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n 2 N W2(t) = 0 for all t 2 [t0; tn], and at timetn queue 1
forms a homogeneous layer of sizewn and compositiona1 = 1;
aJ+3 = xn. Moreover,xn 2 I, hencewn � �nw0 for some� < 1,
and tn tends to a finite limit, which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2.3

Set b = J+2
s=3

1
c

. Assume that for somej; 0 � j < J , the
following property (Pj) is satisfied:W1(tj) = 0; W2(tj) > 0;
Qj+2(tj) = Q2(t0), and for allt 2 [tj ; tj +W2(tj)[ (t regular)

_D2(t)

cs�2(1 + b�)j
� _Ds(t) �

_D2(t)

cs�2
; 2 � s � j + 2

_Ds(t) � cJ�(s�2) _D2(t); j + 3 � s � J + 2:

For t 2 [tj ; tj +W2(tj)[(t regular),2 � s � J + 2

_As+1(t) = _Ds(t) =
_Ds(t)

c _D2(t) + � J+2
s =3

_Ds (t)
[by (8)].

Our assumption yields on one hand, for2 � s � j + 2

_As+1(t) �
1

cs�2(1 + b�)j

�
1

c+ � j+2
s =3 1=c

s �2 + � J+2
s =j+3 c

J�(s �2)

�
1

cs�2(1 + b�)j
1

c+ � J+2
s =3 1=c

s �2

=
1

c(s+1)�2(1 + b�)j+1
: (15)

On the other hand, we get

_As+1(t) �
1

c

1
c
= 1

c
; 2 � s � j + 2;

cJ�(s�2) 1
c
= cJ�[(s+1)�2]; j + 2 < s � J + 2:

(16)

A finer estimation fors = J+2 yields _AJ+3(t) � 1=(c+�), hence
� _A1(t) + c _AJ+3(t) � � + c=(c+ �) < 1 (the latter inequality being
equivalent toc+� < 1). So by Lemma 1.1, fort 2 [tj ; tj+W2(tj)[:
W1(t) = 0, hence

_A2(t) = _A1(t) = 1 (17)

andW1(tj+1) = 0. Finally, sincet 7! t + W2(t) maps [tj ; tj +
W2(tj)[ onto [tj+1; tj+1 +W2(tj+1)[, and fort 2 [tj ; tj +W2(tj)[
(t regular)

_Ds(t+W2(t))
_D2(t+W2(t))

=
_As(t)
_A2(t)

; 2 � s � J + 2 [by (6)]

formulas (15)–(17) show that property(Pj+1) is induced by(Pj).
[that Qj+3(tj+1) = Qj+2(tj) follows directly from tj+1 = tj +
W2(tj)]. Since(P0) is valid by assumption, a straightforward induc-
tion completes the proof of Proposition 2.3.
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Optimal Solution of the Two-Stage Kalman Estimator

Chien-Shu Hsieh and Fu-Chuang Chen

Abstract—The two-stage Kalman estimator was originally proposed to
reduce the computational complexity of the augmented state Kalman fil-
ter. Recently, it was also applied to the tracking of maneuvering targets by
treating the target acceleration as a bias term. Except in certain restrictive
conditions, the conventional two-stage estimators are suboptimal in the
sense that they are not equivalent to the augmented state filter. In this
paper, the authors propose a new two-stage Kalman estimator, i.e., new
structure, which is an extension of Friedland’s estimator and is optimal
in general conditions. In addition, we provide some analytic results to
demonstrate the computational advantages of two-stage estimators over
augmented ones.

Index Terms—Augmented state Kalman filter, bias-free filter, dynami-
cal bias, optimal filter, two-stage Kalman estimator.

