
Computational Statistics & Data Analysis 29 (1999) 253–259

An e�cient algorithm for computing
quantiles of the noncentral
chi-squared distribution

Cherng G. Ding

Institute of Management Science, National Chiao Tung University, 4F,
114 Chung-Hsiao W. Road, Section 1, Taipei, Taiwan, People’s Republic of China

Received March 1996; received in revised form June 1998

Abstract

An e�cient algorithm is provided for computing quantiles of the noncentral chi-squared distribution.
Newton’s method, which requires the evaluations of both of the noncentral chi-squared distribution
function and the density, is used. A close relationship between their recursive computing formulas is
noted to allow concurrent evaluation of the distribution function and the density. Newton’s iterative
computation can therefore be greatly speeded up. An example is given to illustrate the usefulness of
the algorithm. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let F(x; r; �) and f(x; r; �) denote, respectively, the noncentral chi-squared distri-
bution function and the density with r (¿0) degrees of freedom and noncentrality
parameter � (≥ 0), and F(x; r) and f(x; r) the central chi-squared distribution func-
tion and the density with r (¿0) degrees of freedom. It is well known that (see,
e.g., Johnson and Kotz, 1970b, p. 132)

F(x; r; �)=
∞∑
i=0

(�ie−�=i!)F(x; r + 2i); (1)
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and

f(x; r; �)=
∞∑
i=0

(�ie−�=i!)f(x; r + 2i); (2)

where �= �=2. Let xp; r; � denote the p-quantile for which F(xp; r; �; r; �)=p for
0¡p¡1. To obtain xp; r; �, one can apply any standard numerical root-�nding method
(see, e.g., Kennedy and Gentle, 1980, p. 72). A well-known e�cient method is
Newton’s method, which requires the evaluations of F(x; r; �) and its derivative
f(x; r; �). Johnson and Pearson (1969) used Newton’s method to compute xp; r; �
and prepared tables for

√
xp; r; �. However, as mentioned in Boomsma and Mole-

naar (1994), no speci�c algorithm for computing xp; r; � is readily available in the
literature. In this article, we revisit Newton’s method by discovering a close rela-
tionship between recursive formulas for evaluating F(x; r; �) and f(x; r; �) in such a
way that F(x; r; �) and f(x; r; �) can be evaluated concurrently. Newton’s iterative
computation can therefore be greatly speeded up. The idea of concurrent evaluation
in Newton’s iterations to enhance computational e�ciency was �rst seen in Ding
(1994a) for computing noncentral beta quantiles. This important idea was also ap-
plied in later relevant work (Ding, 1994b,1996,1997; Tiwari and Yang, 1997). The
article is organized as follows. In Section 2, numerical treatments for computing
xp; r; � are discussed. The discussions include how to deal with extreme value cases.
The resulting e�cient algorithm is speci�cally presented in Section 3. In Section 4,
an example demonstrating sample size determination in a simple situation of interval
testing is given to illustrate the usefulness of the algorithm.

2. Numerical methods

To compute xp; r; � using Newton’s method, repeat the iteration

xj+1 = xj − F(xj; r; �)− p
f(xj; r; �)

; j=0; 1; 2; : : : (3)

until |xj+1 − xj| ≤ �xj+1, where � denotes a convergence criterion. Both F(x; r; �)
and f(x; r; �) need to be evaluated at each iteration. Farebrother (1987) developed
a recursive algorithm to evaluate (1) for integer degrees of freedom and proposed
an upper bound on the error of truncating the series to control the computational
accuracy. Posten (1989) provided a more complete algorithm in a step-by-step form
for real degrees of freedom. The algorithm basically reduces the problem to that
of evaluating a single central chi-squared distribution function. Ding (1992) gave
a computationally simple algorithm based on an alternative series representation. In
fact, due to the properties that (see, e.g., Ding, 1992; Posten, 1989)

F(x; r)= 2f(x; r + 2) + F(x; r + 2); (4)

and

f(x; r + 2i)=
x

r + 2i − 2f(x; r + 2i − 2); i=1; 2; : : : (5)
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the recursive formulas for computing F(x; r; �) and f(x; r; �) are closely related as
follows:

F(x; r; �)=
∞∑
i=0

P(i)W (i); (6)

f(x; r; �)=
∞∑
i=0

P(i)D(i); (7)

where P(i)= �ie−�=i!, W (i)=F(x; r + 2i), D(i)=f(x; r + 2i), and

P(0)= e−�; W (0)=F(x; r); D(0)=f(x; r)=
1

�(r=2)2r=2
xr=2−1e−x=2;

P(i)= (�=i)P(i − 1); D(i)=
x

r + 2i − 2D(i − 1);
W (i)=W (i − 1)− 2D(i); i=1; 2; : : : (8)

