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n € N Wa(¢t) = 0 for all ¢t € [to,t.], and at timet,, queue 1
forms a homogeneous layer of sizg, and compositioru; = 1,
ajys = xn. Moreover,z,, € Z, hencew,, < #"w, for somef < 1,
andt,, tends to a finite limit, which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2.3

Seth = 3./17 L., Assume that for somg, 0 < j < J, the
following property (P;) is satisfied:Wy(¢;) = 0, Wa(¢;) > 0,

Qj+2(t;) = Q2(to), and for allt € [t;,¢; + Wa(t;)[ (¢ regular)

Dy(t)

cs—2 "

Dy(t) .
a1ty SO S

D.(t) < "D Dy

2< < j+2

j+3<s<J+2.

Fort € [t;,t; + Wa(¢;)[(t regular),2 < s < J +2

D.(t)
CDQ (f) + 0 Zq’f-g%
Our assumption yields on one hand, bK s < j 4+ 2
1

Agpi(t) = Do(t) = 50 [by (8)].

Agi(t) > ——————
s+1(t) 2 =2(1+ bo)
« 1
c+6 {f:i /e’ =246 Z;_/,J;Zj_i_s ¢/ =(7=2)
1 1
T eI+ b0 e+ 6 Z‘:,J:g 1/es'—2
1
= c(s+1)—2(1 _|_ b(ﬁ)]”rl . (15)
On the other hand, we get
. ; 1 i1 2< 5<j+2,
A cs—2 ¢ clst+1)—2" - — ’
Asa(t) < {CJ—(S—2)1_ O e I N I )
' (16)

A finer estimation fois = J+2 yields A 7, 5(t) < 1/(c+6), hence
§AL(t)+ cAyia(t) < §4¢/(c+6) < 1 (the latter inequality being
equivalent to:+ 6 < 1). So by Lemma 1.1, for € [t;, #; +Wa(t;)[:
Wi(t) = 0, hence

As(t) = Ay (1) =1 17)

and Wi(t;+1) = 0. Finally, sincet — t + Wa(t) maps|[t;,t; +
W’Yz(tj)[ onto [t]'+1,t]'+1 + ‘/Vz(tj+1)[, and fort € [t]'.t]' + ”’Yz(tj)[
(+ regular)
Dy(t+Wa(t)) _ A1)
Do(t+Wa(t))  As(t)

2<s<J+2 [y (6)]
formulas (15)—(17) show that propertf,+1) is induced by(P;).
[that Qj4+3(tj+1) = Qj4+2(t;) follows directly from¢;41 = ¢; +
Wa(t;)]. Since(P) is valid by assumption, a straightforward induc
tion completes the proof of Proposition 2.3.
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Optimal Solution of the Two-Stage Kalman Estimator

Chien-Shu Hsieh and Fu-Chuang Chen

Abstract—The two-stage Kalman estimator was originally proposed to
reduce the computational complexity of the augmented state Kalman fil-
ter. Recently, it was also applied to the tracking of maneuvering targets by
treating the target acceleration as a bias term. Except in certain restrictive
conditions, the conventional two-stage estimators are suboptimal in the
sense that they are not equivalent to the augmented state filter. In this
paper, the authors propose a new two-stage Kalman estimator, i.e., new
structure, which is an extension of Friedland’s estimator and is optimal
in general conditions. In addition, we provide some analytic results to
demonstrate the computational advantages of two-stage estimators over
augmented ones.

Index Terms—Augmented state Kalman filter, bias-free filter, dynami-
cal bias, optimal filter, two-stage Kalman estimator.