I. INTRODUCTION

Consider the problem of estimating the state of a dynamic system
in the presence of a dynamical bias. It is common to treat the bias
as part of the system state and then estimate the bias as well as
the system state. This leads to anaugmented state Kalman filter
(ASKF) whose implementation can be computationally intensive. To
reduce the computational cost, Friedland [1] proposed to employ the
two-stage Kalman estimator to decouple the augmented filter into
two parallel reduced-order filters. In recent years, the computational
efficiency of the two-stage estimator is also appreciated when it is
used to address the maneuvering target tracking problem, in which the
target acceleration is treated as a random bias [14]. While Friedland’s
decomposition is optimal for the case of a constant bias, it is
suboptimal for a random/dynamical bias unless an algebraic constraint
on the statistics of the bias process is satisfied [10], [12]. Since this
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algebraic constraint is seldom satisfied for practical systems, the two-
stage Kalman estimator cannot exactly implement the ASKF. The
motivation for our work is generalization of the two-stage structure
to recover the optimal performance when the bias is a random process.

Here we review some previous works. After [1], many researchers
have also contributed in this area, e.g., Tackeret al. [2], Tanaka [4],
Mendelet al. [6], and Ignagni [7]. Recently, Ignagni [8] considered
the case of a bias driven by a white noise which is uncorrelated
with the system noise. However, the result he obtained is suboptimal.
In [12], Alouani et al. considered a random bias in which the bias
noise is correlated with the system noise. It was proved that under an
algebraic constraint on the correlation between the system noise and
the bias noise, the proposed two-stage Kalman estimator is optimal.
Since almost all practical systems will not satisfy this algebraic
constraint, they also concluded that all two-stage Kalman estimators
are suboptimal. In [10], Alouaniet al. extended the result of [12] to
color noises. The two-stage Kalman estimator is also applied to the
maneuvering target tracking problems (e.g., [9], [11], and [14]) and
the nonlinear estimation problems (e.g., [3], [5], and [13]).

The objectives of this paper are to propose anoptimal two-
stage Kalman estimator(OTSKE) to evaluate its performance and
to describe its applications. As shown in [12], the conventional two-
stage Kalman estimator (CTSKE) is suboptimal unless an algebraic
constraint is satisfied. Using the matrix transformation technique, we
generalize the CTSKE to obtain the OTSKE, in which the algebraic
constraint [12] is removed and the optimal performance is guaranteed.
The OTSKE is optimal in the minimum mean square error (MMSE)
sense, and this is verified in a theorem by proving that it is equivalent
to the ASKF. This paper is organized as follows. In Section II, we
state the problem of interest. In Section III, the OTSKE is derived
for state estimation in the presence of a dynamical bias without any
constraint. Performance and applications of the proposed OTSKE
filter are given in Sections IV and V, respectively. Section VI is the
conclusion. A detailed proof is provided in the Appendix.

II. STATEMENT OF THE PROBLEM

The problem of interest is described by the discretized equation set

Xk+1 = AkXk +Bk
k +W
x
k (1)


k+1 = Ck
k +W



k (2)

Yk = HkXk +Dk
k + �k (3)

whereXk 2 R
n is the system state,
k 2 Rp is the dynamical bias,

andYk 2 Rm is the measurement vector. MatricesAk; Bk; Ck; Dk;

andHk are of appropriate dimensions with the assumption thatCk
is nonsingular. The process noisesW x

k ;W



k and the measurement
noise�k are zero-mean white Gaussian sequences with the following
covariances:E[W x

k (W
x
l )

0] = Qx
k�kl; E[W




k (W



l )
0] = Q




k�kl;

E[W x
k (W




l )
0] = Q

x


k �kl; E[�k(�l)
0] = Rk�kl; E[W

x
k (�l)

0] = 0;
andE[W 


k (�l)
0] = 0, where0 denotes transpose. The initial statesX0

and
0 are assumed to be uncorrelated with the white noise sequences
W x

k ; W



k ; and�k. The initial conditions are assumed to be Gaussian
random variables withE[X0] = �X0; CovfX0g = P x

0 ; E[
0] = �
0;
Covf
0g = P



0 > 0; andCovfX0


0

0g = P
x

0 .

