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Abstract 

A co-rotational total Lagrangian finite element formulation for the geometrically nonlinear dynamic analysis of spatial Euler beam with 
large rotations but small strain, is presented. 

The nodal coordinates, displacements, rotations, velocities, accelerations, and the equations of motion of the structure are defined in a 
fixed global set of coordinates. The beam element has two nodes with six degrees of freedom per node. The element nodal forces are 
conventional forces and moments. The kinematics of beam element are defined in terms of element coordinates, which are constructed at the 
current configuration of the beam element. Both the element deformation nodal forces and inertia nodal forces are systematically derived by 
consistent linearization of the fully geometrically nonlinear beam theot 3, using the d'Alembert principle and the virtual work principle in the 
current element coordinates. 

An incremental-iterative method based on the Newmark direct integration method and the Newton-Raphson method is employed here for 
the solution of the nonlinear equations of motion. Numerical examples are presented to demonstrate the accuracy and efficiency of the 
proposed method. © 1999 Elsevier Science S.A. All rights reserved. 

1. In t roduc t ion  

The nonlinear dynamic behavior of beam structures, e.g. framed structures, flexible mechanisms and robot 
arms, has been the subject of considerable research [1-13]. Currently, the most popular approach for this 
analysis is to develop finite element models. The formulations, which have been used in the literature, might be 
divided into three categories: total Lagrangian (TL) formulation [3-10], updated Lagrangian (UL) formulation 
[3,9] and co-rotational (CR) formulation [ 1,2,11-13]. It is well known that within the co-rotating system either a 
TL or a U L formulation may be employed [14,15]. These formulations are consequently termed C R - T L  and 
C R - U L  formulations. The reference configuration used in a C R - T L  formulation differ from the one used in a 
conventional TL formulation by the motion performed by the co-rotating coordinate system from the initial to 
the current (or neighboring) configuration. In order to capture correctly all inertia effects and coupling among 
bending, twisting, and stretching deformations of the beam elements, the formulation of beam elements might be 
derived by the fully geometrically nonlinear beam theory [5]. The exact expressions for the element inertia and 
deformation nodal forces, which are required in a TL formulation for large displacement] small strain problems, 
are highly nonlinear functions of element nodal parameters. However, the dominant factors in the geometrical 
nonlinearities of beam structures are attributable to finite rotations, the strains remaining small. For a beam 
structures discretized by finite elements, this implies that the motion of the individual elements to a large extent 
will consist of rigid body motion. If the rigid body motion part is eliminated from the total displacements and 
the element size is properly chosen, the deformational part of the motion is always small relative to the local 
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element axes; thus in conjunction with the co-rotational formulation, the higher order terms of nodal parameters 
in the element deformation and inertia nodal forces may be neglected by consistent linearization [5,12]. The 
so-called 'Natural approach' by Argyris and co-worke, rs, for instance [16-19], is also based on the idea of 
separating rigid body motions from local deformations. It has been used to various application, such as linear, 
large displacement/small strain, and large strain problems. The co-rotational formulation has been extensively 
applied in the nonlinear static analysis. However, the application of co-rotational formulation in the nonlinear 
dynamic analysis has been rather limited (e.g. [ 1,2,11-13]). In [1,2], a co-rotational formulation is presented for 
the transient analysis of space frames in large displacement, small strain problems. To the authors' knowledge, it 
seems that the governing equations in [1,2] are not obtained by consistent linearization of the fully geometrically 
non-linear beam theory. Thus, they cannot account for the complete inertia effects and deformation coupling. In 
[12], Hsiao et al. presented a co-rotational finite element formulation and numerical procedure for the dynamic 
analysis of planar beam structures. Both the element deformation and inertia forces are systematically derived by 
consistent linearization of the fully geometrically nonlinear beam theory using the d'Alembert principle and the 
virtual work principle. This tormulation and numerical procedure were proven to be very effective by numerical 
examples studied in [12]. However, it is only limited for planar beam structures. 

The objective of this study is to present a consistent co-rotational finite element formulation and numerical 
procedure for the nonlinear dynamic analysis of three-dimensional elastic Euler beam using consistent 
linearization of the fully geometrically nonlinear beam theory. A general formulation for three-dimensional 
beam element is not a simple extension of a two dimensional formulation, because large rotations in three 
dimensional analysis are not vector quantities; that is, they do not comply with the rules of vector operations 
[20]. In [21] a motion process of the three-dimensional beam element is proposed for the large displacement and 
rotation analysis of spatial frames. In [15 ], Hsiao presented a co-rotational total Lagrangian formulation of beam 
element for the static nonlinear analysis of three-dimensional beam structures with large rotations but small 
strains. All coupling among bending, twisting and stretching deformations for beam element is correctly 
considered by the fully geometrically nonlinear beam theory. Element deformations and element equations are 
defined in terms of element coordinates which are constructed at the current configuration of the beam element. 
The element deformations are determined by three rotation parameters, which are used to determine the 
orientation of element cross section. In conjunction with the co-rotational formulation, the higher-order terms of 
nodal parameters in element nodal force and stiffness matrix are consistently dropped. It seems that this element 
can be extended for the nonlinear dynamic analysis of the beam structures. Thus, the beam element presented in 
[15] is extended and employed here. 

The relation between the time derivatives of the rotation parameters proposed in [15] and the angular velocity 
and the angular acceleration is derived here. The beam element developed here has two nodes with six degrees 
of freedom per node. The element nodal forces are conventional force and moment. The element deformation 
and inertia nodal forces are systematically derived by using the d'Alembert principle and the virtual work 
principle. An incremental-iterative method based on the Newmark direct integration method and the Newton- 
Raphson method is employed here for the solution of the nonlinear equations of motion. Numerical examples 
are presented and compared with the results reported in the literature to demonstrate the accuracy and efficiency 
of the proposed method. 

