, the BSNMCR
Diigni(ag,) and all the right-swap feedbackygy(a,,) in problem is divided intooptimal bubble-sorting solutiomnd
(a(117a(12vz' -+, a,,) takesO(n) time, wheren, is the number of bubble-sorting-based non-Manhattan channel routing
element.s ir(al_, az, -+, a,). Furthermore, the step to computex Optimal Bubble-Sorting Solution
all the inversion valuesValies(a,,) = E}:I[Dleft(apj) —

Fege(ap,)] in (ap,,ap,,---,a,) and all the inversion
values Valright(aqi) = E;:i[Dright(aqj) - Fright(a/qj)] in
(Ggi:0q., -+, aq,) takesO(n) time. Finally, the step of finding

the e!ement With,a and the element W,ithmax takesQ(n) BSS. Therefore, the algorith@BSSis designed to obtain an
time in the worst case. Therefore, the time complexity of th@ptimal BSS as shown at the bottom of the next page
algorithm is inO(n) time, wheren is the number of elements 10 0em 2: The algorithmOBSSobtains an optimal BSS

For a vector(ai, as, -+, an), lmax andry,., are obtained
from (I1,ls,---,1;) and (ry,ra,---,7,), respectively. By
Lemma 4, there are two conditions to decide an optimality-
oriented swap-direction fofay,as,---,a,) in an optimal

in (a1, a2, -+, an). . . . L' and the time complexity of the algorithm @(kn), wherek
Based on the computation of the nversion Va!u%? is the number of swap passes in an optimal BSSrafglthe
and ryax i (a1, a2, -+, a,), the selection of an optimality- |\ \ver of elements i, s, - , ).
oriented swap-direction in an optimal BSS s further formu-""p 0« £o o vector(cil,c;Q, ) ~7~,an), by Theorem 1, the
lated. _ algorithmMax_Valueobtains the maximal left inversion value
Lemma 4:For a given vector (ay,az,---,ax), 1€t ;= "on4the maximal right inversion valug,... By Lemma
(b2, -+, 1) and(ry, 72, - -+, 75) be the left inversion table 4 “hageq on the comparison of the valugsy, and 7,
and the right inversion table dfi1, a2, - -, a,), respectively. swap-direction in(ay,as, - -, an) is correctly decided for
Two conditions are used to decide an optimality-orienteg, oimal BSS. Hené:e,7the7algorithmBSScan obtain an
swap-direction in an optimal BSS as follows. optimal BSS.
1) If linax > 7max, at least one left-swap passis included  For the analysis of time complexity i®BSS by Theorem
in an optimal BSS. 1, the time complexity of the algorithiax_Valueis in O(n)
2) If lmax < 7max, at least one right-swap pads is time, wheren is the number of elements ifu;, as,- - - . a,).
included in an optimal BSS. In the decision of a swap-direction ifu:,as,- - - ,a,), the
Proof: For a vector(a;,as,---,a,), an optimal BSS time complexity of comparing the valués.x and .. and

is represented ad.”RY, where x is the number of left- assigning the values,,» andru. is in O(1) time. Since the
swap passes anglis the number of right-swap passes in anumber of swap passes in an optimal BS&,ithe number of

Algorithm MaxValue

Input a vector(a, az, -, an);
begin
Find a left-swap list(a,,, , ap,, - -, ap,,) and a right-swap lis{a,, , aq,, - -, aq, ) N (a1, a2, -, an);
Find all the left-swap distanceB.s;(a,,) and all the left-swap feedbadRes:(a,. ) I (ap,, apy, -+, ap, );
Find all the right-swap distance®)igi: (a4, ) and all the right-swap feedbackigh: (aq,) IN (aq,, gy - aq, );
Compute all the inversion valué&les(a,,) = »_[Dier(ap,) = Fiere(ap,)] IN (ap,, ap,, -+, ap.)
j=1
’ t
and all the inversion value¥algn: (ag,) = [Drigni(aq,) — Frigni(ag,)] in (ag,,ag,, -+, aq,);

j=i
Output the maximal right inversion valug,,, and the maximal right inversion valug,,;
end
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iterations in this loop will bek. Therefore, the time complexity 12345678
of the algorithmOBSSis O(kn), where k is the number ) I
of swap passes in an optimal BSS amds the number of
elements in(ay, az, -, an). O
Referring to the channel in Fig. 1, (7, 3, 2, 8,6, 5, 4, 1) is
transformed into (1, 2, 3, 4, 5, 6, 7, 8) pass by pass in a BSS.
By running the algorithnDBSS an optimal BSS is obtained
by the passes shown at the bottom of the page.
For V = (77 3,2,8,6,5,4, 1)’ an optimal BSS is Fig. 4. Physical routing result for an optimal BSS of (7, 3, 2, 8, 6, 5, 4, 1).
LLLRLV = (1,2,3,4,5,6,7,8). Hence, an optimal BSS
Sis L'R, ie., S = L*R. If two layers are available in g Bybble-Sorting-Based Non-Manhattan Channel Routing
a bubble-sorting-based non-Manhattan routing model, by ) )
mapping each left-swap or right-swap passif on one Consider bubble-sorting-based non-Manhattan channel rout-
routing track from bottom to top track by track, a physicdng, first, all the one-sided nets and multiple-terminal nets
routing result shown will be obtained and shown in Fig. 4. in a channel are transformed into two-terminal two-sided

