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An e� cient algorithm for ® nding the D-stability bound of discrete singularly perturbed systems with
multiple time delays

FENG-HSIAG HSIAO² , SHING-TAI PAN³ and CHING-CHENG TENG§

In this paper, we present an original work on the D-stabilization problem of discrete singularly perturbed systems with
multiple time delays. A new robust D-stability criterion in terms of stability radius is ® rst derived to guarantee that all
poles of the discrete multiple time-delay systems remain inside the speci® c disk D a ,r in the presence of parametric
uncertainties. Then, by using the technique of time-scale separation, we derive the corresponding slow and fast sub-
systems of a discrete multiple time-delay singularly perturbed system. The state feedback controls for the D-stabilization
of the slow and the fast subsystems are separately designed and a composite state feedback control for the original system
is subsequently synthesized from these state feedback controls. Thereafter, we derive a frequency domain e -dependent D-
stability criterion for the original discrete multiple time-delay singularly perturbed system under the composite state
feedback control. If any one of the conditions of this criterion is ful® lled, D-stability of the original closed-loop system is
thus investigated by establishing that of its corresponding slow and fast closed-loop subsystems. Finally, an e� cient
algorithm is proposed to obtain a less conservative D-stability bound of the singular perturbation parameter and to
reduce the computation time.

1. Introduction

In the analysis of dynamic systems, we are often
faced with parametric uncertainties originating from
various sources, e.g. identi® cation errors, ageing of
devices, variation of operating points, etc. Therefore,
the problem of maintaining the stability of a nominally
stable system subject to uncertainties has been of con-
siderable interest to researchers and a number of signif-
icant results concerning this issue have been reported in
the literature. On the other hand, the problem of pole
assignment in linear systems theory has been discussed
by many authors and solved in various ways. However,
one cannot place the poles at a speci® c location, due to
parametric uncertainties. Therefore, placing all poles in
a speci® c region rather than choosing an exact assign-
ment may be satisfactory in practical applications. One
such speci® c region for discrete systems is a disk D a ,r
centred at a ,0 with radius r, where a r < 1. The
assignment of all poles of a system in the speci® c disk
D a ,r shown in ® gure 1 is referred to as a D-pole pla-
cement problem (Furuta and Kim 1987). This subject
has received much attention in previous reports (Furuta
and Kim 1987, Lee and Lee 1987, Kolla et al. 1989,
Vicino 1989, Lee et al. 1992, Su and Shyr 1994).

The stability radius is a tool to describe the distance
from instability. There are two distances from instability
for a real square matrixÐ the complex stability radius
and the real stability radius; they can di� er considerably.
In general, the real stability radius is more important in
applications but is more di� cult to determine
(Hinrichsen and Pritchard 1986). Kharitonov (1991)
has been concerned with the analysis of the complex
stability radius of a matrix with respect to the unit
disk of the complex plane.

The problem of stabilizing time-delay systems has
been explored over the years because delay is commonly
encountered in various engineering systems, such as
chemical processesÐ e.g. steel smelting and re® ningÐ
or in long transmission lines, in pneumatic, hydraulic
or electric networks. Its existence may produce undesir-
able system responses. Consequently, researchers on sta-
bility analysis of time-delay systems become essential to
practical applications. This question has been raised by
Mori et al. (1982), Mori (1985), Mori and Kokame
(1989), Oucheriah (1995), Wang and Wang (1995),
Hsiao and Hwang (1996a), and others. Since the number
of poles of the closed-loop system increases due to time
delays, the introduction of a time-delay factor makes the
D-pole placement problem much more complicated. The
D-stability problem for discrete time-delay systems has
been discussed by Lee et al. (1992) and Su and Shyr
(1994). However, their results are too conservative.
Furthermore, there exist multiple time delays in some
physical systems and delays in practice are not exact
integer multiples of the sampling interval. Thus, for
the purpose of general application, two cases of a new
robust D-stability criterion in terms of complex stability
radius are proposed for discrete uncertain systems with
multiple time delays which may not be exact integer
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multiples of the sampling interval. One is a direct test
(i.e., check d1 < ds) and the other is a boundary test. The
robust D-stability is ® rst checked by the direct test. If it
fails, resort to the boundary test.

Singularly perturbed systems have been studied by
many researchers (see, for example, Saksena et al. 1984,
Kokotovic et al. 1986, Su and Hsieh 1990, Chen and
Hsieh 1994, Chen et al. 1994, Venkatasubramanian
1994, Hsiao and Hwang 1996b). This is due not only
to theoretical interest but also to the relevance of this
topic to the control of engineering applications. The
singular perturbation parameters often result from the
presence of small parameters in various physical
systems; e.g. in power system models the singular per-
turbation parameters can represent machine reactances
or transients in voltage regulators. In industrial control
systems they may represent time constants of drives and
actuators, and in nuclear reactor models they are due to
fast neutrons, etc. (Kokotovic et al. 1976). Indeed, the
singular perturbation approach has been proven to be a
powerful tool for system analysis and control design
(Corless and Glielmo 1991). A fundamental feature of
such an approach is that the feedback design problem
can be broken into two design subproblems for the slow
and fast subsystems. The two designs are then combined
to give a design for the original systems (Khalil 1989).

A key to the analysis of singularly perturbed systems
thus lies in the construction of the slow and fast subsys-
tems. It is noted that the approximation of an original,
singularly perturbed system via its corresponding slow
and fast subsystems is valid only when the singular per-
turbation parameters of this system are su� ciently
small. Therefore, it is important to ® nd the stability
bound of singular perturbation parameters such that
the stability of the original system can be investigated
by establishing that of its corresponding slow and fast
subsystems, provided that the singular perturbation par-
ameters are su� ciently small to be within this bound.
For a continuous-time system, Klimushchev and
Krasovskii (1962) found the e -bound of singularly per-
turbed systems. In Feng (1988), Chen and Lin (1990)

and Lin and Chen (1992), a frequency-domain approach
was proposed to ® nd the e -bound of singularly per-
turbed systems. Shao and Rowland (1995) considered
a linear time-invariant singularly perturbed system
with single time delay in the slow states. Their work
gave a delay-independent su� cient condition for the
stability bound of e . In cases of discrete time, the two-
time-scale properties of weakly coupled discrete systems
and control of these systems were discussed by
Mahmoud (1982). The stability bound of singular per-
turbation parameters for the asymptotic stability analy-
sis of singularly perturbed systems with a single
parameter was discussed by Li and Li (1992).