2. Finite element formulation 

2.1. Basic assumptions 

The following assumptions are made in derivation of the beam element behavior. 
(1) The beam is prismatic and slender, and the Euler-Bernoulli hypothesis is valid. 
(2) The cross section of the beam is doubly symmetric. 
(3) The unit extension and the twist rate of the centroid axis of the beam element are uniform. 
(4) The cross section of the beam element does not deform in its own plane and strains within this cross 

section can be neglected. 
(5) The out-of-plane warping of the cross section is the product of the twist rate of the beam element and the 

Saint Venant warping function for a prismatic beam of the same cross section. 
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(6) The deformation displacements and rotations of the beam element are small. 
(7) The strains of the beam element are small. 
In conjunction with the co-rotational formulation, the sixth assumption can always be satisfied if the element 

size is properly chosen. 

2.Z Coordinate systems 

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe the system, we 
define three sets of right-handed rectangular Cartesian coordinate systems: 

(1) A fixed global set of coordinates, X~ (i = 1, 2, 3) (see Fig. 1); the nodal coordinates, displacements, 
rotations, velocities and accelerations, and the equations of motion of the system are defined in these 
coordinates. 

(2) Element cross section coordinates, xi s (i = 1, 2, 3) (see Fig. 1); a set of element cross section coordinates 
is associated with each cross section of the beam element. The origin of  this coordinate system is rigidly 

S 
tied to the centroid of  the cross section. The x~ axes are chosen to coincide with the normal of the 
unwrapped cross section and the x'~,~ and x~ axes are chosen to be the principal directions of the cross 
section. 

(3) Element coordinates, x, (i = 1,2, 3} (see Fig. 1); a set of  element coordinates is associated with each 
element, which is constructed at the current configuration of  the beam element. The origin of this 
coordinate system is located at node 1, and the x I axis is chosen to pass through two end nodes of the 
element; the x 2 and x 3 axes are determined by the method proposed in [15,21 ]. Note that this coordinate 
system is just  a local coordinate system, which is updated at each iteration, not a moving coordinate 
system. The deformations, deformation nodal forces, inertia nodal forces, stiffness matrices and inertia 
matrices of the elements are defined in terms of these coordinates. In this paper the element deformations 
are determined by the rotation of element cross section coordinate systems relative to this coordinate 
system. 

2.3. Rotation vector and rotation parameters 

For convenience of the later discussion, the term 'rotation vector '  is used to represent a finite rotation. Fig. 2 
shows that a vector b which as a result of the application of a rotation vector a = Ce is transported to the new 
position b ' .  The relation between b '  and b may be expressed as [22,23] 

x 2  x s 

(l,o,o) 

Xa 

Fig. 1. Coordinate systems. Fig. 2. Rotation vector. 
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b '  = b cos (b + (1 - cos ~b)(e. b)e  + sin d,(e x b)  

[ s i n q 5  1-cos~b~ b2 ] 
= I + - - - - ~ - - ( a × l ) +  a × ( a × l )  b 

= R b  (1) 

where ~b is the angle of  rotation about the axis of rotation as shown in Fig. 1, e is the unit vector along the axis 
of  rotation, I is the identity matrix of  order 3 X 3, and R is the so-called rotation matrix. 

In this paper, the symbol ( ' ) denotes time derivative:. The time derivative of Eq. (1) may be expressed as 

db '  
- R b  = R R ' b '  = (¢o × I ) b '  (2) 

dt 

where ¢o is the angular velocity vector. From Eqs. (1) and (2), the relation between ¢o and a, the time derivative 
of  the rotation vector a, may be expressed by [23] 

where 

¢0 = F(a)d 

F(a) = [I + p(a × I )  + qa × (a × I)1 
(3) 

1 - cos q5 1 ( sinq~'~ 
p -  ~b 2 , and q = - ~ -  1 ~b / "  

The virtual rotation 8q~ is related to ~a, the virtual change of the rotation vector a, through the same 
relationship that exists between ¢o and d [23] i.e.: 

8 ¢  = F(a) ~a (4) 

where 8 ¢  = {Sq,  8~:, 8~}, 8q  (i = 1, 2, 3) are virtual rotation about x, axes. In this paper, the symbol { } 
denotes column matrix. 

The time derivative of Eq. (3) may be expressed by 

do = ['(a)d + F(a)ii  
(5) 

[ - ( a ) = p ( a  × l )  + 4a × (a X I )  +p(~/ X t )  + qa X(a  X t ) + q a  X ( a  x l )  

where ¢b is the angular acceleration, ti is the second time derivative of  a. 
From Eqs. (3) and (5), it can be seen that F ( 0 ) =  I and / : ( 0 ) =  0. Thus, o~ = a, 8~p = ~a and o5 = ~, when 

a = 0 .  
Let e i and e s (i = 1, 2, 3) denote the unit vectors associated with the xi and x s axes, respectively. Here, the 

traid e~ in the deformed state is assumed to be achieved by the successive application of  the following two 
rotation vectors to the traid e,: 

O n = Onn (6) 

O, = O,t (7) 

where 

n : {0, 021(022 + o23) 1'2, 0~/(022 + 0~) ''2} 

= {0, ns, n3} (8) 

t = {cos 0., 0 2, 0 3} (9) 

cos O. = ( l -  0 ~ -  0~) ' '2  (10) 

dw(s) dr(s) 
0 2 - -  ds ' 0 3 -  ds (11) 

in which n is the unit vector perpendicular to the vectors e~ and eS~ ", and t is the tangent unit vector of  the 
deformed centroid axis of  the beam element. Note that e s coincides with t. 0, is the inverse of  cos 0 n. v(s) and 
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w(s) are the lateral deflections of  the centroid axis of the beam element in the x 2 and x 3 directions, respectively, 
and s is the arc length of the deformed centroid axis. 