. INTRODUCTION

Consider the problem of estimating the state of a dynamic system
in the presence of a dynamical bias. It is common to treat the bias
as part of the system state and then estimate the bias as well as
the system state. This leads to angmented state Kalman filter
(ASKF) whose implementation can be computationally intensive. To
reduce the computational cost, Friedland [1] proposed to employ the
two-stage Kalman estimator to decouple the augmented filter into
two parallel reduced-order filters. In recent years, the computational
efficiency of the two-stage estimator is also appreciated when it is
used to address the maneuvering target tracking problem, in which the
target acceleration is treated as a random bias [14]. While Friedland’s
decomposition is optimal for the case of a constant bias, it is
suboptimal for a random/dynamical bias unless an algebraic constraint

on the statistics of the bias process is satisfied [10], [12]. Since this
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algebraic constraint is seldom satisfied for practical systems, the twdiere
stage Kalman estimator cannot exactly implement the ASKF. The

motivation for our work is generalization of the two-stage structur&’?, = [)S(') 1, Ky = [I‘k]
to recover the optimal performance when the bias is a random process. 7 Ky N
Here we review some previous works. After [1], many researchers —_ Cov{X} = Py P('.;]
have also contributed in this area, e.g., Tadckeal. [2], Tanaka [4], ) -0 (P(‘T_)”)' P(T)
Mendelet al. [6], and Ignagni [7]. Recently, Ignagni [8] considered A, B . ey
. - . ; A = (Ar By = o Qx i

the case of a bias driven by a white noise which is uncorrelatediz =| 0 Ck]’ Hy=[H, D), Qk—[(Q, oo ]

k k

with the system noise. However, the result he obtained is suboptimal.

In [12], Alouani et al. considered a random bias in which the bias The computational cost of the ASKF increases with the augmented
noise is correlated with the system noise. It was proved that under@ge dimension. Hence, the filter model (4)—(8) may be impractical
algebraic constraint on the correlation between the system noise gdmplement. The reason for this computational complexity is the
the bias noise, the proposed two-stage Kalman estimator is optimglira computation o} terms. Therefore, if thes&:] terms can

Since almost all practical systems will not satisfy this algebraige ejiminated, we can reduce the complexity from implementational
constraint, they also concluded that all two-stage Kalman estimatgy§int of view. In the next section, we propose an optimal two-stage

are suboptimal. In [10], Alouargt al. extended the result of [12] t0 jmplementation of the above filter without explicitly calculating these
color noises. The two-stage Kalman estimator is also applied to ther iorms.

maneuvering target tracking problems (e.g., [9], [11], and [14]) and”’
the nonlinear estimation problems (e.g., [3], [5], and [13]).

The objectives of this paper are to propose @ptimal two- I1l. DERIVATION OF THE OPTIMAL TWO-STAGE KALMAN ESTIMATOR
stage Kalman estimatofOTSKE) to evaluate its performance and The design of a new two-stage estimator is described as follows.
to describe its applications. As shown in [12], the conventional twe-irst, form amodified bias-free filteby ignoring the bias term and
stage Kalman estimator (CTSKE) is suboptimal unless an algebraig adding an external bias-compensating input. Second, take the bias
constraint is satisfied. Using the matrix transformation technique, Weto account and derive ias filterto compensate thmodified bias-
generalize the CTSKE to obtain the OTSKE, in which the algebrafgee filter in order to reconstruct the original filter. These two filters
constraint [12] is removed and the optimal performance is guaranteagk used to build a new algorithm which is equivalent to the ASKF.
The OTSKE is optimal in the minimum mean square error (MMSEJhis new algorithm is named the OTSKE.
sense, and this is verified in a theorem by proving that it is equivalentif the bias term is ignoredy = 0), the bias-free filter is just a
to the ASKF. This paper is organized as follows. In Section I, wgalman filter based on the model (1) and (3). Hence, the bias-free
state the problem of interest. In Section Ill, the OTSKE is derivefiiter is given by
for state estimation in the presence of a dynamical bias without any

constraint. Performance and applications of the proposed OTSKE Xk\k—i = Ak,lz‘{'k_uk_l 9)

filter are given in Sections IV and V, respectively. Section VI is the Xipe = Xpppor + KE(Ye — Hi X g i) (10)

conclusion. A detailed proof is provided in the Appendix. Bires = Aer P jos Al + QF 1)

Il. STATEMENT OF THE PROBLEM Ki = P Hi {H P Hi + R"'}_l 12)

The problem of interest is described by the discretized equation set P’:"“ = (I N K’?H’C)p’:l’v”*l 13)
Xit1 = Ap Xi + By + Wy 1) whereX «|+ represents the estimate of the state process when the bias