It follows that evaluations of F(x; r; �) and f(x; r; �) should be combined for each
iteration in Eq. (3) to enhance the computational e�ciency of Newton’s method. In
the recursive evaluation of Eqs. (6) and (7) through Eq. (8), F(x; r) is the only
central chi-squared distribution function that needs to be evaluated.
For extremely large values of noncentrality parameter, the summations of the series

in Eqs. (6) and (7) should be started at a higher index to avoid 
oating point
under
ow. By following the remark given by Frick (1990), we have

m−1∑
i=0

P(i)W (i) ≤
m−1∑
i=0

P(i)W (0)¡
m−1∑
i=0

P(i) ≤ �((m− �)=
√
�);

and

m−1∑
i=0

P(i)D(i) ≤
m−1∑
i=0

P(i) ≤ �((m− �)=
√
�); (9)

where � denotes the standard normal distribution function. It appears that the errors
in omitting the �rst m terms of two series, referred to as the lower truncation errors,
are both bounded above by �((m−�)=√�). For a speci�ed error bound �, the starting
index m is determined by m= [max(�+U�

√
�; 0)], where U� is the �-quantile of the

standard normal distribution, and [·] denotes ‘largest integer less than or equal to’.
In contrast to the lower truncation error,

∑∞
i=n P(i)W (i) is the error of truncating

the series in Eq. (6) at i= n (n¿m), and is referred to as the upper truncation error.
It is bounded above by bF(n)= [1 − ∑n−1

i=m P(i)]W (n) since (see also Farebrother,
1987)

∞∑
i=n

P(i)W (i)¡
∞∑
i=n

P(i)W (n)=

[
1−

n−1∑
i=0

P(i)

]
W (n) ≤

[
1−

n−1∑
i=m

P(i)

]
W (n):

(10)
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On the other hand, the upper truncation error
∑∞

i=n P(i)D(i) (n¿m) of the series in
Eq. (7) is bounded above by bf(n)= [1 −∑n−1

i=m P(i)]D(n) under the condition that
r + 2n¿x, since, under this condition, the sequence {D(i)} (i ≥ n) is decreasing,
and therefore

∞∑
i=n

P(i)D(i)¡
∞∑
i=n

P(i)D(n)=

[
1−

n−1∑
i=0

P(i)

]
D(n) ≤

[
1−

n−1∑
i=m

P(i)

]
D(n):

(11)

Note that bF(n) decreases as n increases; so does bf(n) when r + 2n¿x. The up-
per truncation errors can be controlled by using bF(n) and bf(n), which are easy
to compute because they rely only on factors that are computed in the course of
evaluating Eqs. (6) and (7).
Given a bound � on the lower truncation errors and another bound �′ on the upper

truncation errors, the series in Eqs. (6) and (7) are approximated by the �nite sums∑n1
i=m P(i)W (i) and

∑n2
i=m P(i)D(i), respectively, where m= [max (� + U�

√
�; 0 ) ];

n1(≥ m) is the minimum integer satisfying bF(n1) ≤ �′, and n2 (≥ m) is the minimum
integer satisfying r + 2n2¿x and bf(n2) ≤ �′. The terms are computed recursively
by Eq. (8) with the starting factors P(m)= �me−�=m!; W (m)=F(x; r + 2m), and
D(m)=f(x; r + 2m)= xr=2+m−1e−x=2=(�(r=2 + m)2r=2+m). The approximations to the
series have an error bound of � + �′. Due to the close relationship between their
computing formulas, F(x; r; �) and f(x; r; �) are evaluated concurrently rather than
independently within each Newton’s iteration in Eq. (3). Redundant computations
can therefore be avoided, and the computational e�ciency of Newton’s method en-
hanced.
A starting value x0 for Newton’s iteration (3) should be well determined. Extensive

tests show that, when p is not very small, xp; r; � can be well approximated by using
the Cornish–Fisher expansion (see, e.g., Johnson and Kotz, 1970a, p. 34) with the
�rst four terms. The approximation requires the evaluations of Up and the �rst four
cumulants, k1 = r+�; k2 = 2(r+2�); k3 = 8(r+3�), and k4 = 48(r+4�) of F(x; r; �).
It is given by

xp; r; �≈ k1 + k1=22 [Up + 
1(U 2
p − 1)=6 + 
2(U 3

p − 3Up)=24− 
21(2U 3
p − 5Up)=36];

(12)

where 
1 = k3=k
3=2
2 , and 
2 = k4=k

2
2 . Using the approximation (12) to be x0 would lead

to fast convergence for most cases. For small values of p, the starting value x0
and iterates xj+1 may be nonpositive. If x0 ≤ 0, then replace it by �. In subsequent
iterations, if xj+1 ≤ 0, set xj+1 = xj=10. Note that the number of iterations needs to
be controlled.

3. The algorithm

Based on the discussions given in Section 2, an e�cient algorithm, named NCX2Q,
is developed for computing quantiles xp; r; � of the noncentral chi-squared distribution.
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Three auxiliary algorithms for evaluating U� (e.g., Beasley and Springer, 1977), the
natural logarithm of the gamma function (e.g., Macleod, 1989; Pike and Hill, 1966),
and the central chi-squared distribution function (e.g., Lau, 1980; Posten, 1989; Shea,
1988) are required.