TreatingXk and
k as the augmented system state, the ASKF is
described by

X
a
kjk�1 = �Ak�1X

a
k�1jk�1 (4)

X
a
kjk = X

a
kjk�1 +Kk Yk � �HkX

a
kjk�1 (5)

Pkjk�1 = �Ak�1Pk�1jk�1
�A0
k�1 +Qk�1 (6)

Kk = Pkjk�1
�H 0
kf �HkPkjk�1

�H 0
k +Rkg

�1 (7)

Pkjk = (I �Kk
�Hk)Pkjk�1 (8)

where

X
a
(�) = [

X(�)


(�)
]; Kk = [

Kx
k

K



k

]

P(�) = CovfXa
(�)g = [

P x
(�)

(Px


(�) )
0

P
x


(�)

P



(�)

]

�Ak=[
Ak

0

Bk

Ck
]; �Hk = [Hk Dk]; Qk=[

Qx
k

(Qx


k )0
Q
x


k

Q



k

]:

The computational cost of the ASKF increases with the augmented
state dimension. Hence, the filter model (4)–(8) may be impractical
to implement. The reason for this computational complexity is the
extra computation ofP x


(�) terms. Therefore, if theseP x


(�) terms can
be eliminated, we can reduce the complexity from implementational
point of view. In the next section, we propose an optimal two-stage
implementation of the above filter without explicitly calculating these
P
x


(�) terms.

III. D ERIVATION OF THE OPTIMAL TWO-STAGE KALMAN ESTIMATOR

The design of a new two-stage estimator is described as follows.
First, form amodified bias-free filterby ignoring the bias term and
by adding an external bias-compensating input. Second, take the bias
into account and derive abias filter to compensate themodified bias-
free filter in order to reconstruct the original filter. These two filters
are used to build a new algorithm which is equivalent to the ASKF.
This new algorithm is named the OTSKE.

If the bias term is ignored(
 = 0), the bias-free filter is just a
Kalman filter based on the model (1) and (3). Hence, the bias-free
filter is given by

�Xkjk�1 = Ak�1
�Xk�1jk�1 (9)

�Xkjk = �Xkjk�1 + �Kx
k (Yk �Hk

�Xkjk�1) (10)
�P x
kjk�1 = Ak�1

�P x
k�1jk�1A

0
k�1 +Q

x
k�1 (11)

�Kx
k = �P x

kjk�1H
0
k Hk

�P x
kjk�1H

0
k +Rk

�1
(12)

�P x
kjk = I � �Kx

kHk
�P x
kjk�1 (13)

where �Xkjk represents the estimate of the state process when the bias
is ignored and�P x

kjk is the error covariance of�Xkjk. Accounting for
the bias noise effect, we modify the bias-free filter by changing the
predicted state and covariance equations, i.e., (9) and (11), into

�Xkjk�1 = Ak�1
�Xk�1jk�1 + uk�1 (14)

�P x
kjk�1 = Ak�1

�P x
k�1jk�1A

0
k�1 + �Qx

k�1 (15)

whereuk, a new external input, and�Qx
k, a new statistic forW x

k ,
are yet to be determined. To distinguish this modified filter from
Friedland’s bias-free filter, the new filter [(14), (10), (15), (12), and
(13)] is called themodified bias-free filter.

The modified bias-free filter�X can be corrected by adding abias
filter, denoted byf�
; �K
 ; �P 
g, to reconstruct the original filter. This
creates the OTSKE filter which will later be presented as a linear
combination of the estimates of themodified bias-free filterand the
bias filter. Thebias filter is derived in the following. First, we propose
the following two-stageU -V transformation:

X
a
kjk�1 = T (Uk) �X

a
kjk�1 (16)

X
a
kjk = T (Vk) �X

a
kjk (17)

Pkjk�1 = T (Uk) �Pkjk�1T
0(Uk) (18)

Kk = T (Vk) �Kk (19)

Pkjk = T (Vk) �PkjkT
0(Vk) (20)
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where

�Xa
(�) = [

�X(�)

�
(�)
]; �Kk = [

�Kx
k

�K


k

]

�P(�) = [
�P x
(�)

0

0
�P 


(�)