Yot = Cove + WY @) is ignored andP;,”lk is the error covariance ok ;. Accounting for

the bias noise effect, we modify the bias-free filter by changing the

Yi = He Xy + Diyie + s ®) predicted state and covariance equations, i.e., (9) and (11), into

whereX; € R" is the system statey. € R” is the dynamical bias,
andY, € R™ is the measurement vector. Matricés, By, Ck, Dy, B - B
and H;, are of appropriate dimensions with the assumption €fat Pli—i = Ari Pi_ o Aoy + Qi (15)
is nonsingular. The process nois#g, W,/ and the measurement i

noiser,. are zero-mean white Gaussian sequences with the followikgiere ux, a new external input, an@j, a new statistic fol¥;’,

Xiprmt = A1 Xp ot + wp—1 (14)

covariances:E[Wi (W) = Qidw, E[WJ(W))] = Qjén, are yetto be determined. To distinguish this modified filter from
EWE(W)] = Q8. Elne(m)'] = Ribr, E[WE ()] = 0, Friedl_and’s bias-free fi_lt_er, the new fi!ter [(14), (10), (15), (12), and
andE[W} (1,)'] = 0, where' denotes transpose. The initial stafés  (13)] is called themodified bias-free filter

and~o are assumed to be uncorrelated with the white noise sequencethe modified bias-free filte can be corrected by addingbéas

W, W7, andy. The initial conditions are assumed to be Gaussidilter, denoted by{7. K, P"}, to reconstruct the original filter. This
random variables with[Xo] = Xo. Cov{ Xy} = P}, E[v] = 5, Creates the OTSKE filter which will later be presented as a linear

Cov{y} = P} > 0, andCov{Xo,} = P, combination of the estimates of ttmodified bias-free filteand the
Treating X and~, as the augmented system state, the ASKF yas filter. Thebias filteris derived in the following. First, we propose

described by the following two-stagd’-V transformation:

X1 = A1 Xi 1o 4) Xijeor = T(UR) Xijen (16)

X=Xyt + K (Yo — He X7 ) ) X =T(Vi)X{ 1k (17)

Pur—1 = Ap 1 Pe_ipe—1 Ay 1 + Qi (6) Prji—1 = T(Up) Pppo—r T (Us) (18)

K= Py HiAHi P Hy + R} ) Ki = T(Vi) Ky, (19)

Py = (I = Ko Hy) Prj—y (8) Poyr = T(Vi) P T (Vi) (20)
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where

Sa X() = K

) =1 _ , K=~

8 [’7’(») ] [AZ]
_ P 0 , I M
Po=0§" gl TOD=[, ]

and U and V3 are blending matrices defined by =
PL?\£~—1(PL-,/\L~—1)71 and Vi =

Pl (P01, respectively. The
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Lastly, we obtain théias filter, by expanding (31)—(35) and using
(36)—(39) as

Tklk—1 = Ch—1Tk—1|k—1 (40)
Tk = Vi1 + K7 (Ve = Hi Xp o1 — SeVee—1) (41)
7!:|k—1 = Ck—lp!j—l\k—ic/z‘—1 + Qi (42)
K] =P}, _ Si{HePly—  H + Bi + SiP],_ Si 71 (49)

_13|k = (I - Ek’ S"‘)f)l:\kfl (44)

main advantage of using thE transformation is that the inversewhere X, ,_, and P, _, are given by (14) and (15), respectively.
transformationil” ~* (M) = T(— M) involves only a change of sign. ThelU; andV}. are obtained by solving (36) and (37) and using (42) as

Using this inverse transformation, (16)—(20) become

X1 = T(=Up) X{jx 1 (21)
Xie =T(=Vi) Xk (22)
Ppjt—1 = T(=Uk) Pepooi T'(=Uy) (23)
K =T(-Vi) Ky (24)
PA»\L» = T(—VY/«)PL-,\L:T'(—Y’%)- (25)

Next, based on the above [(16)—(20) and (21)—(25)],tias filter

can be obtained via the followingvo-steps iterative substitution

method.