Using Eqs. ( I )  and (6)-(10) ,  the relation between the vectors e~ and el! (i = 1,2, 3) in the element coordinate 
system may be obtained as [15] 

S 
e i = [t, R j ,R2]e  i = Roe ' (12) 

R~ =cos0~r~  + s i n 0  t r  2, R 2 = - s i n O ~ r  l + c o s 0 ~ r  e 

r, = {-03, cos 0, + (1 - cos O,,)n~, (1 - cos O,,)n2n3} 

r 2 = {02, (1 - cos O,)n2n 3, cos 0, + (1 - cos O,)n~} (13) 

where R o is a rotation matrix. The rotation matrix is determined by 0, (i = 1, 2, 3). Thus, 0i are called rotation 
parameters in this study. 

Let 0 = {0~, 02, 03} be the column matrix of  rotation parameters, 80 be the variation of O. The traid e~ 
(i = l, 2, 3) corresponding to 0 + 80 may be achieved by the application of  ~ (i = I, 2, 3), the virtual rotation 
about x, axes, to the traid el!' (i = 1, 2, 3) corresponding to 0 [15]. When 02 and 03 are much smaller than unity, 
the relationship between ~0 and ~ = {~q~j, ~¢~, ~3}  may be approximated by [15] 

F' 03,  1 ~0 ~q~ T = -0~ 1 = ~q~ • (14) 

0~ 0 

The time derivative of 0 is related to angular velocity o~ through the same relationship that exists between ~0 
and ~ i.e.: 

O= T-~¢o (15) 

The time derivative of Eq. (15) may be expressed by 

~J= T-~¢b + / ~ - ' o ~  (16) 

2.4. Nodal parameters and forces 

The global nodal parameters for the system of equations corresponding to the element local nodes j ( j  = 1, 2) 
are Uij, the X i (i = 1, 2, 3) components of  the translation vectors Uj at nodes j, and ~j ,  the Xi (i = 1, 2, 3) 
components of  the rotation vectors ~ at nodes j. Note that here, the values of  ~ are reset to zero at current 
configuration. T h u s , . ~ j ,  the variation of  ~1' represents infinitesimal rotations about the X, axes (see Eq. (4)), 
and the values of  ~ and ~i are equal to the values of  the angular velocity vectors and angular acceleration 
vectors at nodes j (see Eqs. (3) and (5)), respectively. The generalized nodal forces corresponding to ~ i  are the 
conventional moments about the Xi axes. The generalized nodal forces corresponding to ~U~j, the variation of 
U~j, are the forces in the Xg directions. 

The element proposed in [15] is employed and extended here. The element has two nodes with six degrees of 
freedom per node. Two sets of element nodal parameters termed 'explicit nodal parameters' and 'implicit nodal 
parameters' are employed. The explicit nodal parameters of  the element are used for the assembly of  the system 
equations from the element equations. Thus, they should be consistent with the global nodal parameters, and are 
chosen to be u~/, the x~ (i = 1, 2, 3) components of  the translation vectors u/ at node j ( j  = 1, 2) and &~j, the x~ 
(i = 1,2, 3) components of the rotation vectors ~ at node j  ( j  = 1, 2). Note that here, the values o f ~  are reset 
to zero at current configuration. Thus, 8. d:#, the variation of  &ij, represents infinitesimal rotations about the x~ 
axes (see Eq. (4)), and the values of  dpj and ~ j  are equal to the values of  the angular veloci O, vectors and 
angular acceleration vectors at nodes j (see Eqs. (3) and (5)), respectively. The generalized nodal forces 
corresponding to ~q~j are m~j, the conventional moments about the x~ axes. The generalized nodal forces 
corresponding to ~u u, the variation of u~j, are f j ,  the forces in the x: directions. 

The implicit nodal parameters of  the element are used to determine the deformation of  the beam element. 
They are chosen to be u~j, the x~ (i = 1, 2, 3) components of the translation vectors uj at node j  ( j  = 1, 2) and 0 0, 
the nodal values of the rotation parameters 0~ (i = 1, 2, 3) at node j ( j  = 1, 2). The generalized nodal forces 
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0 the forces in the x~ directions and the generalized moments, corresponding to 8ugj and 80~j are f,j and m,j, 
6 ~  • respectively. Note that m,j are not conventional moments,  because 80,j are not infinitesimal rotations about the 

x~ axes at deformed state. 
In view of Eq. (14), the relations between the variation of the implicit and explicit nodal parameters may be 

expressed as 

_ o r ,  1 o 

LaO J o o r ; ' j  a 

where 8uj = {Su,j, 8u2j, 8u~j}, 8~ = {80Li, 802i, 803j} and 8~b = {8¢,i, 8&2j, 8&3j}, (J = 1,2); I and 0 are the 
identity and zero matrices of  order 3 × 3, respectively; T i ~ ( j  = 1,2) are nodal values of  T -  ~ given in Eq. (14). 