]; T (M) = [
I

0

M

I
]

and Uk and Vk are blending matrices defined byUk �
P
x


kjk�1(P



kjk�1)
�1 and Vk � P

x


kjk(P



kjk)
�1, respectively. The

main advantage of using theT transformation is that the inverse
transformationT�1(M) = T (�M) involves only a change of sign.
Using this inverse transformation, (16)–(20) become

�Xa
kjk�1 = T (�Uk)X

a
kjk�1 (21)

�Xa
kjk = T (�Vk)X

a
kjk (22)

�Pkjk�1 = T (�Uk)Pkjk�1T
0(�Uk) (23)

�Kk = T (�Vk)Kk (24)
�Pkjk = T (�Vk)PkjkT

0(�Vk): (25)

Next, based on the above [(16)–(20) and (21)–(25)], thebias filter
can be obtained via the followingtwo-steps iterative substitution
method.

Step 1: Substituting (4)–(8) into the right-hand side of (21)–(25),
we have

�Xa
kjk�1 = T (�Uk) �Ak�1X

a
k�1jk�1 (26)

�Xa
kjk = T (�Vk) X

a
kjk�1 +Kk Yk � �HkX

a
kjk�1 (27)

�Pkjk�1 = T (�Uk)( �Ak�1Pk�1jk�1
�A0
k�1 +Qk�1)T

0(�Uk)

(28)
�Kk = T (�Vk)Pkjk�1

�H 0
kf �HkPkjk�1

�H 0
k +Rkg

�1 (29)
�Pkjk = (T (�Vk)� �Kk

�Hk)Pkjk�1T
0(�Vk): (30)

Step 2: Substituting (16)–(20) into the right-hand side of
(26)–(30), we have

�Xa
kjk�1 = T (�Uk) �Ak�1T (Vk�1) �X

a
k�1jk�1 (31)

�Xa
kjk = T (Uk � Vk) �X

a
kjk�1 + �Kk Yk � �HkT (Uk) �X

a
kjk�1

(32)
�Pkjk�1 = T (�Uk)( �Ak�1T (Vk�1) �Pk�1jk�1

� T
0(Vk�1) �A

0
k�1 +Qk�1)T

0(�Uk) (33)
�Kk = T (Uk � Vk) �Pkjk�1T

0(Uk) �H
0
k

� f �HkT (Uk) �Pkjk�1T
0(Uk) �H

0
k +Rkg

�1 (34)
�Pkjk = (T (Uk � Vk)� �Kk

�HkT (Uk)) �Pkjk�1T
0(Uk � Vk):

(35)

Using (33), (35), and the decoupled structure of�P(�), we obtain the
following constraints ofUk and Vk:

0 = �UkCk�1
�P 


k�1jk�1C
0
k�1 +Q

x


k�1

� Uk Ck�1
�P 


k�1jk�1C
0
k�1 +Q




k�1 (36)

0 = Uk � Vk � �Kx
kSk (37)

where �Uk and Sk are defined as

�Uk = (Ak�1Vk�1 +Bk�1)C
�1
k�1 (38)

Sk = HkUk +Dk: (39)

Lastly, we obtain thebias filter, by expanding (31)–(35) and using
(36)–(39) as

�
kjk�1 = Ck�1�
k�1jk�1 (40)

�
kjk = �
kjk�1 + �K


k (Yk �Hk
�Xkjk�1 � Sk�
kjk�1) (41)

�P 


kjk�1 = Ck�1
�P 


k�1jk�1C
0
k�1 +Q




k�1 (42)

�K


k = �P 


kjk�1S
0
k Hk

�P x
kjk�1H

0
k +Rk + Sk �P




kjk�1S
0
k

�1
(43)

�P 


kjk = I � �K


kSk
�P 


kjk�1 (44)

where �Xkjk�1 and �P x
kjk�1 are given by (14) and (15), respectively.