Step 1: Substituting (4)—(8) into the right-hand side of (21)—(25)

we have
J‘Zlgwcfl = T(_Uk)“ikﬂX;fukfl
Xie =T(=Vi) (Xiper + K (Y — He X( 1)
Prjpoy = T(=Ui)(Ap—1 Pr_q -1 Ay + Q)T (=Us)

(26)
(27)

(28)
Ky =T(-Vi) Pt HI{Hi P Hi + R}~ (29)

Step 2: Substituting (16)—(20)
(26)—(30), we have

into the

Xhmt = T(=Uk) A1 T (V1) Xi— 11 (31)
Xt =T(Uk = Vi) Xijpo1 + Ko (Ve — HeT(U) X7 5-1)

(32)
Prjjo1 = T(=Up) (A1 T(Vie 1) P11
X T' (Vi) A1 4 Qr-)T'(=Uy) (33)
K =T(Uk — Vi) Py T (U Hy,
X {HT(Uk) Peje 1 T'(Up) Hy, + Ry} ! (34)

Pk\k = (T(Uk Vi) — K,kng(Uk))ka_lT,(Uk — V}‘)
(35)

Using (33), (35), and the decoupled structurefpf,, we obtain the
following constraints ofU;, and V;,:

0= Uk(jk—ip;:,/_l‘k_lclg—l + Q7

= Uk (Cl‘—‘ PL?—] [k—1 Crr + QZ—l) (36)
0=U, — Vi — KiSs (37)

whereU, and S, are defined as
U, = (Ap1 Vit + Bk—l)c';;ll (38)

Sk = Hi. U + Dy.. (39)

right-hand side of

1

Un = Ui+ (Qi1, = UhQi_ ) (Pl 1)
Vi = Up — K2Sp.

(45)
(46)
The external input:, and the error covariance matri@; of the

modified bias-free filteare obtained from (31), (33), (36), and (38)
as

(47)
(48)

ug = (Uggr — Ukg1) Chupe
Qi =0k —Qy Uit — Uka (Q — 5&+1Ql)/~

From (47) and (48), it is clear that the difference betweemitbdified
bias-free filterand the bias-free filter is that the former is coupled
with the bias filter, while the latter is decoupled from thm@as filter.
These coupled terms exist in the calculations of the blending matrix
Uy, the external inpui,, and the error covariance matri@; [see
(45), (47), and (48)]. Although these coupled terms would increase
the computational load, in Section 1V we will verify that actually the
computation of themodified bias-free filters only mildly increased
over the bias-free filter.

Now, we are in the position to define the OTSKE based on the
outputs of themodified bias-free filteand thebias filter

X/c\kﬂ = Xippo1 + UnFepr—1 (49)
Xk = X + Vi (50)
PI}|1k71 = fjlz:\kfl + Ukﬁ;ju-,q Ui-,
= E[(Xt = Xppp—1)(Xe — Xppp1)'] (51)
Pife = Pl + ViP Vi
= E[(Xi — Xpo)(Xe — X)) (52)
P/<l|2’€*1 = UL-PIQ’/\H
= E[(X% = Xepoo ) O = Tap—1)'] (53)
Pyji = ViP, = E[(Xy — X = 3)] (54)
Pglzk—l = PZ\k—L
= El(v = k-1 (0 = Tejx—1)'] (55)
Pffk = PA’\A = El(v — Vo) (ve — Taw)'] (56)
with the following initial conditions:
Vo IP;’Y(PJ)_], X—o|o = Xo — Vo9, Yolo = Yo
PS"O =Py -V, PV, ]30”’"0 =F.
(57

The structure of the proposed OTSKE filter is shown in Fig. 1.

The OTSKE is optimal in the MMSE sense as stated in the
following theorem. The proof of the theorem, which is given in the
Appendix, shows that the OTSKE is equivalent to the ASKF.
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TABLE |
KALMAN ESTIMATOR ARITHMETIC OPERATION REQUIREMENTS

Variable  Number of Multiplications( M (n,m)) Number of Additions(A(n,m))
2 2

:L‘k|k—1 n n-—n

Plfjk-—l on3 ond — n?
I\",f n?m + 2nm? + m3 n?m + 2nm? + m°® - 2nm
Thik 2nm 2nm
Pkﬁk n? 4+ n?m > 4+ n?m — n?