= m l , f 2 ,  m2}, where L={L, Lj, Lfl m j = { , n l i ,  m~j,m~j}, and m; Let f = { f l , m , , f 2 ,  m2}, fo { f l '  0 0 .. . . O =  
{mO,  O o m2j, m3j } (j  = 1, 2), denote the internal nodal force vectors corresponding to the variation of the explicit 
and implicit nodal parameters, h /  and h/0, respectively. Using the contragradient law [24] and Eq. (17), the 
relation between f and fo, may be given by 

f =  T'o~,f " . (18) 

2.5. Kinematics o f  beam element 

The deformations of  the beam element are described in the current element coordinate system. From the 
kinematic assumptions made in this paper, the deformations of the beam element may be determined by the 
displacements of the centroid axis of  the beam element, orientation of the cross section (element cross section 
coordinates), and the out-of-plane warping of  the cross section. Let Q (Fig. 1) be an arbitrary point in the beam 
element, and P be the point corresponding to Q on the centroid axis. The position vector of point Q in the 
undeformed and deformed configurations may be expressed as 

r o = x e  I + y e ~  + z e  3 (19) 

r = x ( s ) e ,  + v(s)e 2 + w(s)e 3 + O,..~e~ + ye~ + ze 3 (20) 

where xc(s), v(s) and w(s) are the x~, x 2 and x3 coordinates of point P, respectively, s is the arc length of  the 
deformed centroid axis measured from node 1 to point P. The relationship among x,(s), v(s), w(s) and s may be 

given as 

L x ( s )  = Ull + COS 0,, ds (21) 

where ull is the displacement of node 1 in the x~ direction, and cos 0,, is defined in Eq. (10). Note that due to 
the definition of  the element coordinate system, the value of u~ is equal to zero. However, the variation and 
time derivatives of U~l are not zero. Making use of Eq. (21), one obtains 

2 (  
S - (22) 

f cos 0,, d~: 
1 

( = x,.(S) - x.(O) = L - Ull -~- U12 (23) 

2s 
s c = - 1  + ~ -  (24) 

in which S and ( are the current arc length and chord length of the centroid axis of  the beam element, 
respectively, L is the length of  the undeformed beam axis, and ut2 is the displacement of node 2 in the xj 
direction. 

Here, the lateral deflections of the centroid axis v(s) and w(s) are assumed to be the Hermitian polynomials of  
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s, and the rotation about the centroid axis 0, (s) (Eq. (7)) is assumed to be linear polynomials  of s. v(s), w(s) and 
O~(s) may be expressed by 

v(s) = {N 1 , U 2, N 3, Xa}t{Uza, 0~1, u22,032} = Nt,,u,, 

w(s) = {N I , - N  2, N 3, -N4}t{u3,, 021, u32,022 } = N i u  ` (25) 

01(S ) = {Ns ,N6} t{011  012} = N t , d u d  

where u2i and u3j ( j  = 1, 2) are nodal values of  v and w at nodes j ,  respectively, and 0# (i = l,  2, 3, j -- 1, 2) are 
nodal values of  0, at nodes j .  Note that, due to the definition of  the element coordinates, the values of u2j and u3j 
( j  = 1, 2) are zero. However, their variations and time derivatives are not zero. ~ (i = 1-6)  are shape functions 
and are given by 

1 S 
N ~ - - ~ - ( l -  ( )2(2 + ( ) ,  N2 = ~  ( 1 -  ~:2)(1 - ( ) ,  

1 S 
N~ = ~- ( 1 + ()2(2 - ( ) ,  N 4 = ~- ( -  1 + (2)(  1 + ( ) ,  (26) 

1 1 
N5 = ~ ( 1 - ( ) ,  N 6 = ~ ( !  + ( ) .  

The axial displacements of the centroid axis may be determined from the lateral deflections of  the centroid 
axis and Eqs. (21)- (24) .  

If x, y and z in Eq. (19) are regarded as the lagrangian coordinates, the Green strains e~ et2 and e~3 are given 
by [25] 

l 
~,, = ~ (rlxrx - 1) 

1 
el  2 = "2 rt.xr, y (27) 

1 
~¢'13 : 2 rt.xr.z • 

Using the chain rule for differentiation, r in Eq. (27) may be expressed as 

r x = r..~(1 + ~o) (28) 

Os 
- - -  1 (29 )  c ° -  Ox 

where eo is the unit extension of  the centroid axis. Making use of  the assumption of uniform unit extension, one 
may rewrite Eq. (29) as 

S 
e o = ~- - 1 . (30) 

Substituting Eqs. (9) - (13) ,  (20), and (28) into Eq. (27), e~ ,  e~2 and et3 can be calculated, et 1, 6"12 and e~.~ are 
given in [15] and are not repeated here. 

2.6. E lement  nodal  f o rce  vector  

The element nodal force vectorfo (Eq. (18)) corresponding to the implicit  nodal parameters are obtained from 
the d 'Alember t  principle and the virtual work principle in the current element coordinates. For convenience, the 
implicit  nodal parameters are divided into four generalized nodal displacement vectors u i (i = a, b, c, d), where 

u~ = { u , , ,  u12 } (31 )  

and u b, u c and u d are defined in Eq. (25). 
The generalized force vectors corresponding to 5u,, the variation of u (i = a, b, c, d)  are 
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= {f~I, fl2} 

={f2i,  o m3,, L2, m~2} 
(32) 

where f /  and f~ ( j  = a, b, c, d) are the deformation nodal force vectors and the inertia nodal force vectors, 
respectively. 