TheUk andVk are obtained by solving (36) and (37) and using (42) as

Uk = �Uk + Q
x


k�1 �
�UkQ




k�1
�P 


kjk�1

�1
(45)

Vk = Uk � �Kx
kSk: (46)

The external inputuk and the error covariance matrix�Qx
k of the

modified bias-free filterare obtained from (31), (33), (36), and (38)
as

uk = (�Uk+1 � Uk+1)Ck�
kjk (47)
�Qx
k = Q

x
k �Q

x


k
�U 0
k+1 � Uk+1 Q

x


k � �Uk+1Q



k

0
: (48)

From (47) and (48), it is clear that the difference between themodified
bias-free filterand the bias-free filter is that the former is coupled
with the bias filter, while the latter is decoupled from thebias filter.
These coupled terms exist in the calculations of the blending matrix
Uk, the external inputuk, and the error covariance matrix�Qx

k [see
(45), (47), and (48)]. Although these coupled terms would increase
the computational load, in Section IV we will verify that actually the
computation of themodified bias-free filteris only mildly increased
over the bias-free filter.

Now, we are in the position to define the OTSKE based on the
outputs of themodified bias-free filterand thebias filter

X̂kjk�1 = �Xkjk�1 + Uk�
kjk�1 (49)

X̂kjk = �Xkjk + Vk�
kjk (50)

P
11
kjk�1 = �P x

kjk�1 + Uk �P 


kjk�1U
0
k

= E[(Xk � X̂kjk�1)(Xk � X̂kjk�1)
0] (51)

P
11
kjk = �P x

kjk + Vk �P 


kjkV
0
k

= E[(Xk � X̂kjk)(Xk � X̂kjk)
0] (52)

P
12
kjk�1 = Uk �P 


kjk�1

= E[(Xk � X̂kjk�1)(
k � �
kjk�1)
0] (53)

P
12
kjk = Vk �P




kjk = E[(Xk � X̂kjk)(
k � �
kjk)
0] (54)

P
22
kjk�1 = �P 


kjk�1

= E[(
k � �
kjk�1)(
k � �
kjk�1)
0] (55)

P
22
kjk = �P 


kjk = E[(
k � �
kjk)(
k � �
kjk)
0] (56)

with the following initial conditions:

V0 = P
x

0 P



0

�1
; �X0j0 = �X0 � V0�
0; �
0j0 = �
0

�P x
0j0 = P

x
0 � V0P



0 V

0
0 ; �P 


0j0 = P


0 :

(57)
The structure of the proposed OTSKE filter is shown in Fig. 1.

The OTSKE is optimal in the MMSE sense as stated in the
following theorem. The proof of the theorem, which is given in the
Appendix, shows that the OTSKE is equivalent to the ASKF.
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TABLE I
KALMAN ESTIMATOR ARITHMETIC OPERATION REQUIREMENTS

TABLE II
AUXILIARY MATRICES ARITHMETIC OPERATION REQUIREMENTS FOR THEOTSKE

Fig. 1. Block diagram of the OTSKE.

Theorem: If the error covariance�Qx
k of the process noise of the

modified bias-free filter given by (48) is positive semidefinite, the
OTSKE, which is given by (49)–(56), gives the MMSE estimate of
the system state.

Note that the algebraic constraint of [12], i.e.,Q
x


k �
�Uk+1Q




k = 0,
is not required to guarantee the optimality of the proposed OTSKE
filter. However, if this algebraic constraint is satisfied, the external
input uk will vanish and the error covariance matrix�Qx

k becomes
Qx
k �Q

x


k
�U 0

k+1. Then, themodified bias-free filterwill be identical
to the bias-free filter of [12], and hence the OTSKE will be equivalent
to the CTSKE [12]. Furthermore, if the bias is a constant one, the
error covariance matrix�Qx

k becomesQx
k. Then, themodified bias-

free filterwill be identical to the bias-free filter of [1], and hence the
OTSKE filter will become Friedland’s filter [1].