732 8 6 5 41

Algorithm OBSS

Input: a vector(ay, as, -+, ay);
begin
while (the vector(ay, as, - - -, a,,) IS unsortedl
begin

Run the algorithm MaX/alue to obtain the maximal left inversion valljg,,, and
the maximal right inversion value,,,;

If (Inax > 7max), & left-swap pasd. is applied to(ay, as, - -, a);
If (Imax < 7max), @ right-swap passR is applied to(ay, az,- -, a,);
If (Inax = 7max), & left-swap pasd. or right-swap pass? is applied to (a1, as,- -, a,);
end
Output an optimal BSS

end

Pass 1V =(7,3,2,8,6,5,4,1)

Left inversion table Right inversion table Left-swap list Right-swap list

(77 27 1747 37 27 07 0) (071727 17 2737 67 4) (1) (77 8)

— Condition: l,,,x(=7) > rmax(=6), Decision: a left-swap pass to (7,3,2,8,6,5,4,1)
— If a left-swap pasd. to (7,3,2,8,6,5,4,1), thenLV = (1,7,3,2,8,6,5,4)

Pass 2 LV =(1,7,3,2,8,6,5,4)

Left inversion table Right inversion table Left-swap list Right-swap list
(0,2,1,4,3,2,0,0) (0,0,1,0,1,2,5,3)  (1,2,4) (1,7,8)

— Condition: ly.x(= 4) < rmax(= 5), Decision: a right-swap padss to (1,7,3,2,8,6,5,4)
— If a right-swap pass? to (1,7,3,2,8,6,5,4), thenRLV = (1,3,2,7,6,5,4,8)

Pass 3 RLV =(1,3,2,7,6,5,4,8)

Left inversion table Right inversion table Left-swap list Right-swap list

(0,1,0,3,2,1,0,0) (0,0,1,0,1,2,3,0)  (1,2,4,8) (1,3,7.8)

— Condition: ly.x(=3) = rmax(=3), Decision: a left-swap pass or right-swap pas$? to (1,3,2,7,6,5,4,8)
— If a left-swap pasd. to (1,3,2,7,6,5,4,8), thenLRLV = (1,2,3,4,7,6,5,8)

Pass 4 LRLV = (1,2,3,4,7,6,5,8)

Left inversion table Right inversion table Left-swap list Right-swap list

(0,0,0,0,2,1,0,0) (0,0,0,0,0,1,2,0)  (1,2,3,4,5,8)  (1,2,3,4,7,8)

— Condition: . (=2) = rma.x(=2), Decision: a left-swap pask or right-swap pass: to (1,2,3,4,7,6,5,8)
— If a left-swap pasd to (1,2,3,4,7,6,5,8), then LLRLV = (1,2,3,4,5,7,6,8)

Pass 5 LLRLV = (1,2,3,4,5,7,6,8)

Left inversion table Right inversion table Left-swap list Right-swap list

(0,0,0,0,0,1,0,0) (0,0,0,0,0,0,1,0)  (1,2,3,4,5,6,8) (1,2,3,4,5,7,8)

— Condition: . (=1) = rmax(=1), Decision: a left-swap pask or right-swap pass: to (1,2,3,4,5,7,6,8)
— If a left-swap pasd to (1,2,3,4,5,7,6,8), then LLLRLV = (1,2,3,4,5,6,7,8)
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Recover one-sided
nets and Rewiring

5 610118 49 71 32
37 46 2 2 3 45

( )

Recover multiple-terminal
nets and Rewiring

(1 5 21
15213 627 12 3 4 567

Track reassignment
and Rewiring

3746 2 3 435

56 10T 8§ 49 7 1
(G 7 4623 4

Fig. 5. Recovery of one-sided nets and multiple-terminal nets in a bubble-sorting-based non-Manhattan channel.