Totals P+ 2n%m 4 2nm? 4+ mP + 0?4+ 2nm 3P+ 20%m 4+ 2nmf 4+ m3 —n? —n

TABLE I
AUXILIARY MATRICES ARITHMETIC OPERATION REQUIREMENTS FOR THEOTSKE

Variable Number of Multiplications(M°(n,p,m)) Number of Additions(A°(n,p,m))

U nzp + np2 + p3 n2p + np2 + p? —np
U 2np? + p? 2np? + p?
Sk npm, npm
Vi npm npm
Qi 2n2p{ 2n2p
Uppy np+p? 2np+p* —p

Totals 3n2p + 3np? + 2npm + 2p° 4 np + p? 3n2p + 3np? + 2npm + 20> + np+ p —p

complexity. To facilitate the discussion, we first list in Table | the

I arithmetic operation of a standard Kalman estimator which has
state dimensiom and measurement dimensien. The arithmetic

! operations of the auxiliary matrices specifically needed by the OTSKE

and the CTSKE are shown in Tables Il and Ill, respectively. It is
———————————————————————————————— - clear from Table | that the arithmetic operations required for the
Uy — Uy, E/Z} ASKF are M (n + p,m) for multiplications andA(n + p,m) for
additions, those for the bias-free filter até(n, m) and A(n,m),

[ RN . k=1 ___________. . . ) ) .
H’r\_ + ! and those for the bias filter afd (p, m) and A(p, m ). The arithmetic
Yy TN Hy T A ! operations required for the auxiliary matrices, from Tables Il and I,
' Delay | | are M°(n,p,m) and A°(n, p,m) for the OTSKE, and\/“(n, p, m)
RS ¥ A and A°(n, p,m) for the CTSKE. Therefore, the operational savings
| Ki—O O Xy, of the OTSKE are
. Modified Bias-Free Filier Y4l |
______ Pyy=M(n+p,m)— Mmn,m)— M(p,m)— M°(n,p,m)
Fig. 1. Block diagram of the OTSKE. =6n"p + 6np” 4+ (2m + Lnp — 2p° —p° (58)
Pi=A(n+p,m)— A(n,m) — A(p,m) — A°(n, p,m)
Theorem: If the error covariancé); of the process noise of the = 6n’p + 6np> + (2m — 3)np — 2 —m® —pP+p (59)

modified bias-free filter given by (48) is positive semidefinite, the
OTSKE, which is given by (49)—(56), gives the MMSE estimate o‘;
the system state.

Note that the algebraic constraint of [12], €57 —U+1Q} = 0, , , ,
is not required to guarantee the optimality of the proposed OTSKE Py = M(n+p,m) — M(n,m) = M(p,m) = M*(n,p,m)
filter. However, if this algebraic constraint is satisfied, the external =7n"p+ 8np” + 2npm + 2np — p° (60)
input “”{Wi_” vanish and the error cpvariancc_s ma_tr@',’; pecomes Pi = A(n+p,m) — A(n,m) — A(p,m) — A°(n, p,m)

Qf — Q7" Ui41. Then, themodified bias-free filtewill be identical ' '
to the bias-free filter of [12], and hence the OTSKE will be equivalent
to the CTSKE [12]. Furthermore, if the bias is a constant one, the
error covariance matrix)? becomes). Then, themodified bias- It is clear from (58)—(61) that the savings of the arithmetic op-
free filter will be identical to the bias-free filter of [1], and hence theeration of the proposed OTSKE and the CTSKE as opposed to
OTSKE filter will become Friedland’s filter [1]. the ASKF are approximately2(n?p + np®) and 14(n?p + np?),
respectively. Roughly speaking, the computational savings of the
two-stage structure is due to system-order reduction from p to
IV. PERFORMANCE EVALUATIONS n and p. The operational savings suggested here will be tested in

To demonstrate the computational advantage of the two-stage elstiample 2 of Section V. Note that if parallel structure is employed,
mators over the ASKF, we use the number of arithmetic operatiorigither reduction in the computation time can be achieved. However,
i.e., multiplications and additions, as a measure of computationthis is not the issue of this paper.