IV. PERFORMANCE EVALUATIONS

To demonstrate the computational advantage of the two-stage esti-
mators over the ASKF, we use the number of arithmetic operations,
i.e., multiplications and additions, as a measure of computational

complexity. To facilitate the discussion, we first list in Table I the
arithmetic operation of a standard Kalman estimator which has
state dimensionn and measurement dimensionm. The arithmetic
operations of the auxiliary matrices specifically needed by the OTSKE
and the CTSKE are shown in Tables II and III, respectively. It is
clear from Table I that the arithmetic operations required for the
ASKF areM(n + p;m) for multiplications andA(n + p;m) for
additions, those for the bias-free filter areM(n;m) andA(n;m),
and those for the bias filter areM(p;m) andA(p;m). The arithmetic
operations required for the auxiliary matrices, from Tables II and III,
areMo(n; p;m) andAo(n; p;m) for the OTSKE, andM c(n; p;m)

andAc(n; p;m) for the CTSKE. Therefore, the operational savings
of the OTSKE are

P
o
M =M(n+ p;m)�M(n;m)�M(p;m)�M

o(n; p;m)

= 6n2p+ 6np2 + (2m+ 1)np� 2p3 � p
2 (58)

P
o
A = A(n+ p;m)� A(n;m)� A(p;m)�A

o(n; p;m)

= 6n2p+ 6np2 + (2m� 3)np� 2p3 �m
3
� p

2 + p (59)

and the operational savings of the CTSKE are

P
c
M =M(n+ p;m)�M(n;m)�M(p;m)�M

c(n; p;m)

= 7n2p+ 8np2 + 2npm+ 2np� p
3 (60)

P
c
A = A(n+ p;m)� A(n;m)�A(p;m)� A

c(n; p;m)

= 7n2p+ 8np2 + 2npm� p
3
�m

3
� np: (61)

It is clear from (58)–(61) that the savings of the arithmetic op-
eration of the proposed OTSKE and the CTSKE as opposed to
the ASKF are approximately12(n2p + np2) and 14(n2p + np2),
respectively. Roughly speaking, the computational savings of the
two-stage structure is due to system-order reduction fromn + p to
n and p. The operational savings suggested here will be tested in
Example 2 of Section V. Note that if parallel structure is employed,
further reduction in the computation time can be achieved. However,
this is not the issue of this paper.
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TABLE III
AUXILIARY MATRICES ARITHMETIC OPERATION REQUIREMENTS FOR THECTSKE

V. EXAMPLES

In this section, we demonstrate the applications of the proposed
OTSKE to solve two problems which appeared in [8] and [4].

Example 1: A problem that appeared in [8] is described as follows.
If the bias undergoes some random variation with time and the process
noise is uncorrelated with the bias noise, thenQ




k 6= 0 andQx
k = 0.
In this case, it can be proved that the CTSKE is not an optimal
solution. However, ifUk; Vk; and �Qxk are calculated by (45), (46),
and (48), respectively, then the OTSKE [(49)–(56)] will provide the
optimal solution.

Example 2: A problem discussed in [4] is to try to extend Fried-
land’s filter to a dynamical bias. However, the result obtained in [4],
named as the parallel filtering algorithm (PFA), and the CTSKE both
are not optimal solutions because these estimators are not equivalent
to the ASKF. Instead, the proposed OTSKE will provide the optimal
solution. To illustrate the performance degradation of the PFA and
the CTSKE, we conduct the following target tracking simulation.
Consider that a target maneuvers a slow 90� turn with acceleration
�x = �y = 0:075 m/s2. The initial position and velocity of the target
are given byx(0) = 100 m, _x(0) = 0 m/s, y(0) = 100 m, and
_y(0) = �15 m/s. The sampling interval isT = 10 s. The simulation
time is 500 s. The Cartesian target position is measured. The process
and measurement noise covariance matrices are

Q
x
k =

500 100 0 0
100 20 0 0
0 0 500 100
0 0 100 20

; Q
x


k =

10 0
2 0
0 10
0 2

Q



k =
0:2 0
0 0:2

; Rk =
104 500
500 104

:

