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I, 2) are unbiased and statistically independent. The frequency res- A New Array Architecture for Prime-Length Discrete 
olution bandwidths are given by Cosine Transform 

and 

L I  I 

x ( M  + 1)T, M . SNR,’ 
i = 1, 2 (4.1) B =--- ‘ 

Jiun-In Guo, Chi-Min Liu, and Chein-Wei Jen 

Abstract-A new approach to derive a systolic algorithm for prime- 
length discrete cosine transform (DCT) is proposed. It makes use of 
the input/output (UO) data permutations and the symmetry property 
of cosine kernels such that the proposed array possesses outstanding 

E ( i  - A ) *  = B,?. (4.2) performance in hardware cost of the processing elements (PE’s), av- 
erage computation time, and the I/O cost. 

the asymptotic variances 

8 . N  

B. Sicperresolution 

If 1 f l  - fil < 1 / M T , ,  but the SNR, are high that 

2P(Bl + B?) < l / M T ,  (4.3) 

or, equivalently, 

Equation (4.3) means that two sinusoids are resolvable. However, 
the biases of the AR frequency estimate, a B , / 2 ,  exist; and the res- 
olution bandwidths OB, spread by a factor 6 .  And, the statistical 
variances are given by 

C. Choices  of t h e  A R  Model M and Sample Size N 

( I  / M  . SNR,) should be small, at least to meet the resolvability 
condition (4.4) ,  and N should be large that (1  / N  . T,)  < /3B, /2 .  
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I. INTRODUCTION 

The discrete cosine transform (DCT) has been widely used in 
image coding for its near-optimal performance [ l ] .  Since the DCT 
is computation intensive, the development of high-speed hardware 
is necessary in many real-time applications. Systolic arrays are an 
appropriate architecture to meet the requirements of both high pro- 
cessing speeds and VLSI implementation. However, the computing 
algorithms encapsulated within systolic arrays need to be devel- 
oped specifically. 

Recently, there were some systolic array architectures [2]-[6] 
proposed to realize one-dimensional DCT. These architectures can 
be categorized into linear array architectures [2]-[4] and two-di- 
mensional array architectures [SI, 161. Although the two-dimen- 
sional arrays can attain higher speeds than one-dimensional arrays, 
the hardware complexity of PE’s and the control complexity of 
these two-dimensional arrays are generally higher than those of lin- 
ear arrays. Furthermore, the two-dimensional arrays need high 
I/O bandwidth and a large number of I/O channels to attain the 
higher speeds, unless most operands are preloaded into the arrays 
instead of being supplied from the input ports. But additional over- 
heads are needed if the operands are preloaded into the arrays like 
the two-dimensional array in 151. Considering for example the ar- 
ray in [6], the average computation time for N-point DCT is ( A  
+ 2 )  cycles, while the number of multipliers in the array is (4N + 
4 A), if the clock cycle is assumed to be the consumption time of 
one multiplier. In addition, undesirable features such as the com- 
plex control problems, high I/O bandwidth, and a large number 
of I/O channels are still accompanied with the array in [6]. 

The attractive feature of linear arrays is that the U0 bandwidth 
and the number of I/O channels can be kept independent of the 
DCT length if the I/O channels exist only at the two extreme ends 
of a linear array. As discussed in [SI, the high U0 bandwidth re- 
quired for most systolic arrays would limit computing speeds. 
Hence, linear arrays should be one feasible architecture for a sys- 
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tem application. However, how to keep I/O channels at the extreme 
ends of linear arrays and to pursue high computing power at the 
same time should be a challenging design issue when deriving sys- 

where { y(i)/i = 0, 1 ,  . . . , N - I }  is the input sequence and 
{Y(k)lk = 0, 1, . . . , N - 1) is the output sequence. We rep- 
resent (1) as a matrix-vector multiplication as follows: 

