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Abstract-Several passive components based on the quarter-
wavelength transmission line can be integrated with active
circuits for millimeter-wave applications. Passive components
such as Marchand baluns, quadrature couplers, and rat-race
hybrids are directly implemented on the standard low-resisitivity
(-104 Q cm) silicon substrate. New circuit design concepts such
as balanced loss and distortionless transmission line are applied
to tolerate the unavoidable loss and thus the size reduction is
achieved because of the high effective dielectric constant.

I. INTRODUCTION

High data rate and wide bandwidth wireless communication
systems are easily feasible in millimeter-wave frequencies
because the usable bandwidth increases as the carrier
frequency becomes higher. The advanced deep sub-micron
silicon-based technologies have made the silicon devices with
cut-off frequency more than 100 GHz possible [1-2] and thus
the era of silicon millimeter wave is impending. Together with
the properties of high integration and low-cost production in
silicon fabrication process, the millimeter-wave SOC (System
on Chip) can become a reality. The silicon radio-
frequency/microwave integrated circuit revolution has brought
the inductors and transformers into the integrated circuit. As
the silicon circuit reaches the millimeter-wave regime, new
circuit design concepts arise. It is now feasible to integrate
passive components based on quarter-wavelength transmission
line in the integrated circuit. In this invited paper, it
demonstrates that passive components such as couplers,
hybrids and baluns have been already integrated into standard
silicon-based ICs. However, signal attenuation and crosstalk
between two adjacent passive components resulting from the
low-resisitivity ( 10 Q cm) silicon substrate have strong
influences on the microwave passive components. In the past,
extra post-fabrication processes, high resistivity substrate and
silicon-on-insulator (SOI) process are proposed to lessen the
substrate effect [3-5]. Nevertheless, the extra process increases
the cost and the high-resistivity substrate is prone to the
undesired latch-up effect. The passive component size and the
loss resulting from the substrate are big challenges. In this
paper, our passive components operate well using standard
silicon-based process because of the new design concepts such
as balanced loss. The implementation directly on the silicon
substrate is good for size compactness. Meander lines and a
lumped-element technique also shrink the size further. The
demonstrated circuits include wideband micromixers with an

LO Marchand balun, an IQ downconverter using a quadrature
coupler, a Gilbert micromixer with an integrated rat-race
coupler and a resistive sub-harmonic mixer with an integrated
Marchand balun LO.

II. MILLIMETER-WAVE PASSIVE COMPONENTS

A. Transmission Lines
In the low frequency circuit design, the parasitics of

interconnections such as capacitance and metal resistance are
taken into consideration in post-layout simulations. However,
the substrate effects like skin and proximity effects influence
circuit performance at high frequencies and needs to be
considered in the simulations. If a signal path directly on the
substrate does not have well-defined ground plane, it is not
easy to perform simulation precisely. Because the operation
frequency is up to millimeter-wave regime, multi-layer
interconnect metals can be designed as a transmission line for
better signal integrity. The MS and CPWG types using
interconnect metals have shielding against the substrate loss,
but effective dielectric constant is about 4 because of the
silicon dioxide dielectric constant and it is not good for size
reduction. On the other hand, CPW and CPS transmission
lines are implemented directly on silicon substrate to reduce
the size at the cost of loss. Nevertheless, by extraction from
the measurement results of CPS transmission lines, the
attenuation constant is 1.8 dB/mm and can be tolerable for
some applications. In addition, non-dispersive distortionless
transmission lines with real characteristic impedance can be
utilized in the passive component design [6].

B. 3-Port 180 °Balun
The Marchand balun, which is proposed in 1944, is a very

broadband 3-port passive balun and has one unbalanced input
and two balanced outputs [7]. Figure 2(a) illustrates the planar
Marchand balun composed of two back-to-back quarter-
wavelength coupled lines [8]. Monolithic Marchand baluns
had been realized in ICs and most of them are fabricated on
the semi-insulating GaAs substrate or the high-resistivity
(>4000 Q.cm) silicon substrate [9-10]. Recently, the Marchand
baluns are implemented using interconnect metals with
shielding ground plane on a standard silicon substrate.
However, the size is large because of the low dielectric
constant and the balun bandwidth is reduced because of the
low ratio of the even-mode to odd-mode characteristic
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Fig. 2. Schematic of the planar Marchand balun

impedance of the coupled line [11-12]. Because the balun
directly on the substrate without the shielding ground plane
has higher effective dielectric constant, wide bandwidth and
size reduction can be achieve on our proposed Marhcnad
balun at the cost of the loss. The coupled lines in the planar
Marchand balun can be formed by Lange couplers [13],
broadside coupled lines [9], and spiral transmission coupled
lines [9-11]. An interleave transformer as a quarter
wavelength coupled line is employed in our work to shrink the
balun size, as shown in Fig. 2(b) and can achieve the desired
coupling coefficient. This Marchand balun designed at the
center frequency of 12 GHz has the size of about 660 pim x
250 pim with more than 10-GHz bandwidth. The balun loss is
acceptable and the dissipated loss is about 6 dB [14].

For size reduction and loss improvement, the lumped-
element technique (adding capacitors at three ports and one
open end) is utilized, as shown in Fig. 2(c) [15-16]. The length
of coupled lines is hence shortened more than 60% and the
dissipated loss is hence alleviated and less than 4 dB. This
miniaturized Marchand balun with the size of 0.25 x 0.5 mm2
operates from 2.5 GHz to 12 GHz. At the center frequency of
7.2 GHz, input return loss and insertion loss are about -11.6
dB and -6.8 dB, respectively. As shown in Fig.3, the output
magnitude imbalance is below 1 dB up to 12 GHz when the
phase error is about 4°. Thanks to the balanced structure of the
Marchand balun, the outputs keep balanced and the dissipated
loss is small enough [17].