In this paper, the research on time-scale modelling is
extended to include discrete multiple time-delay singu-
larly perturbed systems. The stability problem of dis-
crete multiple time-delay singularly perturbed systems
was ® rst considered by Trinh and Aldeen (1995), in
whose paper time delays are exact integer multiples of
the sampling interval. In their work, the delay terms are
treated as the perturbations of the systems and the sta-
bility bound of e is obtained from nominal systems. As
for the singular perturbation approach, they merely
dealt with discrete singularly perturbed systems without
delay and subject to some plant uncertainties. In our
work, the control design for discrete singularly per-
turbed systems with multiple time delays which may
not be exact integer multiples of the sampling interval
is ful® lled by using the standard procedure to analyse
singularly perturbed systems. Furthermore, an e� cient
algorithm for ® nding the D-stability bound of the sin-
gular perturbation parameter is proposed.

The organization of this study is as follows. In §2,
the techniques of D-pole placement and complex stabi-
lity radius are combined and extended such that they
can solve the D a ,r -stability problem of discrete uncer-
tain multiple time-delay systems. Two cases of a new
robust D-stability criterion in terms of complex stability
radius are proposed to guarantee that all poles of the
system remain inside the speci® ed disk D a ,r in the
presence of parametric uncertainties. The corresponding
slow and fast subsystems of a discrete multiple time-
delay singularly perturbed system are then derived in
§3. In §4, the state feedback controls for the slow and
fast subsystems are separately designed such that the
slow and fast closed-loop subsystems are both D a ,r -
stable. In §5, a composite state feedback control for the
original system is synthesized from the state feedback
controls designed in §4 and a frequency domain e -
dependent D-stability criterion is subsequently proposed
to examine whether the singular perturbation parameter
e is small enough or not. If e is so small that any one of
the conditions of this criterion is satis® ed, then D a ,r -
stability of the slow and fast closed-loop subsystems can
imply the stability of the original system under the com-

2 F.-H. Hsiao et al.

Figure 1. A disk D a ,r centred at a ,0 with radius r.
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posite state feedback control. In order to obtain a less
conservative D-stability bound of the singular perturba-
tion parameter and to reduce the computation time, an
e� cient algorithm is proposed in §6. Finally, an ex-
ample is provided to illustrate the e� cient algorithm.

2. D-stability criterion

In this section, we will propose a new robust D-sta-
bility criterion in terms of complex stability radius for
discrete uncertain multiple time-delay systems described
by the following di� erence equation:

x k 1 Ax k D Ax k
n

i 1
Adix k hi

n

i 1
D Adix k hi 2.1

in which A and Adi are constant matrices with appro-
priate dimensions and hi, i 1,2, . . . ,n, are positive
numbers: D A and D Adi denote the parametric uncer-
tainties with the following upper norm-bounds:

D A b 2.2a

D Adi h i, i 1,2, . . . ,n, 2.2b

where b and h i are given constants.
Before we proceed to derive the robust D-stability

criterion, some useful concepts are given in the follow-
ing.

De® nition 1: A feedback control system is said to be
D a ,r -stable if all poles of the system are within the
speci® c disk D a ,r centred at a ,0 with radius r. In
other words, the solutions of its characteristic equation
satisfy

z a /r < 1 2.3

in which r > 0 and a r < 1.

De® nition 2 (Hinrichsen and Pritchard 1988, Kharito-
nov 1991): Let all eigenvalues of the matrix A be in-
side the unit circle of the complex plane; then
the positive value

q A max
0 µ 2p

e jµI A 1 1 2.4

is said to be a complex stability radius of the matrix A.

Remark 1 (Kharitonov 1991): The value q A de-
pends on the choice of norm. For instance, if the Eu-
clidean norm is used, then it is easy to show that

µ A min
0 µ 2p

s e jµI A , 2.5

in which s is the minimal singular value of matrix .

Lemma 1 (Kharitonov 1991): Let all eigenvalues of
the matrix M be inside the unit disk of the complex
plane. All the eigenvalues of all matrices M D M are
inside the unit disk if and only if D M < q M .

Lemma 2 (Vidyasagar 1985): Let a matrix
E z R

m n, with R
m n denoting the set of m n ma-

trices whose elements are proper stable rational func-
tions; then

sup
z X

E z sup
z 1

E z sup
µ 0,2p

E e jµ 2.6

where X z r,e jµ,µ 0,2p , r 1 . Since E z is
analytic for z X , this norm is well de® ned.

After reviewing the above de® nitions and lemmas,
we are in the position to derive the robust D-stability
criterion in terms of complex stability radius for a dis-
crete uncertain multiple time-delay system.

Theorem 1:

(I) Suppose that all the eigenvalues of A are within
the speci® c disk D a ,r . The system 2.1 is
robustly D a , r -stable if

1
r

b
n

i 1
Adi h i r a hi

d1 < q
A a I

r
ds, 2.7a

in which a < r.
(II) If d1 ds and the function

h g
1
r

b
n

i 1
Adi rg a hi

n

i 1
h i r a hi 2.7b

does not lie inside the interval ds,d1 , where
a < r and g takes the values in the bounded
region U1 g g re jµ,µ 0,2p ,1 r d1r
with

d1r
A a I

r
d1

then the system (2.1) is robustly D a ,r -stable.

Proof: See Appendix A.

Remark 2: It is easy to see that the D-stability cri-
terion in Theorem 1 will get a less conservative result
than the criteria proposed by Lee et al. (1992) and Su
and Shyr (1994). Furthermore, since system (2.1) con-
tains multiple time delays which may not be exact inte-

Algorithm for ® nding D-stability 3
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ger multiples of the sampling interval, their results can-
not examine the D-stability of system (2.1).
Remark 3: Case (I) of Theorem 1 provides a neat al-
gebraic condition to test the D-stability of system (2.1)
at the cost of conservativeness. It is therefore reason-
able to check the D-stability with case (I) and then, if
it fails, to resort to case (II). Thus, case (I) and case
(II) complement each other.

However, for a practical application, it is di� cult to
examine case (II) of Theorem 1. The following b̀ound-
ary test’ may be helpful in examining this case.

Corollary 1: If d1 ds and the following inequality
(2.8) holds:

h g
1
r

b
n

i 1
Adi rg a hi

n

i 1
h i r a hi < ds

2.8

where a < r and g e jµ for µ 0,2p , then the system
(2.1) is robustly D a ,r -stable.