- - 
1 1 1 1 1 1 I 

cos (a)  cos (3a) cos (5a)  cos (7a) cos (9a) cos ( I  la) cos ( 1 3 4  

cos (2a) cos (6a)  cos (loa) cos (14a) cos ( IOU)  cos (6a) cos ( 2 a )  

cos (3a) cos (9a) cos ( 1 3 4  cos (7a) cos (a)  cos ( 5 a )  cos ( I  la) 

cos ( 4 4  cos (12a)  CO5 (Sa)  1 cos ( S a )  cos (12a) cos (4u) 

cos (5a) cos (13a) cos (3a) cos (7a) cos ( l l a )  cos (a) cos (9a )  

cos (6a) cos (loa) cos ( 2 a )  cos (14a) cos ( 2 a )  cos ( loa)  cos (6a)  - - 
tolic algorithms for linear arrays. The approach in [ 2 ]  is to directly 
represent the DCT as a matrix-vector multiplication first. Then, 
the systolic array realization for the matrix-vector multiplication 
can be directly modified to compute the DCT. Since the designed 
array in [ 2 ]  cannot retain the I/O channels at the two extreme ends 
of itself, a large number of I/O channels and high U0 bandwidth 
are needed. Another approach [3] modifies the DCT into a form 
similar to the discrete Fourier transform (DFT) and realizes the 
DCT by using the array that has been developed for the DFT.  Since 
the twiddle factor exp ( j 2 7 r l N )  in the DFT is a complex number 
while the factor cos (27r/4N) in the DCT is a real number, the 
designed arrays based on this approach should induce much hard- 
ware cost. In addition, the approach in [4] is also to represent the 
DCT as a matrix-vector multiplication like [ 2 ] ,  but it generates the 
transform kernels recursively in the array instead of prestoring them 
in memory. The array in [4] uses this method to reduce the I/O cost 
such as  the number of U0 channels and I/O bandwidth, but addi- 
tional hardware cost is paid for recursive generations of the cosine 
kernels. 

To simultaneously consider the hardware cost, the IiO band- 
width, and the number of I/O channels, a systolic algorithm for 
prime length DCT is derived in this correspondence. The design 
approach utilizes the input and output data permutations accom- 
panied with the symmetry property of the cosine kernels such that 
the proposed array can retain most I/O channels at the two extreme 
ends and simultaneously attain good performance in average com- 
putation time, hardware cost of the PE’s, and the number of the 
PE’s. The performance of the proposed array and that of the linear 
arrays in [2]-[4] are discussed in Section 111. From Section 111, we 
can see that the proposed array possesses better performance than 
the arrays [2], [3] in the hardware cost of the PE’s, the average 
computation time, the number of U0 channels, and the IiO band- 
width. Moreover, it also possesses better performance than the ar- 
ray [4] in the hardware cost of the PE’s. The overheads of the 
proposed array include some additional shift registers, latches, 
multiplexers, a demultiplexer, and a switching element for solving 
control problems. Basically, these overheads are minor as com- 
pared with the savings in regard to the hardware cost of the PE’s 
in the array. This correspondence is arranged as follows. Section 
I1 describes the derivation of the computing algorithm encapsulated 
in the array. Section I11 considers the array realization of the pro- 
posed systolic algorithm. A brief conclusion is given in Section IV. 

11. THE ALGORITHM DERIVATION 

The DCT is defined as 
N -  I 

~ ( k )  = C y(i) cos 
r = O  

f o r k = O , I ; . . . N -  1 

where “a” denotes s / 1 4 ;  and N is assumed to be 7. If ( 2 )  is di- 
rectly realized by linear array architectures, as was done in [ 2 ] ,  
there would be one input port needed in every PE to transmit the 
cosine kernels for proper operations, and would induce a large 
number of I/O channels and high I/O bandwidth. It can be shown 
that the DCT defined in (1) can be formulated as  

Y(k) = {2T(k)  + x(0)) cos I&], f o r k = O , l ; . . , N -  1. 

(3) 

where 

and x ( i )  is another sequence defined as 

x(N - 1 )  = y(N - 1) 

x ( i )  = y(i) - x( i  + 1)  f o r i  = 0, I ,  . . . , N - 2. ( 5 )  

If N is a prime number, there exists some number of “g , ”  not 
necessarily unique, such that there is a one-to-one mapping from 
integers { i j i  = 1 ,  2 ,  . . . , N - 1 )  to integers { j l j  = 1, 2 ,  
. . . , N - l ) ,  given by 

J = IK ‘ IN (6)  

where \AIN denotes the result of “A-modulo-N” operation. Then 
(4) can be reformulated with i and k as powers of the primitive 
element “g.” Because i and k take on the value zero, and zero is 
not a power of “g , ”  the zero frequency component must be treated 
specially, i.e.,  

A’- I 

Y(O) = C y ( i )  , = 0 
(7) 

Y(k) = { 2 T ( k )  + x(O)} cos 13 
f o r k = I ; . . , N - l .  ( 8 4  

where 
N -  I 

T(k) = c x( i )  cos I$], f o r k  = 1, . . . , N - 1 .  (8b) 
I =  I 

Applying ( 6 )  to (Sb), it follows that 

T ‘ W  = T(l d l N )  
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The term " I  g' I N  x 1 g k I N "  can be expressed as 