nd the operational savings of the CTSKE are

= Tn’p + 8np® + 2npm — p® — m> — np. (61)
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TABLE I
AUXILIARY MATRICES ARITHMETIC OPERATION REQUIREMENTS FOR THECTSKE

Variable Number of Multiplications(M<(n,p,m)) Number of Additions(A¢(n,p,m))

Uy n2p + np?® + p° nip+ np® + p* —np
Sk npm npm
Vi npm npm
Qf n’p n’p
Totals 202p + np? + 2npm + p? 20%p + np? + 2npm + p® — np
V. EXAMPLES TABLE IV
In this section, we demonstrate the applications of the proposed PERFORMANCES OF THEASKF, OTSKE, PFAAND CTSKE RLTeRs
OTSKE to solve two problems which appeared in [8] and [4]. Performance ] ASKFE ] OTSKL ] PFA [ CTSKE
Example 1: A problem that appeared in [8] is described as folloWSR 16X position Frror | 88.2110 | 88.3110 | 29.3026 | 99,2182

If the bias undergoes some random variation with time and the Procegis X velocity Frror | 8.0508 | 8.9598 | 0.1833 | 16.9560
noise is uncorrelated with the bias noise, tligh# 0 andQ;” = 0. RSV Position Error | 921970 | 92.4970 | 94.28%4 | 101.9359
In this case, it can be proved that the CTSKE is not an optina} 315V Velocity Trror | 9.6162 1 5.6452 | 101775 | 178116
solution. However, ifUx, Vi, and ; are calculated by (45), (46), flops(one iLer;LLion) 2081 1538 3451 1350
and (48), respectively, then the OTSKE [(49)-(56)] will provide the
optimal solution.

Example 2: A problem discussed in [4] is to try to extend Friedeqyivalent to the ASKF without requiring the system constraint
land’s filter to a dynamical bias. However, the result obtained in [4i]mposed on the CTSKE [12]. Another advantage of the OTSKE is
named as the parallel filtering algorithm (PFA), and the CTSKE boffj,; it is less computationally intensive than the ASKF. Furthermore,
are not optimal solutions because these estimators are not equivajgBtoTSKE can be equivalent to the CTSKE if a system constraint
to the ASKF. Instead, the proposed OTSKE will provide the optimad saisfied. Although the proposed OTSKE is slightly more complex
solution. To illustrate the performance degradation of the PFA agghpy the CTSKE, it prevents the performance degradation inherent
the CTSKE, we conduct the following target tracking simulationy, the CTSKE. Therefore, the proposed OTSKE is the best balance
Consider that a target maneuvers a slow 8@n with acceleration panveen the performance of the ASKF and the efficiency of the
# = jj = 0.075 m/s’. The initial position and velocity of the target CTSKE.

are given byx(0) = 100 m, #(0) = 0 m/s, y(0) = 100 m, and |5 order for the derived OTSKE filter to be stable, one necessary

9(0) = —15 m/s. The sampling interval i = 10 s. The simulation ¢ongition is that themodified bias-free filtecovariance matrixQ;
time is 500 s. The Cartesian target position is measured. The procgsfain positive semidefinite for all time. This stability requirement
and measurement noise covariance matrices are is under investigation.
500 100 O 0 10 0
< __ (100 20 0 0 v |20 APPENDIX
@k = 0 0 500 100}’ Q' = 0 10 Before proving the theorem, the following relationships are needed.
0 0 100 20 0 2 1) From (42) and (45)
, o2 o 10" 500 Upr Ch P, Cr = U PY L, — Q1 (62)
= — k k = Uk 3 3 L.
@ { 0 0.2}" B {500 104}' TR R T R D e T
2) From (12) and (43)
All filters are initialized by taking the following valuest, = 0, KiMy = Pijy_Hy + K} Skﬁ{ﬂ o1 Sk (63)

% =0, P¥ = QF, Py" = 0, and P) = Q. A Monte Carlo ey = /

simulation of 50 runs (asing Matlab) Woas perf(O)rmed. The simulation Ry Mi = P S (64)
results in Table IV show the average root mean square tracking errors  where M = Hy Py, Hy, + Skﬁglkfls,g + Ry,

of the estimators in thé(-axis and the&l"-axis. The number of flops  3) From (44), (63), and (64)

(using Matlab) counted for the filters is also included. It can be seen
from Table IV that the performances of the ASKF and the OTSKE . _
are the same, but the flops counted for the OTSKE are fewer than that =K Hy Py (65)
of the ASKF. Although the flops counted for the CTSKE are feweg

. g inductive reasoning, assume that at tifme
than that of the OTSKE, the estimates of the CTSKE are degraded.