All filters are initialized by taking the following values:�X0 = 0;
�
0 = 0; P x0 = Qx0 ; P

x

0 = 0; and P 
0 = Q



0 . A Monte Carlo

simulation of 50 runs (using Matlab) was performed. The simulation
results in Table IV show the average root mean square tracking errors
of the estimators in theX-axis and theY -axis. The number of flops
(using Matlab) counted for the filters is also included. It can be seen
from Table IV that the performances of the ASKF and the OTSKE
are the same, but the flops counted for the OTSKE are fewer than that
of the ASKF. Although the flops counted for the CTSKE are fewer
than that of the OTSKE, the estimates of the CTSKE are degraded.
This performance degradation is due to the inherent suboptimality
of the CTSKE filter. Note that if we substituten = 4; p = 2; and
m = 2 into (58)–(61) and use the fact that
ops = PM + PA,
the flops savings of the OTSKE and the CTSKE are 578 and 752,
respectively. These results are very close to the simulation results
which are 543 and 731, respectively.

VI. CONCLUSION

In this paper, the OTSKE is derived, and the complexity and
performance of various estimators are analyzed and compared to
show the advantage of the OTSKE. The OTSKE is mathematically

TABLE IV
PERFORMANCES OF THEASKF, OTSKE, PFA,AND CTSKE FILTERS

equivalent to the ASKF without requiring the system constraint
imposed on the CTSKE [12]. Another advantage of the OTSKE is
that it is less computationally intensive than the ASKF. Furthermore,
the OTSKE can be equivalent to the CTSKE if a system constraint
is satisfied. Although the proposed OTSKE is slightly more complex
than the CTSKE, it prevents the performance degradation inherent
in the CTSKE. Therefore, the proposed OTSKE is the best balance
between the performance of the ASKF and the efficiency of the
CTSKE.

In order for the derived OTSKE filter to be stable, one necessary
condition is that themodified bias-free filtercovariance matrix�Qxk
remain positive semidefinite for all time. This stability requirement
is under investigation.

APPENDIX

Before proving the theorem, the following relationships are needed.

1) From (42) and (45)

�Uk+1Ck �P



kjkC
0
k = Uk+1 �P




k+1jk �Q
x


k : (62)

2) From (12) and (43)

�Kx
kMk = �P xkjk�1H

0
k + �Kx

kSk �P



kjk�1S
0
k (63)

�K


kMk = �P 

kjk�1S

0
k (64)

whereMk = Hk
�P xkjk�1H

0
k + Sk �P




kjk�1S
0
k + Rk.

3) From (44), (63), and (64)

�P 

kjkS

0
k

�Kx
k

0
= �P 


kjk�1S
0
k � �K


kMk
�Kx
k

0
+ �K


kHk
�P xkjk�1

= �K


kHk
�P xkjk�1: (65)

By inductive reasoning, assume that at timek

Xkjk = X̂kjk; 
kjk = �
kjk

P
x
kjk = P

11

kjk; P
x


kjk = P
12

kjk; P



kjk = P
22

kjk:
(66)

Using (4), (66), (50), (14), (47), (38), (40), and (49), we obtain

Xk+1jk = Ak( �Xkjk + Vk�
kjk) +Bk�
kjk

= �Xk+1jk � ( �Uk+1 � Uk+1)Ck�
kjk + �Uk+1Ck�
kjk

= �Xk+1jk + Uk+1�
k+1jk = X̂k+1jk: (67)

Using (4), (66), and (40), we obtain


k+1jk = Ck
kjk = Ck�
kjk = �
k+1jk: (68)
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Using (6), (66), (52), (54), (56), (38), (15), (48), (62), (45), and (51),
we obtain

P
x
k+1jk = Ak

�P x
kjk + Vk �P




kjkV
0
k A

0
k +Bk

�P 


kjk(AkVk +Bk)
0

+ AkVk �P



kjkB
0
k +Q

x
k

= Ak
�P x
kjkA

0
k +Q

x
k + �Uk+1Ck

�P 


kjkC
0
k
�U 0
k+1

= �P x
k+1jk + Uk+1 Q

x


k �

�Uk+1Q



k +
�Uk+1 �P




k+1jk

0

= �P x
k+1jk + Uk+1 �P




k+1jkU
0
k+1 = P

11

k+1jk: (69)