1 & I N  X I g k I N  = 1 g ' + ' l N  + m x N, 

i , k = l , 2 ; . . , N - l  

where "m" is an integer. Then, (9a) can be written as 

N -  I 

T'(k) = T(I g k l N )  = x ' ( i )  X C;, 
, = I  

k = 1 , 2 ,  . . .  , N - 1 

where 

and x ' ( i )  = x( l  g'  I N )  

Applying (1 1) to (9c), (9c) can be written as 

(N- 1 ) / 2  

(9b) T'(k) = I =  I x"( i )  x C;,  k = 1, 2, * . . , N - 1. (12a) 

where 

x " ( i )  = 

if mi and m2 are one even number and 

one odd number 

if ml and m2 are all even numbers or 

all odd numbers 
Now (7),  @a), and (9c) constitute the computational equations for 
the DCT. To see the difference between these computational equa- 
tions and ( I ) ,  (9c) is written as 

where "a" denotes 1 r / 7 ,  N a n d  "g" are assumed to be 7 and 3, 
respectively. It can be seen that the absolute values of the cosine 
kernels along same antidiagonal positions in the matrix of (10) are 
the same while those in the matrix of (2) do not have any specific 
order like (IO).  This phenomenon tells that the vector of T'(k) is 
the circular convolution of inputs x' (i)  and the cosine kernels. The 
phenomenon also exists in the DFT, which was firstly found by 
Rader [IO] and has also been used to design the efficient systolic 
arrays for prime length DFT [9]. Now we apply it to derive the 
systolic algorithm for DCT. From the viewpoint of array realiza- 
tion, the constant value along the same antidiagonal positions means 
that this variable can be sent to every PE along a l ink from one 
input port at the extreme end of a linear array. The (2N - 3) an- 
tidiagonal lines in the matrix of (10) mean that there are only (2N 
- 3) values instead of N 2  values in the matrix of (2) needed to be 
sent to the array. This phenomenon can be effectively captured to 
design the systolic array with a low number of I/O channels and 
low I/O bandwidth. 

From (IO), since cos ( k a / N )  = -cos ((N - k ) a / N ) ,  it is ob- 
served that the absolute values of the cosine kernels located at the 
left three columns are the same as those located at the right three 
columns. This symmetry property benefits further reduction of the 
computational complexity in the algorithm. As shown in the Ap- 
pendix, the symmetry property of the cosine kernels can be ex- 
pressed as the following equation: 

and 

N -  1 
j =  1, . . .  9 -  - , and k = l ; . . , N - l  

L 

The integers ml  and m2 are determined in the following equations: 

N - I  
and i =  I ; . .  ' 2  - k =  1 , 2 ; . . , N -  I ,  

where 
I g n + k l N  + 1 g r f A + ( N - I l / Z I  N -  - N. 

Now (7), @a), and (12) constitute the computational equations of 
the DCT in the proposed algorithm. Considering the computational 
complexity, the number of multiplications has been reduced from 
(N - 1)2 in (9c) to (N - 1)2/2  in (I2a).  In addition, the vector of 
T' (k) in ( 1 2 4  is still in a circular convolution form. It will be shown 
in the next section that such a form is beneficial to the reduction of 
I/O cost. 
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x’(l)tx’(4) Wtx’(5) ~‘(3)+~‘(6) 

Fig. l(a). The dependence graph (DG) of the proposed algorithm for 7-point DCT where “a” denotes ~ / 7  

111. THE ARRAY REALIZATION 

This section considers the array realization of the proposed sys- 
tolic algorithm. Fig. 1 shows the dependence graph (DG) [12] of 
the proposed algorithm for a seven-point DCT. The DG clearly 
shows the data operations, data dependency, and control signals 
involved in the proposed algorithm. Linear arrays can be con- 
structed from the DG according to the design procedure [12]. And 
the tag control scheme [ 131 can be utilized for the I/O control and 
data control. Based on the two design approaches, Fig. 2 shows 
the constructed array for seven-point DCT with projection vector 
[0 11. For the sake of showing the activity of the array clearly, 
we rewrite (7),  (8a), and (12a) in recursive forms as 

z ;  = x(0) 

zb = z&’  + 2 X [ x ’ ( i )  + x ’ ( i  + 3)], 

i = 1, 2, 3. 