Proof: The matrix n
i 1 Adi rg a hi of which all

poles of the elements have the modulus

g
a
r < 1 2.9

belongs to R
m m. Consequently, on the basis of Lemma

2, the term n
i 1 Adi rg a hi in (2.8) takes on its

supremum in the range given by g e jµ for µ 0,2p .
Therefore, if the inequality (2.8) holds, h g does not lie
inside the interval [ds,d1] for all g U1 and then the
system (2.1) is robustly D a ,r -stable (according to the
case (II) of Theorem 1). This completes the proof. h

3. Problem formulation

Consider the following discrete multiple time-delay
singularly perturbed system:

x1 k 1
n

i 0
A1ix1 k hi

e

n

i 0

~A1ix2 k hi B1u k 3.1a

x2 k 1
n

i 0
A2ix1 k hi

e

n

i 0

~A2ix2 k hi B2u k 3.1b

where A1i, A2i,
~
A1i,

~
A2i, i 0,1,2, . . . ,n, B1 and B2 are

constant matrices with appropriate dimensions and hi,
i 1,2, . . . ,n, are positive numbers h0 0 ; the pair
A10,B1 is assumed to be controllable. System (3.1) is

referred to as the C-model (p. 45, Naidu and Rao 1985)

and can be obtained from the slow sampling rate model
as a result of discretization or sampled-data control of
singularly perturbed continuous-time systems (Li and Li
1992). The small positive scalar e is a singular perturba-
tion parameter subject to the following constraint:

e

n

i 0

~A2i < 1. 3.2

Before we discuss the main result, a lemma is ® rst given
in the following.

Lemma 3 (Chou and Chen 1990): For any matrix
A Rm m, if s A < 1² , then det I A > 0.

On the basis of Lemma 3 and the fact that

s e

n

i 0

~A2i e

n

i 0

~A2i e

n

i 0

~A2i < 1

it is clear that the matrix

I e

n

i 0

~
A2i

is non-singular. Now, according to the time-scale analy-
sis in Mahmoud (1982), the slow and fast subsystems of
the original system (3.1) can then be derived as follows.

3.1. The slow subsystem
Let x2 k hi x2 k x2 k for i 1,2, . . . ,n; the

system (3.1) thus reduces to

xs k 1
n

i 0
A1ixs k hi

e

n

i 0

~A1i x2 k B1us k 3.3a

x2 k
n

i 0
A2ixs k hi

e

n

i 0

~A2i x2 k B2us k 3.3b

where xs, x2 and us are the slow components of x1, x2
and u, respectively. From equation (3.3b), we have

4 F.-H. Hsiao et al.

² The notation s A denotes the spectral radius of the
matrix A.
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x2 k I e

n

i 0

~A2i

1 n

i 0
A2ixs k hi

I e

n

i 0

~A2i

1

B2us k 3.4

Substituting (3.4) into (3.3a), the slow subsystem of the
original system (3.1) can be expressed as

xs K 1
n

i 0
Asixs k hi Bsus k 3.5a

where

Asi A1i e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i

for i 0,1,2, . . . ,n 3.5b

Bs B1 e

n

i 0

~
A1i I e

n

i 0

~
A2i

1

B2. 3.5c

3.2. The fast subsystem
Let

xf k x2 k x2 k ,uf k u k us k ,us k us k hi

and

x1 k x1 k hi xs k hi xs k

for i 1,2, . . . ,n; we have (from equation (3.4))

xf k x2 k I e

n

i 0

~A2i

1 n

i 0
A2i xs k

I e

n

i 0

~A2i

1

B2us k 3.6

According to equation (3.1b), the fast subsystem of the
original system (3.1) is derived as follows:

xf k 1 e

n

i 0

~A2ixf k hi e

n

i 0

~A2i

I e

n

i 0

~
A2i

1 n

i 0
A2i xs k

e

n

i 0

~
A2i I e

n

i 0

~
A2i

1

B2us k

n

i 0
A2i xs k B2 uf k us k

I e

n

i 0

~
A2i

1 n

i 0
A2i xs k

I e

n

i 0

~A2i

1

B2us k

e

n

i 0

~A2ixf k hi

n

i 0
A2i I e

n

i 0

~
A2i

I e

n

i 0

~A2i

1 n

i 0
A2i xs k B2uf k

I I e

n

i 0

~A2i I e

n

i 0

~A2i

1

B2us k

n

i 0
Afixf k hi Bf uf k 3.7a

where

Afi e A2i and Bf B2. 3.7b

4. State feedback controls for the slow and fast
subsystems

In this section, the state feedback controls for the
slow subsystem (3.5) and for the fast subsystem (3.7)
are separately designed such that both slow and fast
closed-loop subsystems are D a ,r -stable.

4.1. State feedback control for the slow subsystem
Introducing the slow control

us k
n

i 0
ksixs k hi 4.1

in which ksi, i 0,1,2, . . . ,n, are the state feedback
gains into the slow subsystem (3.5), we have

xs k 1
n

i 0
Asi Bsksi xs k hi

n

i 0
A1i D A1i e

B1 D B1 e ksi xs k hi

n

i 0
Asi D Asi e xs k hi 4.2

Algorithm for ® nding D-stability 5
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in which

Asi A1i B1ksi, D Asi e D A1i e D B1 e ksi

4.3

with

D A1i e e

n

i 0

~A1j I e

n

i 0

~A2j

1

A2i,

i 0,1,2, . . . ,n

D B1 e e

n

i 0

~A1j I e

n

i 0

~A2j

1

B2.

On the basis of the constraint (3.2), we can derive the
following inequality:

I e

n

i 0

~A2i

1

I e

n

i 0

~
A2i e

2
n

i 0

~
A2i

2

I e

n

i 0

~A2i e
2

n

i 0

~A2i

2

1 e

n

i 0

~A2i e
2

n

i 0

~A2i

2

1

1 e

n

i 0

~A2i

4.4a

According to the inequality (4.4a), we have

D A1i e e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i

e

n

j 0

~A1j

I e

n

j 0

~A2j

1

A2i

e

n

k 0

~A1j A2i

1 e

n

j 0

~A2j

a i e ,

i 0,1,2, . . . ,n 4.4b

D B1 e e

n

j 0

~A1j I e

n

j 0

~A2j

1

B2

e

n

j 0

~A1j

I e

n

j 0

~A2j

1

B2

e

n

j 0

~A1j B2

1 e

n

j 0

~A2j

b e , 4.4c

and hence

D Asi e D A1i e D B1 e ksi

D A1i e D B1 e ksi

a i e b e ksi d i e , i 0,1,2, . . . ,n.