The virtual work principle requires that 

~m~,f, + 8uthfh + 8u[ f  + ~m~f~ = : (o-1~ 8~,, + 2~r12 8~.2 + 2cr~3 8~3 + p ~t / . )  dV (33) 

where V is the volume of the undeformed beam, 8e~j ( j  = 1,2, 3) are the variation of ~ j  in Eq. (27), 
respectively, with respect to the implicit nodal parameters, o-~j ( j  = 1, 2, 3) are the second Piola-Kirchhoff  
stress. For linear elastic material, the following constitutive equations are used: 

crll = E~ll , o12 = 2G~12 and crj3 = 2G~i: (34) 

where E is the Young's  modulus and G is shear modulus, p is the density, 8r and/" are the variation and the 
second-time derivative of  r in Eq. (20), respectively. 

It should be mentioned again that the element coordinate system is a local coordinate system, which is 
updated at each iteration, not a moving coordinate system. Thus, i" is the absolute acceleration and fv P ~rti" dV 
comprises all the virtual inertia forces. 

If the element size is chosen small enough, the values of  the nodal parameters (displacements and rotation 
parameters) of  the element defined in the current element coordinate system may always be much smaller than 
unity. Thus, the higher-order terms of nodal parameters in the element internal nodal forces may be neglected by 
consistent linearization [5,12]. However, in order to include the nonlinear coupling among the bending, twisting 
and stretching deformations, the terms up to the second order of  nodal parameters are retained in element 
deformation nodal forces f j  ( j  = a, b, c, d). Because the', values of  the nodal parameters of  the element may 
always be much smaller than unity, it is reasonable to assume that the coupling between the nodal parameters 
and their time derivatives are negligible. Thus, only zeroth order terms of nodal parameters are retained in 
element inertia nodal forces f~ ( j  = a, b, c, d). Note that because the shape functions given in Eq. (26) are 
functions of  S, the current arc length of the beam element, the variations and time derivatives of the shape 
functions are considered here. 

Substituting Eqs. (23)-(30) ,  and (34) into Eq. (33), and using consistent linearization, f~: and f~. ( j  = 
a, b, c, d), the element deformation nodal force vectors and the element inertia nodal force vectors, respectively, 
may be given by 

[ f a,=G<, A E ( % + ~ g ; ) + E I ~  (~03 . . -03 . .~O* , . )ds  

5 , 1 ~ ] 

d d : [N"O ds - E(I. - l , . ) f  N"o  O~,ds f h = f j 2 ( l + ~ o ) G h  + E l ( l + 4 % ) j  b 3 . . . . . .  :,~1 _,. 

GJ U;0,,.~0~ ds + ~-- N;0, 0~, ds (36) 

fN"o f c a - c a  :l +eo)G.+EL(l +4~,,).1 ,, 2 , , , d s - E ( l : - ! , , )  N':O~(:~,.ds 8c - - 3 1 2  \ 

: "'f G J2 N':01:03 ds + ~- -  N~O., . . . .  ,03 , ds (37) 
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f f ~  = GJ(I  + •,) N~fl,.. ds - ~ -  N5(02(~., , - 0,02..,)ds 

- E ( I : -  Is.) f N:,02..,03.., ds + El, ,< f N[fl,,., ds (38) 

i oAt-f [t-(l +,) f' t • v F t  . 

f~ pAL  ' N NI ' d (  ii, + T PC,, 4 -1 = (Nbu~,)- + (N, u.)-  d~" 

] _ - -  , t  • 2 N , t  • 2 
2 -1 (Nhu~') + ( , . u , )  ds c ds c (39) 

f'h - pAL  ' N,,N',, ds c it,, + ~ t N 'N 'h '  dsc iih + pAGI'ti~ N,,N t, d~ tib 
2 - 1  - 1  " 

fl f' pl .G ,u  , ' ~ " - ' " N ~ N  r ds e u,, + pl  L N; , (Nt j id) (N I tt/ ) ds c (40) 
I Z I " f: 

, pAt. N N ' d ~ a + ~  ' ~ N:N:, '  ds c i i  - p A G , u ,  N N '  d (  +i 
f '  - 2 1 " " -1 , " ' 

t • t t . I t  * 

- p l , .G ,u ,  N I N '  t d~ ti - p l .L  N CNdUd)CN,, u,,) d~: (41) 

f f p]pL i pL( l  - I,) N "N'ItI " 'N 't . . . .  
f ' d -  2 N , N t a d ( i i  d 2 " dV h h)~ ~ u , ~ u g  

1 I 

p t - L  , 2 p L  
+ - 7  G a( G ,fi., ) - ~ G,,( G ' ti,, ) ( G '3i,, ) (42) 

where the range of integration for the integral f ( ) ds in Eqs. (35)-(38) is from 0 to S, A is the cross-section 
area, Ni ( j = b , c , d )  are given in Eq. (26), ( ) '  = d (  ) /ds ,  G,, = G a  = { - 1 ,  1}, 

G,, ' . ~ 0* {2N' I,N~ 2N 3, ,, t Nt, O 3 ds c , G, N~O. d~ 3., _, , 
1 I 

p~ vv v/ - -  r v 0~* = -{2N 1, - N , ,  2N 3, - N ' q ~ u  = . . . . . .  4. ,., N ,  N d, N~={O,N+.O,  N4}, N t - { N , , O ,  N 3 , 0 } ,  

, , = f + - ' d A ,  / : = f y 2 d A ,  l e = I + + l  ~ , 

J,o = f ~o2 d A .  

Note that in order to compare numerical results of the present study with those given in the literature, the 
underlined terms in Eq. (42) are not considered in numerical studies here. 

The element nodal force vec t o r f  (Eq. (18)) corresponding to the explicit nodal parameters may be obtained 
from Eqs. (18) and (35)-(42). 