Y(0)  = z ;  

Y ’ ( k )  = {2T’(k) + x(0)) x cos (5 (3k I,), 

, 6. k =  1, . . .  
y ;  = 0 

y ;  = y i - ’  + x ” ( i )  x ci, 
i =  1 , 2 , 3 ,  k =  l ; . .  , 6. (13c) 

T(k)  = y :  

where 

and “y;” and “zb” are the intermediate results. 
From Fig. 2(a), we know that the operations specified in (13a) 

and (13b) are computed within the left-most PE, while those in 
(13c) are computed in other PE’s. The multiplication and addition 

y * #  

C’ x3’x4. x l ’  x2’ 

c’ C= c ; 
xl’ <= X l  ; 
x2’ <= x2 ; elseif sign=01 then 

x3’<=x1; elseif sign=lO then 

If sign=00 then 
y’c=y+xl’C ; 

If Tagl=l then y‘<=y-xl’c ; 

x4‘c=x2; y’c=y+X2’C ; 
else else 

x4‘<=x4; end 
x3-<=x3; y’<=y-XZ’c ; 

end x3  

Ylo<=(zy+xl)’c ; If TagZ=l then 
If Tagl=l then Yloc=r’ ; 

z’<=xl+Zx3 ; else 

z’<=z+2x3 ; end 
else y20<-0 ; 

end 

Fig. I(b). The functions of nodes. 
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constitute the main functions of the PE’s, which are shown in Fig. 
2(b). And three control signals denoted as “Tag l , ”  “Tag2,” and 
“sign” are used to select the right operands in the operations. Fig. 
2(c) shows the preprocessing stage needed in the array. The inter- 
mediate sequence x ( i )  can be generated from input sequence y ( i )  
by a subtractor, and then we use the multiplexers and a switching 
element to permute the sequence x ( i )  where the required control 
signals can be generated by circular shift registers. Finally, the 
required data patterns are obtained by adding and subtracting the 
permuted data. Fig. 2(d) shows the postprocessing stage in the ar- 
ray, which uses a demultiplexer to perform the output data per- 
mutation. Similarly, the control signals needed in the demulti- 
plexer can be generated by a circular shift register. The utilization 
of shift registers and latches in Fig. 2(c) and Fig. 2(d) makes the 
array able to be pipelined. That is, the intermediate signals x ( i )  
and output results Y(k)  of current block are shifted into the shift 
registers seriously. After all of these ( N  - 1) values have been 
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sign=lO 

Y l +  

Y l +  
Xinl 'C1 

Tag1=' ~ e x t 2 * ~ 1  

T a g l  =O 
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\ 
signz00 sign=01 s i g n = l l  

X e x t l  'C1 X e x t l  'C1 Xext2 C1 

Xinl 'C1 Xinl 'C1 XinS'C1 1 

Y l +  Y l -  Y1; 

Y l +  Y l -  Y l -  

10 
11 
m 
m 
m 

10 
10 
m 
m 

10 m 
10 

1.8 0 0 
t.7 0 0 
1.6 0 
t=5 ~'(6)+~'(3) ~'(3)-~'(6) 
1-4 X'(5)+~'(2) x:(2)-x'(5) 
1.3 ~'(4)+~'(1) x (1)4(4) 

1 

Y1 o e- ( 2 y l  +Xext3)'C2 
If Tag l= l  then 

else y2 '  c- y2+2Xext i  
~ 2 '  C- Xext3+2Xextl 

Y l O  4- XextZ - Y l  If T a g E l  then Y2o + y 2  
4- T a g l  e lse Y2o 4--- 0 

e n d  

C 1 ' C  C 1  Xex t l '  + Xext l  
T a g l ' e T a g l  X e x t Z ' C X e x t Z  
If Tag l= l  then 

Xex t l '  Xex t l  X i n l '  + X e x t l  Xin2' +- Xext2 XextZ' 
C1'  
v i '  

control r 
00 
0 1  
1 0  
1 1  
1 1  
1 1  

circular SR 

1.6 
1.5 
1.4 
1.3 
1.2 
1.1 

1.9 
1.8 
1.7 
1-6 
t:5 
1 :4 
1.3 
1 2  
1.1 

Control 

If controk0 then 

else 

end 

U'<= U ; v.<= v ; 

U'<= v ; V'<= U ; 