Using (6), (66), (54), (56), (38), (62), and (53), we obtain

P
x


k+1jk =
�Uk+1Ck

�P 


kjkC
0
k +Q

x


k = Uk+1 �P



k+1jk = P
12

k+1jk: (70)

Using (6), (66), (42), and (55), we obtain

P



k+1jk = Ck
�P 


kjkC
0
k +Q




k = �P 


k+1jk = P
22

k+1jk: (71)

Using (7), (69)–(71), (39), (46), (63), and (64), we obtain

K
x
k+1 = �P x

k+1jkH
0
k+1 + Uk+1 �P




k+1jkS
0
k+1 f�g

�1

= �P x
k+1jkH

0
k+1 + �Kx

k+1Sk+1 �P



k+1jkS
0
k+1 M

�1
k+1

+ Vk+1 �P



k+1jkS
0
k+1M

�1
k+1

= �Kx
k+1 + Vk+1 �K




k+1 (72)

where

f�g = Hk+1
�P x
k+1jkH

0
k+1 + Uk+1 �P




k+1jkS
0
k+1

+Dk+1
�P 


k+1jkS
0
k+1 +Rk+1:

Using (7), (70)–(71), (39), and (64), we obtain

K



k+1 =
�P 


k+1jkS
0
k+1M

�1
k+1 = �K


k+1jk: (73)

Next, show that (66) holds at timek+1. Using (67), (68), and (39),
we obtain

rk+1 � Yk+1 �Hk+1Xk+1jk �Dk+1
k+1jk

= Yk+1 �Hk+1
�Xk+1jk � Sk+1�
k+1jk: (74)

Using (5), (67), (72), (74), (10), (46), (41), and (50), we obtain

Xk+1jk+1 = �Xk+1jk + Uk+1�
k+1jk + �Kx
k+1 + Vk+1 �K




k+1 rk+1

= �Xk+1jk + �Kx
k+1(Yk+1 �Hk+1

�Xk+1jk)

+ Uk+1 � �Kx
k+1Sk+1 �
k+1jk + Vk+1 �K




k+1rk+1

= �Xk+1jk+1 + Vk+1 �
k+1jk + �K


k+1rk+1

= �Xk+1jk+1 + Vk+1�
k+1jk+1 = X̂k+1jk+1: (75)

Using (5), (74), (68), (73), and (41), we obtain


k+1jk+1 = 
k+1jk +K



k+1rk+1

= �
k+1jk + �K


k+1rk+1 = �
k+1jk+1: (76)

Using (8), (69), (70), (72), (39), (13), (46), (44), (65), and (52), we

obtain

P
x
k+1jk+1 = �P x

k+1jk + Uk+1 �P



k+1jkU
0
k+1 � �Kx

k+1 + Vk+1 �K



k+1

� Hk+1
�P x
k+1jk + Sk+1 �P




k+1jkU
0
k+1

= �P x
k+1jk+1 + Vk+1 I � �K


k+1Sk+1
�P 


k+1jkU
0
k+1

� Vk+1 �K



k+1Hk+1
�P x
k+1jk

= �P x
k+1jk+1 + Vk+1 �P




k+1jk+1V
0
k+1 + Vk+1

� �P 


k+1jk+1S
0
k+1

�Kx
k+1

0
� �K


k+1Hk+1
�P x
k+1jk

= �P x
k+1jk+1 + Vk+1 �P




k+1jk+1V
0
k+1 = P

11

k+1jk+1: (77)

Using (8), (70)–(72), (39), (46), (44), and (54), we obtain

P
x


k+1jk+1 = Uk+1 � �Kx
k+1Sk+1 � Vk+1 �K




k+1Sk+1
�P 


k+1jk

= Vk+1 I � �K


k+1Sk+1
�P 


k+1jk

= Vk+1 �P



k+1jk+1 = P
12

k+1jk+1: (78)

Using (8), (70), (71), (73), (39), (44), and (56), we obtain

P



k+1jk+1 = I � �K


k+1Sk+1
�P 


k+1jk = P
22

k+1jk+1: (79)

Finally, show that (66) holds at timek = 0. This can be verified by
the initial parameters in (57).
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