2. 7. Element  stiffness matrices and inertia matrices 

The element stiffness matrix and inertia matrix corresponding to the explicit nodal parameters may be 
obtained by differentiating the element nodal force vec tor f  in Eq. (18) with respect to explicit nodal parameters 
and their time derivatives. However, element matrices are used only to obtain predictors and correctors for 
incremental solutions of nonlinear equations of motion in this study. Thus, approximate element matrices can 
meet these requirements. The element stiffness matrices and consistent mass matrices of the conventional beam 
and bar elements [24,26] are used here and may be given by 
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Stiffness matrices: 

A E  
K~ = - - a  L .G, ,  (43) 

EI .L  I f L I 
- " . . . . .  ' - -  N ' N  't d~: (44) Kh~ 2 1 N bN b d;~ + ~ h 

1 

EI,Lf' N",N"' d [  + N ' N "  d~. (45) 

GJ 
K ,l,l = - -  GaG a (46) 

L 

Mass matrices: 

fl M , ,  = pA N N '  d (  (47) 
1 

Mt,~, pA Ni, Nth d (  + pl .  , ,t = . Nt, N h d (  (48) 
I 1 

, N ' N "  M..=pA N,  , . d ( + p l ,  ,. ,. dg e (49) 
I 

M j j  = p l  , N~N L d~: (50) 

Note that the element  coordinate system is only a local coordinate system not a moving or rotating coordinate 

system here. Thus, the element matrices referred to the global coordinate system may be obtained from Eqs. 
(43)-(50)  by using the standard coordinate transformation. 

2.8. Equations o f  motion 

The nonlinear equations of  motion may be expressed by 

F R = F I + F t~ - P = 0 (51) 

where F R is the unbalanced force among the inertia nodal force F i, deformation nodal force F D, and the 
external nodal force P. F x and F n are assembled from the element nodal force vectors, which are calculated 
using Eqs. (18), (35)-(42)  first in the current element coordinates and then transformed from element 
coordinate system to global coordinate system before assemblage using standard procedure. 

In this paper, a weighted Euclidean norm of the unbalanced force is employed for the equilibrium iterations, 
and is given by 

IbvRll 
. , ~  ~< etoj (52) 

where N is number of the equations of the system; e,o~ is a prescribed value of error tolerance. 

3. Numerical procedure 

An incremental iterative method based on the Newmark direct integration method [12,27] and the Newton-  
Raphson method is employed here. The basic steps involved in the numerical solution of  Eq. (51) are outlined 
as follows. 

Assume that the dynamic equilibrium configuration at time t,, is known. Let Q,, and Q,, denote the nodal 
velocity and acceleration of  the structure at time t,,, respectively. Let Q,, + E and Q,,_ i denote the nodal velocity 
and acceleration at time t,,+~ = t,, + At, respectively, where At is the time step size. Qn+l and Q,,+~ may be 
obtained by the following incremental-iterative procedure. 
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Step 1 
(a) Choose AQ = 0 as the initial incremental displacement for the time step at time t,,+~. 
(b) Calculate the initial nodal velocity and acceleration using the Newmark method for the first iteration: 

..0 - 1  ( t Q .... ~ - / ~ A t  Q ' ' -  - ~ -  1 Q,, (53) 

Q~+, = Q, - At[(1 - y)Q,, + yQ (,), + ~] (54) 

where/3 and y are parameters of the Newmark method. In the present study, /3 = 0.25 and y = 0.5 are 
employed. 

Step 2 
(a) Let 

and 

1 
O,,+, =O;+ ,  + a o ,  (55) 

Q,,+I =Q,~+l° +_~YA. AQ (56) 
p , . a t  

(b) Determine the current element cross section coordinates, element coordinates and element deformation 
nodal parameters for each element using the AQ and the method described in [15,21]. 

(c) Extract the global nodal velocity and acceleration vectors corresponding to each element from Q,,+ ~ and 
Q,,+~, and then transform them to the current element coordinates using standard procedure. Then 
calculate time derivatives of element nodal rotation parameters using Eqs. (15) and (16). 

(d) Calculate the element implicit (inertia and deformation) nodal force vectors in the current element 
coordinates using Eqs. (35)-(42), the element deformation nodal parameters, element nodal velocities and 
accelerations, and the time derivatives of element nodal rotation parameters just obtained. Then calculate 
the element explicit nodal force vectors using Eq. (18) and the element implicit nodal force vectors just 
obtained. 

(e) Transform the element explicit nodal force vectors from the current element coordinates to the global 
coordinates using standard procedure. Then calculate the unbalanced force of the structure (Eq. (51)) from 
the assemblage of the element explicit nodal force vectors referred to the global coordinates. 

(f) Check the convergence criterion given in Eq. (52). If Eq. (52) is satisfied, stop the iteration; otherwise go 
to next step. 

Step 3 
• . 0 

(a) Let Q ,, + 1 
(b) 

(c) 

(d) 

: a n d  : Q,, + , .  

Calculate the element stiffness and mass matrices in the current element coordinates using Eqs. 
(43)-(50). 
Transform the element stiffness and mass matrices from the current element coordinates to the global 
coordinates using a standard procedure. Then calculate the structural stiffness matrix and mass matrix K 
and M from the assemblage of the element stiffness and mass matrices. 
Calculate a displacement correction AQ using the Newton-Raphson method: 

A Q = - / ~  ~F R (57) 

1 
/~ = K + M (58) /3 At2 

where /~ is the so-called effective stiffness matrix. 
(e) Go back to step 2. 
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Fig. 4. Sequence of motion of flying flexible beam. 