4.5

Consequently, according to case (I) of Theorem 1, if the
state feedback gains ksi, i 0,1,2, . . . ,n, are chosen
such that

d1s
1
r

d 0 e

n

i 1
Asi d i e r a hi

< q
As0 a I

r
dss, 4.6a

then the slow closed-loop subsystem (4.2), or equiva-
lently the slow subsystem (3.5) under the control (4.1),
is D a ,r -stable with r > a . Substituting (4.5) into
(4.6a) and according to (4.4b) and (4.4 c), the inequality
(4.6a) is equivalent to

e <
ns

ms ns

n

i 0

~A2i

e 1 4.6b

where

ns rdss

n

i 1
Asi r a hi ²

and

ms

n

i 0

~A1i

n

i 0
A2i B2 ksi r a hi .

6 F.-H. Hsiao et al.

² According to (4.6a), it is obvious that ns is positive.
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However, if the condition (4.6a), or equivalently (4.6b),
fails, then we resort to checking the following condition
(see Corollary 1):

hs g
1
r

d 0 e

n

i 1
Asi rg a hi

n

i 1
d i e r a hi < dss, 4.7

where r > a and g e jµ for h 0,2p .

Remark 4: For the purpose of D a ,r -stabilization of
slow closed-loop subsystem (4.2), the state feedback
gains ksi, i 0,1,2, . . . ,n, are adjusted such that e 1 is
as large as possible. This can be ful® lled by choosing
ks0 to place all the poles of As0 A10 B1ks0 at a ,0
(i.e. to maximize dss) and choosing ksi to minimize
Asi A1i B1ksi for i 1,2, . . . ,n. However,

there are various choices of ksi, i 0,1,2, . . . ,n, to
make e 1 as large as possible, but only one of them is
chosen here.

Remark 5: The inequality (4.6b) provides a neat alge-
braic equation to ® nd the upper bound of e , which
guarantees the D a ,r -stability of the slow closed-loop
subsystem (4.2) at the cost of conservativeness. How-
ever, a less conservative upper bound, called ~e 1, can be
obtained by ® nding the upper bound of e that ful® ls
the inequality (4.7) with much more computation time.

4.2. State feedback control for the fast subsystem
Introducing the fast control

uf e

n

i 0
kfixf k hi 4.8

where kfi, i 0,1,2, . . . ,n, are the state feedback gains
into the fast subsystem (3.7), we have

xf k 1
n

i 0
Afixf k hi e Bf

n

i 0
kfixf k hi

n

i 0
Afi e Bf kfi xf k hi

n

i 0
e

~A2i Bf kfi xf k hi

n

i 0
D Afi e xf k hi 4.9a

in which

D Afi e e
~A2i Bf kfi 4.9b

Consequently, according to case (I) of Theorem 1, if the
state feedback gains kfi, i 0,1,2, . . . ,n, are chosen
such that

d1f
1
r

D Af 0

n

i 0
D Afi r a hi

1
r

n

i 0
D Afi r a hi < q

a I
r

dsf

4.10a

then the fast closed-loop subsystem (4.9), or equivalently
the fast subsystem (3.7) under the control (4.8), is
D a , r -stable with r > a . It is noted that the inequality
(4.10a) is equivalent to

e <
rdsf

n

i 0

~
A2i Bf kfi r a hi

e 2 4.10b

However, if the condition (4.10a), or equivalently
(4.10b), fails, then we resort to checking the following
condition:

hf g
1
r

n

i 0
D Afi rg a hi < dsf 4.11

where r > a and h e jµ for µ 0,2p .

Remark 6: In order to make e 2 as large as possible,
according to the similar discussion in the preceding
subsection, we need only to choose kfi to minimize

~A2i Bf kfi for i 0,1,2, . . . ,n. Moreover, e 2 ob-
tained from the more conservative inequality (4.10b)
(i.e. (4.10 a)) is less than the upper bound of e , called
~e 2, that ful® ls the inequality (4.11).

5. D(a , r)-stabilization of the original system

In this section, a composite state feedback control
for the D-stabilization of the original discrete multiple
time-delay singularly perturbed system (3.1) is sub-
sequently synthesized from the slow control (4.1) and
the fast control (4.8). Furthermore, a frequency domain
e -dependent D-stability criterion is derived such that the
D a , r -stability of the original system (3.1) under the
composite state feedback control can be investigated
by establishing that of its corresponding slow closed-
loop subsystems (4.2) and fast closed-loop subsystem
(4.9).

According to the slow control (4.1) and the assertion
xs k hi xs k in §3.2, equation (3.6) can be re-
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written as

xf k x2 k I e

n

i 0

~
A2i

1 n

i 0
A2i xs k

I e

n

i 0

~A2i

1

B2

n

i 0
ksixs k hi

x2 k I e

n

i 0

~A2i

1 n

i 0
A2i xs k

I e

n

i 0

~A2i

1

B2

n

i 0
ksixs k 5.1

i.e.

x2 k xf k I e

n

i 0

~A2i

1

n

i 0
A2i B2

n

i 0
ksi xs k 5.2

Hence, we have

x2 k hi xf k hi I e

n

i 0

~
A2i

1

n

i 0
A2i B2

n

i 0
ksi xs k hi

f or i 0,1,2, . . . ,n 5.3

Consequently, the composite state feedback control is of
the following form:

u k us k uf k
n

i 0
ksixs k hi

n

i 0
e kfixf k hi

n

i 0
ksi e kfi I e

n

j 0

~
A2j

1

n

j 0
A2j B2

n

j 0
ksj xs k hi

n

i 0
e kfi I e

n

j 0

~A2j

1

n

j 0
A2j B2

n

j 0
ksj xs k hi xf k hi

5.4

On the basis of equation (5.3) and the assertion
xs k hi x1 k hi in §3.2 for i 0,1,2, . . . ,n, the
composite feedback control (5.4) becomes

u k
n

i 0
k1ix1 k hi

n

i 0
k2ix2 k hi 5.5a

where

k1i ksi e kfi I e

n

i 0

~A2j

1 n

i 0
A2j B2

n

i 0
ksj

f or i 0,1,2, . . . ,n 5.5b

k2i e kfi f or i 0,1,2, . . . ,n 5.5c

Applying the composite state feedback control (5.5) to
the original system (3.1), we have

x1 k 1
n

i 0
M1ix1 k hi

n

i 0
M2ix2 k hi 5.6a

x2 k 1
n

i 0
M3ix1 k hi

n

i 0
M4ix2 k hi 5.6b

where

M1i A1i B1k1i, M2i e
~
A1i B1k2i

M3i A2i B2k1i, M4i e
~
A2i B2k2i

5.6c

Prior to discussing D a ,r -stabilization problem of
the closed-loop system (5.6), we ® rst introduce a useful
lemma as follows.