Fig. 2. (a) The array architecture for 7-point DCT where " r (  )" denotes cos ( ) and "U" denotes ~ / 7 .  (b) The functions of 
the PE's in  the array. (c) The preprocessing stage in the array where SR denotes shift register, SE denotes switching element, 
and L denotes latch. (Continued on nexrpage.)  
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01 

010  

Y(5) 
Y(1) 

Fig. 2.  (Conrinued) (d) The postprocessing stage in the array where SR 
denotes shift register and L denotes latch. 

shifted into the registers, they are shifted parallelly into the latches 
for the I /O data permutations such that the data of next block can 
be continuously shifted into the registers without any time delay. 
Therefore, the proposed array including the preprocessing and 
postprocessing stages can be fully pipelined, and a high throughput 
rate of the design can be attained. 

In order to see the features of the proposed array more clearly, 
(12a) is expressed as 

1 
- 

--COS ( 2 ~ )  COS ( 6 ~ )  COS (4a) 

COS ( 6 ~ )  COS ( 4 ~ )  --COS ( 5 ~ )  

cos (4a) -cos (5u) -cos (a) 

-cos (5u) -cos (a)  -cos (3a) 

cos (a )  -cos (3a) cos (2a) 

L cos (3a) cos (2a) cos (6a) 

x’ ( I )  f x’ (4) 

x’(2)  * x’(5) 

x’(3)  k x ’ ( 6 )  

where “a” denotes * / I ,  N a n d  “g” are assumed to be 7 and 3, 
respectively. If “k”  is equal to 1 ,  5 ,  and 6, the minus signs in the 

values instead of eight to the array for computing each seven-point 
DCT. It can be seen from the array in Fig. 2(a) that only (N - 1) 
cosine kernels are needed to compute an N-point DCT. And, the 
average computation time for computing the N-point DCT is (N - 
1) cycles. This phenomenon is induced from the cyclic property of 

Exerting the specific order of the cosine kemels in the matrix of 
(14). these kernels in the array are imported from the right-most 
PE instead of being imported from every PE as  the approach in [2]. 
Therefore, the proposed array requires a low number of I/O chan- 
nels and low 1/0 bandwidth. Considering the I/O cost, the I/O 
cost of the designs [2]-[4] are proportional to (N + 2 ) L  [2], (N + 
3)L [3], and 8L [4] where L is the wordlength. And, the I /O cost 
of the proposed array is only proportional to 7 L  + N + 2. Also, 
the proposed array needs much lower hardware cost than the de- 
signs (21-[4]. The required numbers of multipliers are N [2], 4N 
+ 4 [3], and 2N - 2 [4], which are much larger than the (N + 
1)/2 of the proposed array. Moreover, regarding to  the average 
computation time, the proposed array needs (N - 1) cycles for 
computing N-point DCT, which is better than the N cycles in (21, 
and also better than the (N + 1)  cycles in [3]. The hardware over- 
heads of the proposed array include some shift registers, latches, 
multiplexers, a demultiplexer, and a switching element for solving 
the control problems and the I/O data permutations. And the cycle 
time of the array includes the multiplication and addition time as  
well as the time for multiplexing. However, these overheads are 
minor as compared with the savings of hardware cost in the pro- 
posed array. As a whole, the proposed array excels the arrays [2], 
[3] in average computation time, hardware cost of PE’s, the num- 
ber of I/O channels, and the I/O bandwidth. It also excels the array 
(41 in hardware cost of the PE’s. 

the modulo operation in (6), i.e., 1 g’ I ,v  = I g N - ’  - ‘  IN.  

IV. CONCLUSIONS 

In this correspondence, a new approach to derive the systolic 
algorithm for prime length DCT is presented. This approach in- 
duces the array to have good performance in hardware cost of PE’s, 
average computation time, the number of I/O channels, and the 
I/O bandwidth. Also, this design approach can be similarly applied 
to derive the systolic algorithms for discrete sine transform (DST) 
and discrete Fourier transform (DFT) [9]. Although the proposed 
systolic algorithm and array are derived under the restriction that 
N is a prime number, they can be applied to the nonprime !ength 
DCT by appending the input data from nonprime length to prime 
length at the expense of some overheads in hardware cost and av- 
erage computation time. With these overheads, the hardware cost 
of the proposed array is still lower than that in the arrays (21-[4]. 
However, it is not always a drawback that N is a prime number. It 
is known that the blocking effect will occur in the DCT as applied 
to image coding with low bit rate. And the overlapping method is 
one of the remedies for this problem [ 1 11. Applying the proposed 
algorithm to the nonprime length DCT by using the overlapping 
method can also reduce the undesirable blocking effect. 