4. Numerical  studies 

4.1. Flying flexible beam, subjected to conservative force 

A flexible beam is initially placed in an inclined position as shown in Fig. 3. A conservative force F is 
applied at one end of  a rigid arm, which is rigidly connected with one end of the flexible beam at another end. 
The mass of the rigid arm is not considered. The geometry, inertia properties and material properties of  the 
flexible beam and the time history of the conservative force are given in Fig. 3. The beam is analyzed using four 
and eight elements. The time-step sizes corresponding to four and eight elements are chosen to be 0. l and 0.01, 
respectively. The agreement between the results with four elements and those with eight elements are very good. 
The results, obtained using eight elements, are shown in Fig. 4 together with the solution given in [8], which 
may be obtained using 10 linear elements. As can be seen, the discrepancy between these two solutions is 
distinct. The coordinates of the mass center of the flexible beam can be calculated analytically using Newton's 
second law F = m_,~ ~, where F is the external force vector, m is the mass of the flexible beam, and X C is the 
position vector of the mass center. The analytical solution of  the mass center at different time is also depicted in 
Fig. 4. The coordinates of the mass center of the flexible beam at different time obtained from the present 

Table I 
Coordinates of mass center of flexible beam in Section 4.1 

Time Present Present Analytical 
(8 ele., At = 0.01 ) (4 ele., At = 0.1 ) 

x'; xl x', x~ x', x~ 

0.0 3.0 4.0 3.0 4.0 3.0 4.0 
0.5 3.1001 3.9998 3.0997 4.0004 3.1 4.0 
1.0 3.4001 3.9997 3.3988 4.00 l 7 3.4 4.0 
1.5 3.9004 3.9996 3.8982 4.0040 3.9 4.0 
2.0 4.6008 3.9996 4.6003 4.0046 4.6 4.0 
2.5 5.5013 3.9998 5.5089 4.0053 5.5 4.0 
3.0 6.5039 4.0002 6.5225 4.0089 6.5 4.0 
3.5 7.5061 4.0005 7.5424 4.0140 7.5 4.0 
4.0 8.5083 4.0008 8.5623 4.0181 8.5 4.0 
4.5 9.5105 4.0007 9.5831 4.0161 9.5 4.0 
5.0 10.5 t 3 4.0007 10.6049 4.0124 10.5 4.0 
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Fig. 6. Time of histories of displacement in the X, direction at 
point A. 

numerical results are shown in Table 1 together with the result of analytical solution. It can be seen that the 
agreement between these two solutions is very good. 

4.2. Right angle cantilever beam 

The example considered is a right angle cantilever beam subjected to an out-of-plane concentrated load as 
shown in Fig. 5. The geometry, inertia properties and material properties of  the right angle and the load 
condition are given in Fig. 5. Four elements are used for discretization. A time-step size of  At = 0.25 is used. 
The time histories of out-of-plane displacements of the elbow and the tip are given in Figs. 6 and 7. It is seen 
that the present results are in excellent agreement with those given in [7] and [8]. 

4.3. Right angle beam in free flight 

This problem has been simulated first by Iura and Atluri [8]. The geometry, inertia properties and material 
properties of  the right angle and the load conditions are given in Fig. 8. The forces F 1 and F 2 are applied at the 

E 
0 

8 

4 

0 

-4 

-8 

0 

-- Present 

I I l ' ~  I I 

5 10 15 20  25  30 

Time 
Fig. 7. Time of histories of displacement in the X 3 direction at 
point B. 
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F 3 
10.0 X3 

Time Hi s to ry  of Load: 

Fo I 

0 o  l.O 2.0 
F z = F o 

F 1 - F a = F o / 5  

Fig. 8. Right angle beam in free flight. 
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Fig. 9. Sequence of motion for right angle beam in free flight 
(case 1 ). 

Fig. 10. Sequence of motion for right angle beam in free flight 
(case 2). 

beam axis, while the force F 3 is applied at one end of a rigid arm which is rigidly connected with one end of the 
flexible right angle at another end. 

Three different cases are considered in which the bending and the torsional rigidities are altered. Sixteen 
elements are used for discretization. A time-step size of  At = 0.01 is used. The sequence of  motion is depicted in 
Figs. 9 -11 .  It is seen that the present results are in excellent agreement with those given in [8]. 

4.4. Flying flexible beam, subjected to triangular pulse force and moments 

The flexible beam discussed in Section 4.1 is reconsidered here. This problem was first analyzed in [7]. The 
beam is initially at an inclined position in the X~ - X2 plane as shown in Fig. 12. A spatially fixed force along X, 
direction and a spatially fixed moment with X 2 and X 3 components are applied at one end of the beam. The time 
histories of the magnitude of these applied force and moment are given in Fig. 12. The beam is analyzed using 
10 elements. The time step size is chosen to be 0.01. The sequence of motion is depicted in Figs. 13 and 14. In 
Fig. 13, the trace of  both ends of the beam are shown in dot lines. Also shown in Figs. 13 and 14 are the results 
reported in [7], which are obtained using 10 linear elements and a time step size of At = 0.1. As can be seen, the 
discrepancy between these two solutions is distinct. The sequence of motion for the mass center of  the beam, 
calculated analytically using Newton 's  second law at different time, is also shown in Figs. 13 and 14 to verify 
the accuracy of the present results. The coordinates of  the mass center of the flexible beam at different time 
obtained from the present numerical results are shown in Table 2 together with the result of analytical solution. 
It can be seen that the agreement between these two solutions is very good. 
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Table 2 
Coordinates of mass 
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center of flexible beam in Section 4.4 