Lemma 4 (maximum modulus theorem) (John
1967): If f z is analytic in a bounded domain D and
continuous in D (i.e. the closure of D), then f z takes
its maximum on the boundary of D.

We now proceed to derive a frequency domain e -
dependence D-stability criterion for the closed-loop
system (5.6).
Theorem 2: If the state feedback gains ksi and kfi for
i 0,1,2, . . . ,n are chosen such that the slow closed-
loop subsystem (4.2) and the fast closed-loop subsystem
(4.9) are both D a ,r -stable with r > a , the original
system (3.1) under the composite state feedback control
(5.5), or equivalently system (5.6), is D a , r -stable with
r > a if the singular perturbation parameter e satis® es

I q
~
u ~g e ,e jµ < 1 for µ 0,2p 5.7a

or

II q
~~
u ~g e ,e jµ < 1 for µ 0,2p 5.7b
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where

~
u ~g e ,e jµ ~L 1

~g e ,e jµ ~
R~g e ,e jµ

n

i 0
M2i e r e jµ a hi

r ejµ a I
n

i 0
M4i e r e jµ a hi

1

n

i 0
M3i e r e jµ a hi

and

~~
u ~g e ,e jµ ~R~g e ,e jµ

n

i 0
M2i e re jµ a hi

re jµ a I
n

i 0
M4i e re jµ a hi

1

n

i 0
M3i e re jµ a hi ~L 1

~g e ,e jµ

with

~L ~g e ,e jµ r e jµ a I
n

i 0
Asi e Bs e ksi r e jµ a hi

and

~R~g e ,e jµ
n

i 0
e

n

i 0

~A1j I e

n

i 0

~A2j

1

A2i B2ksi e B1kfi I e

n

i 0

~A2j

1

n

i 0
A2j B2ksj re jµ a hi

Proof: See Appendix B.

Remark 7: The dependence of the matrices Mji for
j 2, 3, 4 and i 0,1,2, . . . ,n upon e , although
omitted elsewhere, is indicated here in Theorem 2 for
the purpose of clari® cation.

Remark 8: In principle, both the two conditions in
(5.7) can be used to test the D-stability of the closed-
loop system (5.6). It is therefore reasonable to check
the D-stability with any one of the inequalities and
then, if it fails, to resort to another.

Remark 9: Let e 3 and ~e 3 be the upper bounds of e

that ful® l the D-stability conditions (5.7a) and (5.7b),
respectively. Since there is no explicit information to
indicate the conservativeness of e 3 and ~e 3, the less con-

servative one should be used to ® nd the D-stability
bound of e for each case in hand.

6. Algorithm for ® nding the D-stability bound "*

According to Theorem 2, the D-stability bound of e ,
called e , can be obtained by ® nding the upper e -bound
such that not only the slow closed-loop subsystem (4.2)
and the fast closed-loop subsystem (4.9) are both
D a , r -stable but also the condition (5.7a) or (5.7b) is
satis® ed for all e 0, e . In order to obtain a less con-
servative result and to reduce the computation time, on
the basis of Remarks 4± 6 and 9, we propose an e� cient
algorithm to ® nd the D-stability bound e such that
D a , r -stability of the slow closed-loop subsystem
(4.2) and the fast closed-loop subsystem (4.9) can
imply that of the original closed-loop system (5.6), pro-
vided that the singular perturbation parameter is su� -
ciently small to be within this bound.

Algorithm:

Step 1. Choose ks0 to place all the eigenvalues of
As0 A10 B1ks0 at a ,0 and choose ksi to
minimize Asi A1i B1ksi for i 1,2,
. . . ,n, and then we can obtain e 1 from (4.6b).

Step 2. Choose kfi to minimize ~A2i Bf kfi for
i 0,1,2, . . . ,n, and then we can obtain e 2
from (4.10 b).

Step 3. Find the upper bound of e 3 such that the
inequality (5.7a) holds for all e 0, e 3 .

Step 4. Choose e min e 1, e 2, e 3 .
Step 5. If e e j , j 1,2 and 3, then go to (1), (2) and

(3), respectively.
(1) Find the upper bound ~e 1 such that (4.7)

holds for all e 0,~e 1 and e

min ~e 1, e 2, e 3 . If e ~e 1, then stop; else
go to Step 6.

(2) Find the upper bound ~e 2 such that (4.11)
holds for all e 0,~e 2 and e

min e 1,~e 2, e 3 . If e ~e 2, then stop; else
go to Step 7.

(3) Find the upper bound ~e 3 such that (5.7b)
holds for all e 0,~e 3 . If ~e 3 > e 3, then
e min e 1, e 2,~e 3 . Under this condition,
if e ~e 3, then stop; else go to Step 8.
However, if ~e 3 e 3, then stop.

Step 6. If e e j , j 2 and 3, then go to (1) and (2),
respectively.
(1) Find the upper bound ~e 2 such that (4.11)

holds for all e 0,~e 2 and e

min ~e 1,~e 2, e 3 . If e ~e 2, then stop; else
go to Step 11.
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(2) Find the upper bound ~e 3 such that (5.7b)
holds for all e 0,~e 3 . If ~e 3 > e 3, then
e min ~e 1, e 2,~e 3 . Under this condition,
if e ~e 3, then stop; else go to Step 10.
However, if ~e 3 e 3, then stop.

Step 7. If e e j , j 1 and 3, then go to (1) and (2),
respectively.
(1) Find the upper bound ~e 1 such that (4.7)

holds for all e 0,~e 1 and e

min ~e 1,~e 2, e 3 . If e ~e 1, then stop; else
go to Step 11.

(2) Find the upper bound ~e 3 such that (5.7b)
holds for all e 0,~e 3 . If ~e 3 > e 3, then
e min e 1,~e 2,~e 3 . Under this condition,
if e ~e 3, then stop; else go to Step 9.
However, if ~e 3 e 3, then stop.