APPENDIX 
input vector are valid. Otherwise, plus signs are valid. As shown 

for computing the N-point DCT. And C = {cos (2a), cos (6a ) ,  cos 
in (14), there are (3N - 5 ) / 2  values needed to be Sent to the array In the Appendix, the proof Of ( l  ‘1 is given’ At first, ( l  ’) is “- 

written here as 

1 g ’  I N  1 = cos 1 (N - 1 g ’+“ -  ‘ I / ’  I N )  

- g’+‘”-  I ) /?  I ; 
(4a), cos ( 5 ~ ) .  cos (a ) ,  cos (3a), cos (2a) ,  cos (6a))  is the sequence 
of these eight values for the seven-point DCT. It is observed that 
the last two cosine kemels are identical to the first two cosine ker- 
nels in C. And these common cosine kemels can be shared for 
computing two neighboring blocks successively. As many image 
blocks are processed continuously, it is only necessary to send six 

- ~ cos - 

I s i s N - 1 .  (A l l  
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The necessary and sufficient condition that (Al )  holds is image coding,” in Proc. fCASSP 83, Boston, MA, 1983, pp. 1212- 
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tice-Hall, 1988, Chapters 3 and 4, pp. 110-282. 

[I31 C. W. Jen and H. Y. Hsu, “The design of a systolic array with tags 
Input,” in Proc. ISCAS, Finland, 1988, pp. 2263-2266. 

I N .  
I g ‘ I N  = N - I g T + ( N -  1) /2 

That is 

IN = N (A21 1 + I g ‘ + “ -  1 1 0  

where “g” is a primitive element. According to the number theory 
[7], we have 

1 g ( N -  I l / 2  I N  = - 1; I A  = 1 I A l N  l B I N I N  Utilization of Bandpass Filtering for the Matrix 
Pencil Method then 

Fengduo Hu, T. K. Sarkar, and Yingbo Hua 

= II g f l N  x (N - 1)IN = 1 - 1  g ‘ l N l N  
Abstract-This correspondence describes an alaorithm named the 

= IN - I R ’ I N I N  

a s 0  < I g ’ I N  5 N - 1, 1 5 i 5 N - 1, we have 

IN - I g ’ l N l N  = N - I g ’ l N .  

It means that 

bandpass matrix pencil (BPMP) method for estimating the parameters 
of an exponential data sequence. The matrix pencil (MP) method, along 
with a filtering technique, is used to estimate the complex exponentials 
of the signal. However, due to special requirements to the filtered data 
by the MP method, the prefiltering process is not trivial. The approach 
presented here utilizes the backward process for the IIR filtering and 
the circular convolution for the FIR filtering. resoectivelv. Monte Carlo 

I _  

simulations are presented to illustrate the performance of the proposed 
filtering schemes. IN = IN - I d I N I N  = N - I g ’h .  I g l + ( N -  I ) / 2  

so 

1 g ‘ I N  + I g r + ( N - I l 1 2  I N  = N .  I. INTRODUCTION 

Therefore, ( 1  1) is proved. 
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The mathematical model of an observed signal can generally be 
formulated as 

M 

y ( k )  = x ( k )  + n ( k )  = c R,Zf  + n ( k ) ,  
, = I  

k = 0 ,  1, . . .  , N -  1 ( 1 )  comments. 
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where 

z, = exp ( - a ,  + jw,) (2 )  

and z,’s and R,’s are the poles and residues of the signal, respec- 
tively. M is the number of poles of the signal, and n ( k )  is the back- 
ground noise. a, and w, are the damping factor and angular fre- 
quency of the i th  sinusoid, respectively. Once the number of poles 
and their values have been determined, the residues at the poles 
can be found by the least squares method. Hence, only the problem 
of estimation of the poles is considered in this correspondence. 

The most popular method for pole retrieval is Prony’s method. 
However, Prony’s method is notorious for its extreme sensitivity 
to noise. There are many modified versions of the Prony method. 
The most well known one is the principal eigenvector (PE) method 
111. Recently, Hua and Sarkar 121,  [3] developed a new technique, 
named the matrix pencil (MP) method, for pole estimation. The 
advantage of using matrix pencil is that the signal poles can be 
found directly from the eigenvalues of the matrix contrast to the 
PE method, which generally requires two-step processes. In the 
first step one solves a matrix equation, and finds the roots of a 
polynomial equation in the second step. 
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