Algorithm NCX2Q
Step 1: Input r=degrees of freedom, �=noncentrality parameter, and p=cumula-

tive probability (0¡p¡1). Specify and input �= the desired error bound for
evaluating F(x; r; �) and f(x; r; �), �=convergence criterion for Newton’s
iterative process, and Mmax = the maximum number of Newton’s iterations
allowed.

Step 2: Evaluate �= �=2. If �=0, then m=0, and P(m)= 1; otherwise
m= [max(�+ U�=2

√
�; 0)], and P(m)= exp[m ln �− �− ln�(m+ 1)].

Evaluate CONST= ln�(r=2 + m) + (r=2 + m) ln 2.
Step 3: Evaluate x0 (by Formula (12)). If x0 ≤ 0, then x0 = �.
Step 4: For j=0; 1; : : : ; Mmax − 1, do Steps 4.1 through 4.5.

Step 4.1: Evaluate W (m)=F(xj; r + 2m), D(m)= exp[(r=2 +m− 1) ln xj −
xj=2 − CONST], PSUM=P(m);CDF=P(m)W (m), and PDF=
P(m)D(m).

Step 4.2: For i=m+ 1; m+ 2; : : : ; (halt when accumulations of PDF and
CDF are both stopped)

evaluate
P(i)= (�=i)P(i − 1),
D(i)=D(i − 1)xj=(r + 2i − 2),
PDF=PDF + P(i)D(i); (stop accumulation when r + 2i¿xj

and (1− PSUM)D(i) ≤ �=2)
W (i)=W (i − 1)− 2D(i),
CDF=CDF+P(i)W (i), (stop accumulation when (1−PSUM)

W (i) ≤ �=2)
and

PSUM=PSUM + P(i).
Step 4.3: Evaluate DIFF= (CDF− p)=PDF.
Step 4.4: If xj − DIFF ≤ 0, then xj+1 = xj=10; otherwise xj+1 = xj − DIFF:
Step 4.5: If |DIFF| ≤ �xj+1, then Output xp; r; �= xj+1.

Step 5: Output the error message, ‘No convergence after Mmax iterations’.

4. An application of the algorithm

To illustrate the usefulness of the proposed algorithm, this section discusses how
to determine the sample size required in a simple situation of interval testing. Let
X1; X2; : : : ; XN denote a random sample of size N from a normal distribution with
mean � (unknown) and variance �20 (known). Without loss of generality, set �

2
0 = 1.

Suppose that we are interested in testing the hypothesis H0:|� − �0| ≤ �0 (�0¿0)
against H1: |�− �0|¿�0. A UMP unbiased test with level of signi�cance � is given
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Table 1
The minimum sample size required (N̂ ) for selected combinations of
�0; �1; � and p∗

�0 �1 � p∗ N̂

0.01 0.05 0.10 0.90 4193
0.95 5412

0.10 0.10 0.90 900
0.95 1144

0.1 0.3 0.01 0.95 395
0.99 542

0.6 0.01 0.95 64
0.99 87

0.9 0.01 0.95 25
0.99 34

0.2 0.6 0.05 0.95 68
0.99 99

1.2 0.05 0.95 11
0.99 16

1.8 0.05 0.95 5
0.99 7

by (see, e.g., Lehmann, 1986, p. 135)

�(x)=

{
1 if |

√
N ( �x − �0)| ≥ c′;

0 otherwise;

where c′ is chosen so that P(|√N ( �X − �0)| ≥ c′ | �= �0± �0)= �, or equivalently,

�(x)=
{
1 if N ( �x − �0)2 ≥ (c′)2 = c;
0 otherwise;

where c is chosen so that P(N ( �X −�0)2 ≥ c | �= �0± �0)= �. Since the test statistic,
N ( �X − �0)2, has a noncentral chi-squared distribution with one degree of freedom
and noncentrality parameter �=N (� − �0)2, the critical value c can be obtained
by invoking Algorithm NCX2Q with p=1 − �; r=1, and �=N�20. An interesting
problem in the above interval testing is sample size determination based on a given
power. For a speci�ed value �1 of � under H1, we have �1 = |�1 − �0|¿�0, and
�=N�21. It is desired to �nd the minimum sample size required, denoted by N̂ ,
to achieve a speci�ed power p∗ (¿�) at the alternative, i.e., to �nd N̂ such that
1−F(x1−�; 1; N̂ �20 ; 1; N̂ �21) ≥ p∗. A simple iterative procedure given below may be used:

Step 1: Input �0; �1 (¿�0); �, and p∗ (¿�).
Step 2: For N =1; 2; : : :,

evaluate
�0 =N�20,
�1 =N�21,
c= x1−�; 1; �0 ; (by invoking NCX2Q)
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and
p′=1− F(c; 1; �1)

until p′ ≥ p∗.
Step 3: Output N̂ =N .

Algorithm NCX2Q and another algorithm for evaluating the noncentral chi-squared
distribution function (e.g., Posten, 1989) are needed in the procedure. Table 1 shows
the values of N̂ obtained for selected combinations of �0; �1; � and p∗. It appears
that the e�ciency of computing quantiles of the noncentral chi-squared distribution
is important in this application, especially when �1 is close to �0.
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