Step 8. If e e j , j 1 and 2, then go to (1) and (2),
respectively.
(1) Find the upper bound ~e 1 such that (4.7)

holds for all e 0,~e 1 and e

min ~e 1, e 2,~e 3 . If e ~e 1, then stop; else
go to Step 10.

(2) Find the upper bound ~e 2 such that (4.11)
holds for all e 0,~e 2 and e

min e 1,~e 2,~e 3 . If e ~e 2, then stop; else
go to Step 9.

Step 9. Find the upper bound ~e 1 such that (4.7) holds
for all e 0,~e 1 and e min ~e 1,~e 2,~e 3 .

Step 10. Find the upper bound ~e 2 such that (4.11) holds
for all e 0,~e 2 and e min ~e 1,~e 2,~e 3 .

Step 11. Find the upper bound ~e 3 such that (5.7b) holds
for all e 0,~e 3 . If ~e 3 > e 3, then e

min ~e 1,~e 2,~e 3 ; else e min ~e 1,~e 2, e 3 .

Remark 10: For some cases, the preceding algorithm
may avoid the examination of conditions (4.7), (4.11)
and (5.7a), (or (5.7b)) simultaneously to get a less
conservative D-stability bound e . For example, if the
design algorithm stops at Step 5 (1) then it is not
necessary to examine the conditions (4.11) and (5.7b).
This obviously reduces the computation time.

Remark 11: Consider the following discrete multiple
time-delay singularly perturbed system which is re-
ferred to as the R-model (Naidu and Rao 1985, p. 47):

x1r k 1
n

i 0
A1ix1r k hi

n

i 0

~A1ix2r k hi B1u k 6.1a

x2r k 1 e

n

i 0
A2ix1r k hi

e

n

i 0

~A2ix2r k hi e B2u k 6.1b

Introducing the following state-variable transformation
(6.2) into system (6.1):

x1r k
x2r k

I 0
0 e

x1c k
x2c k

6.2

the system can then be converted into the following C-
model:

x1c k 1
n

i 0
A1ix1c k hi e

n

i 0

~
A1ix2c k hi B1u k

6.3a

x2c k 1
n

i 0
A2ix1c k hi e

n

i 0

~A2ix2c k hi B2u k

6.3b

Hence, the design algorithm proposed in this study can
also solve the D-stabilization problem of the R-model
system (6.1) by a state-variable transformation.

7. Example

Consider a discrete time-delay singularly perturbed
system described by the following equations:

x1 k 1
2

i 0
A1ix1 k hi e

2

i 0

~A1ix2 k hi B1u k

7.1a

x2 k 1
2

i 0
A2ix1 k hi e

2

i 0

~
A2ix2 k hi B2u k

7.1b

in which

h0 0,h1 0.2,h2 1.1;

A10

2.3 2

4 4.3
,A11

1 1.5

0 3
,

A12

5 10

0 20
, ~
A10

0.4 0.23

0 0.17
,

~
A11

0.5 0

0.65 0.31
, ~
A12

0.27 0.71

0.18 0.28
,

A20

2 2

2 2.001
,A21

1 1.5

1 1.501
,
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A22

5 10

5 10
, ~A20

5 1

1.5 1
,

~A21

6 1.2

6 1
, ~A22

2 2

2.2 2
,

B1

1

2
,B2

1

1

It is desired to ® nd a composite state feedback con-
trol u k such that the time-domain performance of
system (7.1) satis® es the following speci® cations:

(a) overshoot 15%, or equivalently, damping

ratio z 0.5; 7.2a

(b) rise time 8s, or equivalently, natural

frequency x n 0.3125; 7.2b

(c) settling time 20s, or equivalently, all poles less

than 0.8 (the sampling interval T 1s 7.2c

These constraints (a) ± (c) may be interpreted as pole
locations inside the speci® c disk D 0.3,0.46 (Lee and
Lee 1987). Subsequently, the design algorithm proposed
in §6 is used to ® nd the D-stability bound e such that
D 0.3,0.46 -stability of the slow and fast closed-loop
subsystems can imply that of the original system (7.1)
under the composite state feedback control (5.5) for all
e 0, e .

Step 1. Choose ks0 2 2 to place all the eigen-
values of As0 A10 B1ks0 at (0.3, 0) and
choose ks1 1 1.5 and ks2 5 10
to minimize Asi A1i B1ksi ² for i 1,2,
respectively; we then get e 1 0.0448 from equa-
tion (4.6b).

Step 2. Choose kf 0 5 1 , kf 1 6 1 and
kf 2 2 2 to minimize ~A2i Bf kfi for
i 0, 1, 2, respectively; we then get
e 2 0.0699 from equation (4.10b).

Step 3. In ® gure 2, the supremum of the function
q

~
u ~g e ,e jµ in the range µ 0,2p is depicted

with respect to e . According to this ® gure and
the inequality (5.7a), we have e 3 0.0128.

Step 4. Choose e min e 1, e 2, e 3 0.0128.
Step 5. Since e e 3 0.0128, we resort to case (3). In

® gure 3, the supremum of the function
q

~~
u ~g e ,e jµ in the range µ 0,2p is depicted

with respect to e . According to this ® gure and
the inequality (5.7b), ~e 3 0.007 is obtained.
Since ~e 3 > e 3, we stop.

According to the above discussion, we conclude that
the discrete time-delay singularly perturbed system (7.1)
under the composite state feedback control (5.5) with
the state feedback gains obtained in Step 1 and Step 2
is D(0.3, 0.46)-stable for all e < e 0.0128.

8. Conclusion

In this paper, we investigate the D-stabilization
problem of a discrete multiple time-delay singularly per-
turbed system. Two cases of a new robust D-stability
criterion in terms of complex stability radius are ® rst
proposed for discrete uncertain multiple time-delay
systems. One is a direct test (i.e. d1 < ds) and the other
is a boundary test. Then, the corresponding slow and

Algorithm for ® nding D-stability 11

Figure 2. The supremum of the function q
~
u ~g e ,e jµ in the

range µ 0,2p .

Figure 3. The supremum of the function q
~~
u ~g e ,e jµ in the

range µ 0,2p .