Time Present 

X'i ̧ 

Analytical 

x~ x~ (1o ~) x'i x~ x; 
0.0 3.0 
2.0 4.0659 
3.0 6.5548 
3.8 9.7007 
4.4 12.4845 
5.0 15.4386 
5.5 17,9296 
5.8 19.4242 
6.1 20.9173 
6.5 22.9053 
7.0 25.3900 

4.0 0.0 3.0 4.0 0.0 
3.9975 - 1.9077 4.0667 4.0 0.0 
3.996 l - 5.0139 6.5667 4.0 0.0 
4.0052 -2.0264 9.7304 4.0 0.0 
4.0164 -4.6742 12.5288 4.0 0,0 
4.03 l 6 15.9830 15,5000 4.0 0.0 
4.0446 25.9090 18.0000 4.0 0.0 
4.0503 29.8330 19.5000 4.0 0.0 
4.0546 32,4050 21.0000 4.0 0.0 
4.0598 35.2470 23.0000 4.0 0.0 
4.0667 38.8380 25.5000 4.0 0.0 

X3 
X2 

(91.65, I00,40) F3 

XI 

T i m e  H i s t o r y  

of  I m p a c t  L o a d s :  

F 

6 0 0  
F2 F3 

0 .4  0 .6  0 .9  

Fz 

M a t e r i a l  P r o p e r t i e s :  

L = 1 4 1 . 4 2  
P = 7 . 8  × 10 -a  
A = 9  
Iy=  I z = 6 . 7 5  

J = 1 3 . 5  
P o i s s o n  r a t i o = 0 . 3  

Fig. 15. Articulated-free rod. 

4.5. A r t i c u l a t e d - f r e e  rod 

The  e x a m p l e  c o n s i d e r e d  is an  a r t icu la ted- f ree  rod  sub jec ted  to two  impac t  loads  on  its free end  as s h o w n  in 

Fig. 15. T he  rod  is a r t icu la ted  to the f o u n d a t i o n  th rough  a ba l l  jo int .  T w o  d i f fe ren t  Y o u n g ' s  m o d u l u s  of  the  rod  

are cons idered :  (a) E = 2.1 × 109 and  (b) E = 6.3 X 106. F ive  e l e m e n t s  are used  for  d iscre t iza t ion .  The  t ime  step 

s izes  are c h o s e n  to be  0 .00!  and  0.01 for  cases  (a) and  (b), respect ive ly .  T h e  t ime  h is tor ies  of  t ip coord ina te s  o f  

the  rod  are g iven  in Figs.  1 6 - 1 9  toge the r  wi th  those  repor ted  in [10]. Exce l l en t  a g r e e m e n t  b e t w e e n  these  two  

so lu t ions  is obse rved .  
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Fig. 19. Z component of the tip coordinates of the rod (E = 6.3 × 
10~). 

5. Conclusions 

A consistent co-rotational total Lagrangian finite element formulation and numerical procedure for the 
geometrically nonlinear dynamic analysis of  spatial Euler beam with large rotations but small strain is presented. 

The nodal coordinates, displacements, rotations, velocities, accelerations and the equations of motion of  the 
structure are defined in a fixed global set of coordinates. The beam element has two nodes with six degrees of  
freedom per node. The element nodal forces are conventional forces and moments. The kinematics of  beam 
element is defined in terms of  element coordinates which are constructed at the current configuration of  the 
beam element. Here, the assumption of Euler beam is properly considered. Both the element inertia and 
deformation nodal forces are systematically derived by consistent linearization of the fully geometrically 
nonlinear beam theory by using the d'Alembert principle and the virtual work principle. In conjunction with the 
co-rotational formulation, the higher order terms of nodal parameters in element nodal forces are consistently 
neglected. However, in order to include the nonlinear coupling among the bending, twisting and stretching 
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defo rmat ions ,  the t e rms  up to the second  order  of  noda l  pa rame te r s  are r e t a ined  in e l e m e n t  d e f o r m a t i o n  noda l  

forces,  It shou ld  be no ted  that  the e l e m e n t  coord ina te  sys tem is j u s t  a local  coord ina te  sys tem,  w h i c h  is upda ted  

at each  i terat ion,  not  a m o v i n g  coord ina te  sys tem.  Thus ,  the  ve loc i ty  and  acce le ra t ion  desc r ibed  in the  e l e m e n t  

coord ina tes  are the abso lu te  ve loc i ty  and  accelera t ion .  The  e l e m e n t  equa t ions  are cons t ruc t ed  first in the  e l e m e n t  

coord ina te  sys tem and  then  t r an s f o r m ed  to the g lobal  coord ina te  sys tem by us ing  s t anda rd  procedure .  

An  inc remen ta l - i t e ra t ive  m e t h o d  based  on the N e w m a r k  direct  in tegra t ion  m e t h o d  and  the  N e w t o n - R a p h s o n  

m e t h o d  is e m p l o y e d  here  for  the so lu t ion  of  the n o n l i n e a r  equa t ions  o f  mot ion .  F r o m  the numer i ca l  example s  

s tudied,  the accuracy  and  ef f ic iency  o f  the p r o p o s e d  m e t h o d  is wel l  demons t r a t ed .  

It is be l i eved  that  the cons i s t en t  co- ro ta t iona l  fo rmula t ion  for  b e a m  e l e m e n t  and  numer i ca l  p rocedure  

p resen ted  here  m ay  represen t  a va luab le  eng inee r ing  tool for  the d y n a m i c  ana lys i s  o f  t h r e e - d i m e n s i o n a l  b e a m  

structures.  
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