C 4-Port 180 -Hybrids
Four-port passive components have better port matching

than three-port elements. The most commonly used four-port
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Fig. 4. Schematic of the rat-race hybrid

L

element is a rat-race coupler, which consists of three one-
quarter-wavelength and one three-quarter-wavelength
transmission lines [18], as shown in Fig. 4(a). For size
reduction, the transmission line can be replaced by high-pass
and low-pass 'pi' or 'T' networks, as shown in Fig. 4(b). A
lumped-element rat-race hybrid is simplified when the
adjacent shunt capacitor and inductor cancel each other and
two neighboring shunt capacitors are combined to reduce the
number of lumped elements. The lumped-element technique
shrinks the size but reduces the bandwidth [19-20].
The extra half-wavelength transmission line offers 1800

phase delay only at the specific frequency and the useful
bandwidth is limited. The output magnitude imbalance occurs
due to unequal path loss as well. Therefore, a wideband phase
inverter is employed in the middle of the quarter-wavelength
transmission line to take place of the three-quarter-wavelength
transmission line for bandwidth extension. It is an effective
way to minimize the size and to extend the bandwidth
simultaneously for the rat-race coupler [21]. On account of the
low loss property of the phase inverter and equal path loss,
this rat-race coupler maintains output signals balanced
regardless ofthe substrate loss.
Most couplers are created on the silicon substrate with

substrate shielding [22-23]. Due to a low effective dielectric
constant, the coupler size is large. The 60 and 77 GHz finite-
ground CPW phase-inverter rat-race couplers are realized
directly on the silicon substrate [24] and size reduction
techniques was applied at the cost of bandwidth even at such
high frequencies. In our work, a symmetrical spiral-shaped
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rat-race coupler with a phase inverter on a low-resistivity
silicon substrate works from 5 GHz to 23 GHz with 4.6 to 1

bandwidth ratio. The length of the quarter-wavelength
coplanar stripline is approximately 1800 ptm. The magnitude
imbalanced between S21 and S41 is small and approximately 1

dB while the phase difference is always close to 180 degrees.
The insertion loss is about 7 dB and its dissipated loss is about
5.5 dB.

D. 90 'Couplers
Quadrature generators are often employed in complex

mixers, balanced amplifiers, and image-rejection receivers. At
low frequencies, the commonly used quadrature generator is a

polyphase filter consisting of R-C and C-R sections. For high
frequency applications, the parasitics and the resistor self-
cutoff frequency deteriorate phase and magnitude accuracy so

that the polyphase filter is not appropriate [25]. As shown in
Fig. 5, the polyphase filter is suitable at low frequencies while
a quadrature coupler is proper for millimeter-wave
applications. In consideration of size, an interleave
transformer is utilized as a quarter-wavelength coupled line in
our Gilbert I/Q downeonverter, as shown in Fig. 6 [26]. The
outer diameter is designed as 266 pim and the average phase
error is below 2°

III. MILLIMETER-WAVE ACTIVE CIRCUITS

Thanks to the advancement in silicon technology, transistors
can work at high frequencies and the analog design concept
can be applied for millimeter-wave applications. The common

implemented active mixer is a Gilbert mixer performing
current commutation [27]. Differential LO signals are

Fig. 7. Schematic of the lumped-element Marchand balun mixer.

RI

)RF

R,

Mcchii BIlu IF,,

T iiFr L J s

Fig. 8. Schematic of the subharmonic resistive mixer with an integrated
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Fig. 9. Measured conversion loss, noise figure, IP,dB and HIP3 as a

function of the RF frequency at the LO power of 7 dBm.

demanded in the Gilbert switch quad of the balanced mixers.
The differential signals experience the different delay paths on

the circuit board especially at high frequencies for an off-chip
balun. Because it is difficult to achieve truly differential
signals by an on-chip active balun in addition to more power

consumption at high frequencies, the 180° passive
components are employed at the LO stage in our works
[14][17]. The 0.35-um SiGe HBT lumped-element Marchand
balun mixer shown in Fig. 7 works from 3.1 GHz to 10.6 GHz
with the conversion gain of around 15.5 dB and within the
gain flatness of 1 dB. Figure 8 depicts the schematic of the
sub-harmonically pumped resistive mixer using the standard
1P8M 0.13 um CMOS technology. The passive down-
converter basically consists of two identical NMOS devices, a

miniature marchand balun and RF/IF filters [28]. The
measurement results are displayed in Fig. 9. The conversion
loss is less than 12.5 dB within 0.5 dB variation at the LO
power of 7 dBm. The IP1dB and IIP3 are better than 4 dBm and
14 dBm, respectively.
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It is interesting that Schottky barrier diodes are successfully

realized using CMOS process [29]. Based on this, diode

mixers can be implemented on silicon technologies for
millimeter-wave applications.

IV. CONCLUSIONS

Passive components like hybrids, baluns and couplers are

implemented directly on a low-resistivity ( 10 Q cm) silicon

substrate and merged into ICs for radio-frequency, microwave,
and millimeter-wave applications. Because of the advanced

transistors and successful passive component implementations,

silicon technologies provide a new choice for millimeter-wave

applications. The demonstrated passive components will be

more useful at the millimeter-wave regime because of the size
and loss reduction.
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