² In this example, the Euclidean norm is considered.
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fast subsystems of a discrete multiple time-delay singu-
larly perturbed system are derived by using the tech-
nique of time-scale separation. the state feedback
controls for the D-stabilization of the slow and fast sub-
systems are separately designed, and a composite state
feedback control for the original system is subsequently
synthesized from these state feedback controls. There-
after, a frequency domain e -dependent D-stability cri-
terion is proposed for the original discrete multiple time-
delay singularly perturbed system under the composite
state feedback control. If any one of the conditions of
this criterion is ful® lled, the D-stability of the original
closed-loop system is thus investigated by establishing
that of its corresponding slow and fast closed-loop sub-
systems. Finally, an e� cient algorithm is proposed to
obtain a less conservative D-stability bound of the sin-
gular perturbation parameter and to reduce the compu-
tation time.

Appendix A. Proof of Theorem 1:

(I): The necessary and su� cient condition to guarantee
that all poles of the system (2.1) lie inside the speci® c
disk D a ,r is that all solutions of the characteristic
equation

det zI A D A
n

i 1
Adi D Adi z hi 0

A 1

satisfy z a < r. Let z a /r be replaced by a vari-
able g (i.e. z rg a ; then (A 1) becomes

det rg a I A D A
n

i 1
Adi D Adi rg a hi 0

or, equivalently,

det gI
A a I

r
1
r

D A
n

i 1
Adi D Adi rg a hi 0

A 2

If g 1, we have r a rg a . From equation
(2.7a), the following inequality (A 3) can be achieved:

1
r

D A
n

i 1
Adi D Adi rg a hi

< q
A a I

r
for g 1 A 3

1
r

D A
n

i 1
Adi D Adi rg a hi

< q
A a I

r
for g 1 A 4

Since all the eigenvalues of A are within the disk D a ,r ,
all the eigenvalues of A a I /r lie inside the unit circle.
Hence, from (A 4) and Lemma 1, all eigenvalues of the
matrix

A a I
r

1
r

D A
n

i 1
Adi D Adi rg a hi A 5

remain inside the unit circle for g 1. That is,

¸
A a I

r
1
r

D A
n

i 1
Adi D Adi rg a hi < 1

for g 1 A 6

This implies that

g ¸
A a I

r
1
r

D A
n

i 1
Adi D Adi rg a hi

for g 1 A7

In view of (A 7), all solutions of the characteristic equa-
tion (A 2) satisfy g < 1 (i.e. z a /r < 1 . This com-
pletes the proof of case (I).
(II): If the system (2.1) is not D a , r -stable, then there
exists a solution ĝ of the characteristic equation (A2)
satisfying

ĝ ¸
A a I

r
1
r

D A
n

i 1
Adi D Adi rĝ a hi 1

A 8

On the basis of Lemma 1 and equation (A8), the follow-
ing inequality is obtained:

1
r

D A
n

i 1
Adi D Adi rĝ a hi q

A a I
r

A 9

Since

1
r

D A
n

i 1
Adi D Adi rĝ a hi

1
r

b
n

i 1
Adi rĝ a hi

n

i 1
h i r a hi

1
r

b
n

i 1
Adi h i r a hi A 10

we have

12 F.-H. Hsiao et al.
D

ow
nl

oa
de

d 
by

 [
N

at
io

na
l C

hi
ao

 T
un

g 
U

ni
ve

rs
ity

 ]
 a

t 0
3:

55
 2

8 
A

pr
il 

20
14

 



ds q
A a I

r
1
r

D A
n

i 1
Adi D Adi rg a hi

1
r

b
n

i 1
Adi rg a hi

n

i 1
h i r a hi h g

1
r

b
n

i 1
Adi h i r a hi d1 f or g 1

A 11

Moreover, according to (A 8), we can obtain the follow-
ing inequality:

1 ĝ ¸
A a I

r
1
r

D A
n

i 1
Adi D Adi rĝ a hi

A a I
r

1
r

D A
n

i 1
Adi D Adi rĝ a hi

A a I
r

1
r

b
n

i 1
Adi h i r a hi d1r

A 12

This implies that, if the system (2.1) is not D a ,r -stable,
then all the unstable poles of this system must be within
the bounded region U1. Hence, if the inequality (A 11) is
not true (i.e. h g does not lie inside the interval ds,d1 )
for all g U1, then the system (2.1) is robustly D a ,r -
stable. This completes the proof of case (II).

Appendix B. Proof of Theorem 2:

(I): Applying a z-transform to the closed-loop system
(5.6) yields

zX1 z
n

i 0
M1iz

hiX1 z

n

i 0
M2iz

hiX2 z xz1 0 B1a

zX2 z
n

i 0
M3iz

hiX1 z

n

i 0
M4iz

hiX2 z xz2 0 B1b

in which x1 0 and x2 0 are the bounded initial con-
ditions of the states x1 k and x2 k , respectively.
According to (B1b), we have

X2 z zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi X1 z

z zI
n

i 0
M4iz hi

1

x2 0 B2

Substituting (B2) into (B1a), X1 z is obtained as

X1 z zU
1 z

n

i 0
M2iz

hi zI
n

i 0
M4iz

hi

1

x2 0

zU
1 z x1 0 B3

where

U z zI
n

i 0
M1zz

hi

n

i 0
M2iz

hi

zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi B4

Since the fast closed-loop subsystem (4.9) is D a ,r -
stable, and the basis of the fact that M4i D fi ² , all
poles of the term

zI
n

i 0
M4iz

hi

1

in (B3) lie inside the disk D a ,r . Moreover, all poles of
the term n

i 0 M2iz
hi in (B3) are z 0 which is also

inside the disk D a ,r { r > a . Therefore, to let all
poles of X1 z be within the disk D a , r and likewise
those of X2 z , we need only to ® nd the condition which
guarantees that all the poles of U

1 z are within the
disk D a ,r . Substituting (5.5b) and (5.6 c) into (B4),
we have