nets by introducing dummy and duplicated terminals into this Finally, according to a physical routing result of all the
channel and renaming all the terminal numbers of all the twiwo-sided two-terminal nets in a channel, the routing of
terminal two-sided nets in this channel. Refering to Fig. all the one-sided nets and multiple-terminal nets must be
for a channel specificatiol’V = (1,5,2,1,3,6,2,7) and recovered from that of all the two-sided two-terminal nets
BV = (3,7,4,6,2,3,4,5), nets 1 and 4 in one-sided netdn a channel. Basically, the routing of each one-sided net is
introduce two dummy terminals on top and bottom boundariezhtained by eliminating dummy terminals and redundant wires
respectively. On the other hand, nets 2 and 3 in multiplend introducing vias on crossing points of two nets. After
terminal nets introduce one duplicated terminal on top arhkis, a rewiring process may be used to improve the routing
bottom boundaries, respectively. Hence, a new channel speg#isult. On the other hand, the routing of each multiple-terminal
cation is obtained &V = (4”,1’,5,2/,1”,3',37,6,2”,7,4") net is obtained by merging duplicated terminals, eliminating
and BY = (1”,3,7,4,6,2/,27 3",4"” 5 1'). Furthermore, redundant wires and introducing vias on the endpoints of
by renaming all the terminal numbers of all the two-terminaherged wires. After this, a track-reassignment and rewiring
two-sided nets in this channel, a final new channel specificatiprocess may be used to improve the routing result.
is obtained ag'V = (1,2,3,4,5,6,7,8,9,10,11) and BV = In Fig. 5, for the vector (5, 6, 10, 11, 8, 4, 9, 7, 1, 3, 2),
(5,6,10,11,8,4,9,7,1,3,2). a physical routing result has seven tracks by mapping seven
Basically, BSNMCR is based on an optimal BSS. If ateft-swap passes ih”. For the recovery of one-sided nets, nets
optimal BSS is obtained by the algorith@BSS this solution 1 and 4 are routed by eliminating two dummy terminals and
will be represented a&* RY, wherex is the number of left- redundant wires and introducing one via on crossing points of
swap passes anglis the number of right-swap passes in atwo nets, respectively. For the recovery of multiple-terminal
optimal BSS, respectively. As mentioned above, BSNMCRets, nets 2 and 3 are routed by merging one duplicated
uses the result of an optimal BSS to yield a physical routirigrminal, eliminating redundant wires, and introducing one
result for a given channel. In this BSNMCR problem, all theia on the endpoints of merged wires, respectively. Finally,
routing nets in a channel are connected by using vertical track-reassignment and rewiring process is used to reduce
horizontal,+45° or —45° wires. If two layers are available in athe number of routing tracks and total wire length.
bubble-sorting-based non-Manhattan routing model, a physical
routing result will be yielded by mapping each left-swap or
right-swap pass i.* RY on one routing track from bottom to V. CONCLUSIONS AND FURTHER WORKS
top track by track. For the vector (5, 6, 10, 11, 8, 4, 9, 7, 1, 3, For a bubble-sorting-based non-Manhattan channel routing
2), an optimal BSS.” is obtained by running the algorithm (BSNMCR) problem, Chaudhary@(kn?) heuristic algorithm
OBSS Furthermore, a physical routing result will be obtainef8] and Chen’s O(k*n) optimal algorithm [9] have been
by mapping seven left-swap passed.inon seven tracks from respectively proposed, whereis the number of terminals and
bottom to top track by track. k is the number of routing tracks in a channel. However, the
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time complexity of the two algorithms is i@(n?) time in the  [5] D. N. Deutsch, “A dogleg channel router,” iIACM/IEEE Design
i i itv-ori _ Automation Conf.1976, pp. 425-433.
\év.orSt.Case' lln t.hIS paper, bafsedl on optlma_llty Onerged SwaTﬁ] E. Lodi, F. Luccio, and L. Pagli, “A preliminary study of a diagonal
irection selection in an optimal BSS, an improved optimal™ channel-routing model Algorithmica vol. 4, pp. 585-597, 1989.
algorithm for a BSNMCR problem is proposed, and the timg7] D. Wang, “Novel routing schemes for IC layout—Part I: Two-layer

complexity of the proposed algorithm is proven to b@(’kﬂ) Zgaggel routing,” inACM/IEEE Design Automation Confl991, pp.
. . o\ 4 . -53.
time and inO(n?) time in the worst case. [8] K. Chaudhary and P. Robinson, “Channel routing by sortingEE

Basically, the main goal of a BSNMCR problem is to  Trans. Computer-Aided Desigmol. 10, pp. 754-760, 1991.
minimize total routing area in a channel. It is clear that totaf®! < ¥-R-Chien C. ¥, Hou, and U. rﬁ:g??ou?ggz”;aé algorithms for bubble
routing area in a bubble-sorting-based non-Manhattan channel ajged Designvol. 13, pp. 603-609, 1994. ' P
depends on routing modeling and the number of tracks. In
further works, designing an optimal routing model for a
bubble-sorting-based non-Manhattan channel and proposing an
effective bubble-sorting-based approach to reduce the num;

of tracks will be studied for a BSNMCR problem.
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