PuSHERE) = (P, St = KM (KE) + K7 Hi Py

This performance degradation is due to the inherent suboptimality Xk = Xl Veele = Te|k (66)
of the CTSKE filter. Note that if we substitute = 4, p = 2, and Pl = Pﬁﬁm P:IZ- = Pﬁﬁ»g PLj"l L= Pfﬁ

m = 2 into (58)—(61) and use the fact thébps = Py + Pa, . .
the flops savings of the OTSKE and the CTSKE are 578 and 7525119 (4). (66), (50), (14), (47), (38), (40), and (49), we obtain
respectively. These results are very close to the simulation results X, |, = Ak(XW + ViYe k) + Bk

which are 543 and 731, respectively. _ Xk+1|k (T — Ui1)CrTipe + UkJrlOk’_}”kM:

VI. CONCLUSION = Xitr e + Ukt Tai e = Xpa e (67)

In this paper, the OTSKE is derived, and the complexity andSing (4), (66), and (40), we obtain
performance of various estimators are analyzed and compared to
show the advantage of the OTSKE. The OTSKE is mathematically Tet11k = CreVelk = CoVele = Tht1lk- (68)
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Using (6), (66), (52), (54), (56), (38), (15), (48), (62), (45), and (51pbtain

we obtain

Fipipe = Ak (P + Vi P V) Al + Be P (ArVie + Bi)'
+ AV P Bi + QF
= AP Ak + Qf + Uk Ckplj\kcllcﬁllcﬂ
= Pl + Ukt (QF = Tin Q1 + T B )

= Plpape + Uk By Uk = Pk (69)

51 5 o 2 7
Py = Py + Ut P Uk — (Kigr + Vi K7 )

X (Hkr+1 f)leruk + Skt P13/+1|k 'Tl/c+1)

= Pilyapers + Vierr (= K Skn) Pl Uk
Vi1 K Hier Pl

= Py |b+1 "’Z+1P;:,'/_,_l|k+l"’r;£+1 + Vi
x (P/:Jrl|/c+15;c+l (Kyi:Jrl)/ - K712/+1H’€+1P/{T+llk)

P 7 DY ! 11
= Peyipers + Vi P Vi = Db (77)

Using (6), (66), (54), (56), (38), (62), and (53), we obtain Using (8), (70)—(72), (39), (46), (44), and (54), we obtain

Pf_?_] k= Uk""‘lc’kﬁljikclit + Qz', = Uk-&-lf)]:,_H = PI}_‘ZH [k (70)

Using (6), (66), (42), and (55), we obtain

Ty — T & T DY
Pk#l\kﬂ - (L kbt = B Skr = W+1I‘/é+lsk‘+1)PA~+1\k

= Vit (I - K;+1 Skﬂ)p/:ﬂ\k

= ‘/Yk-ﬁ-l PI:/_H [k+1 = P/};ZH [k41- (78)

Using (8), (70), (71), (73), (39), (44), and (56), we obtain

P/z}1|/c = C’CP/:\/«C/’C +Q; = P/Z+1|/c = Plfil\lw (71)

PIZ-H |E+1 = (I - K—Z+15Lv+1 )PL:/-H |k = Plgj)rl|k+l- (79)
Using (7), (69)—(71), (39), (46), (63), and (64), we obtain Finally, show that (66) holds at time = 0. This can be verified by

the initial parameters in (57).

Kiy = (Plf+1\L~HIi:+1 + Uk+1p;:'/.,.1|k5;.~+1){’}71
= (p/:Jrl\kHlchrl + I_i'lf+15k+113;3§rl|k51/c+1)lM;:Jrll

) DY ! Aar—1
+ Vk+lka+1\kv5k+lj\/1k+1
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