U z zI
n

i 0
A1i B1k1i z hi

n

i 0
M2iz

hi

zI
n

i 0
M4iz hi

1 n

i 0
M3iz hi

zI
n

i 0
A1i B1 ksi e kfi I e

n

j 0

~A2j

1

n

j 0
A2j B2

n

j 0
ksj z hi

n

i 0
m2iz

hi

Algorithm for ® nding D-stability 13

² The fact that M4i D Afi can be observed by comparing
(4.9b) with (5.6 c) and using the matrices de® ned in (3.7b) and
(5.5 c).
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zI
n

i 0
M4iz hi

1 n

i 0
M3iz hi

zI
n

i 0
A1i e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i

B1 e

n

j 0

~A1j I e

n

j 0

~A2j

1

B2 ksi z hi

n

i 0
e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i B2ksi z hi

n

i 0
e B1kfi I e

n

j 0

~A2j

1

n

j 0
A2j B2

n

j 0
ksj z hi

n

i 0
M2iz

hi

zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi

zI
n

i 0
Asi Bsksi z hi R z

n

i 0
M2iz

hi zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi

see 3.5b and 3.5 c

K z I K
1 z R z

n

i 0
M2iz hi

zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi

where

K z zI
n

i 0
Asi Bsksi z hi

and

R z
n

i 0
e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i B2ksi e B1kfi I e

n

j 0

~A2j

1

n

j 0
A2j B2ksj z hi

Hence, we have

U
1 z I u z 1

K
1 z w

1 z K
1 z B5

where

w z I u z

with

u z K
1 z R z

n

i 0
M2iz

hi

zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi

Since the slow closed-loop system (4.2) is D a ,r -stable,
the term K

1 z in (B5) has all poles lying inside the disk
D a , r . Consequently, if all poles of the term
w

1 z I u z 1 in (B5) lie inside the disk
D a , r , we can guarantee that U

1 z has all poles
lying inside the disk D a ,r .

Let z a /r be replaced by a variable g (i.e.
z rg a ; then the term w

1 z becomes

w
1 z I u z 1 I u rg a 1

I u g g 1
w

1
g g B6a

where

u g g K
1

g g Rg g
n

i 0
M2i rg a hi

rg a I
n

i 0
M4i rg a hi

1

n

i 0
M3i rg a hi B6b

with

K g g rg a I
n

i 0
Asi Bsksi rg a hi

and

Rg g
n

i 0
e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i B2ksi e B1kfi I e

n

j 0

~A2j

1

n

j 0
A2j B2ksj rg a hi

If the following inequality holds:

det w g g det I u g g > 0 g 1 B7

14 F.-H. Hsiao et al.
D

ow
nl

oa
de

d 
by

 [
N

at
io

na
l C

hi
ao

 T
un

g 
U

ni
ve

rs
ity

 ]
 a

t 0
3:

55
 2

8 
A

pr
il 

20
14

 



(i.e. all the poles of w
1

g g are within the unit disk), then
all the poles of w

1 z lie inside the disk D a ,r . Let
g ~g 1; then w s g becomes

w g g w g
~g 1 I u g

~g 1 I
~
u ~g

~g
~
w ~g

~g
B8a

where

~
u ~g

~g ~
K

1
~g

~g ~R~g
~g

n

i 0
M2i r~g 1 a hi

r~g 1 a I
n

i 0
M4i r~g 1 a hi

1

n

i 0
M3i r~g 1 a hi B8b

with

~
K ~g

~g r~g 1 a I
n

i 0
Asi Bsksi r~g 1 a hi

and

~R~g
~g

n

i 0
e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i B2ksi e B1kfi I e

n

j 0

~
A2j

1

n

j 0
A2j B2ksj r~g 1 a hi

Therefore, the examination of (B7) is equivalent to
investigating the following inequality:

det
~
w ~g

~g det I
~
u ~g

~g > 0 ~g 1 B9

Introducing the singular perturbation parameter e into
(B8b), ~

u ~g
~g can then be rewritten as

~
u ~g e ,~g ~

K
1

~g e ,~g ~R~g e ,~g
n

i 0
M2i e r~g 1 a hi

r~g 1 a I
n

i 0
M4i e r~g 1 a hi

1

n

i 0
M3i e r~g 1 a hi B10

with

~
K ~g e ,~g r~g 1 a I

n

i 0
Asi e Bs e ksi r~g 1 a hi

and

~R~g e ,~g
n

i 0
e

n

j 0

~A1j I e

n

j 0

~A2j

1

A2i B2ksi

e B1kfi I e

n

j 0

~A2j

1 n

j 0
A2j B2ksj

r~g 1 a hi

Since all poles of the term zI n
i 0 M4iz

hi 1 in (B3)
and the term K

1 z in (B5) lie inside the disk D a ,r ,
the terms rg a I n

i 0 M4i rg a hi 1 and
K

1
g g in (B6b) do not have any pole lying inside the

region g 1. Moreover, the term Rg g in (B6b) does
not have any pole lying inside the region g 1 ( { the
multiple poles of Rg g are at g a /r and r > a )
either. We can then conclude that u g g does not have
any pole lying inside the region g 1. Consequently,
~
u ~g e ,~g ~

u ~g
~g u g

~g 1 has no poles lying inside the
region ~g 1 and the function i̧

~
u ~g e ,~g ² is hence

analytic and continuous in the bounded domain
~g 1. Therefore, if (5.7a) holds,

i.e. s
~
u ~g e ,~g max

i i̧
~
u ~g e ,~g < 1 ~g 1

B11

then we have (according to Lemma 4)

s
~
u ~g e ,~g < 1 ~g 1 B12

On the basis of (B12) and Lemma 3, the following
inequality is obtained:

det
~
w ~g

~g det I
~
u ~g

~g det I
~
u ~g e ,~g > 0
~g 1 B13

and then the inequality (B9), or equivalently (B7), is
ful® lled. This implies that the closed-loop system (5.6)
is stable, thus completing the proof of case (I).

(II): Using the matrix inversion formula

I R P
1 I R I PR

1
P B14

the function w
1 z in (B5) can be rewritten as

Algorithm for ® nding D-stability 15

² The notation i̧ A denotes the eigenvalue of the matrix
A.
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w
1 z I K

1 z R z
n

i 0
M2iz

hi

zI
n

i 0
M4iz

hi

1 n

i 0
M3iz

hi

1

I K
1 z I u z 1

R z
n

i 0
M2iz

hi zI
n

i 0
M4iz

hi

1

n

i 0
M3iz

hi B15

where

u z R z
n

i 0
M2iz

hi zI
n

i 0
M4iz

hi

1

n

i 0
m3iz

hi K
1 z B16

Since all poles of the matrices

R z
n

i 0
M2iz hi zI

n

i 0
M4iz hi

1 n

i 0
M3iz hi

and K
1 z lie inside the disk D a ,r , therefore, to

ensure the D a ,r -stability of the system (5.6), we need
only to ® nd a condition which guarantes that all the
poles of I u z 1 are within the disk D a ,r . Follow-
ing the same procedure as that in case (I), the proof of
case (II) is thereby completed.
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