
The Reliability Analysis of
Distributed Computing Systems with

Imperfect Nodes
MIN-SHENG LIN1, DENG-JYI CHEN2 AND MAW-SHENG HORNG3

1Department of Information Management, Tamsui Oxford University College, Tamsui, Taipei,
Taiwan 25103, Republic of China

2Institute of Computer Science and Information Engineering, National Chiao-Tung University,
Hsin Chu, Taiwan 30050, Republic of China

3Department of Mathematics Education, National Taipei Teacher College, Taipei, Taiwan 10659,
Republic of China

Email: djchen@csie.nctu.edu.tw

The reliability of a distributed computing system depends on the reliability of its communication
links and nodes and on the distribution of its resources, such as programs and data files. Many
algorithms have been proposed for computing the reliability of distributed computing systems, but
they have been applied mostly to distributed computing systems with perfect nodes. However,
in real problems, nodes as well as links may fail. This paper proposes two new algorithms for
computing the reliability of a distributed computing system with imperfect nodes. Algorithm I is
based on a symbolic approach that includes two passes of computation. Algorithm II employs a
general factoring technique on both nodes and edges. Comparisons with existing methods show the
usefulness of the proposed algorithms for computing the reliability of large distributed computing

systems.

Received July 12, 1994; revised December 3, 1998

1. INTRODUCTION

A typical distributed computing system(DCS) consists of
processing elements (PEs), memory units, data files and
programs. These resources are interconnected through
a communication network that dictates how information
flows between PEs. Programs residing on some PEs can
run using data files stored in other PEs. For successful
execution of a program, it is essential that communication
links between the PE containing the program and other PEs
that have the required data files be operational.Distributed
program reliability (DPR) is defined as the probability
that a distributed program that runs on multiple PEs and
needs to communicate with other PEs for remote files will
be executed successfully. For example, in the DCS in
Figure 1, there are six PEs (n1, n2, n3, n4, n5, n6) and eight
communication links (e1, e2, e3, e4, e5, e6, e7, e8). Program
P1 requires data files f1, f2 and f3 to complete its execution,
and it is running at noden2, which holds the file f1. Hence,
program P1 must access the remote files f2 and f3. Since file
f2 is resident at noden3 and file f3 is resident at nodesn4
andn5, the DPR of program P1 can be formulated as

DPR (for program P1)

= Prob((nodesn2, n3, andn4 are connected)

OR (nodesn2, n3, andn5 are connected)).

FIGURE 1. A simple DCS.

Many algorithms [1, 2, 3, 4, 5, 6, 7] have been proposed to
analyse the reliability of DCSs, but most of these algorithms
assume that all nodes in the DCS are perfect. However,
in real problems, the nodes as well as edges may fail.
In Prasnna Kumaret al. [3], the minimum file spanning
tree (MFST) was proposed to represent the multiterminal
connections required to execute a distributed program and
a two-pass method for the reliability analysis of a DCS was
developed. In this method, all MFSTs are obtained using
a breadth-first search method. Since the MFSTs are not

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

130 M.-S. LIN, D.-J. CHEN AND M.-S. HORNG

disjoint from each other, once it has found all the MFSTs, the
algorithm still requires other terminal reliability evaluation
algorithms, such as SYREL [8], to generate the reliability
expression. Although Prasnna Kumar’s method is elegant, it
generates many redundant subgraphs during processing and
requires extra time to check and remove them. Thus, it is an
inefficient reliability analysis algorithm.

In [5], Ke and Wang proposed an algorithm, ENR/KW
(evaluating network reliability/Ke and Wang) which em-
ploys a different concept that requires one step to give
the reliability expression. The basic idea of the ENR/KW
algorithm is to partition the graph directly into a set of
disjoint subgraphs. Each disjoint subgraph is generated by
maintaining a specific directed graph structure to consider
the effect of imperfect nodes. Therefore, the DPR computa-
tion can then be carried out by summing all these disjoint
probability expressions. This technique represents a one-
step approach as there is no need to compute multiterminal
connections. Some well known reliability-preserving graph
reductions, however, are limited to the specific directed
graph structure in the EMR/KW algorithm, and this restric-
tion can increase the complexity of the EMR/KW algorithm
that would otherwise use them. The other shortcoming of
the EMR/KW algorithm is that it cannot be used to evaluate
the reliability of a distributed program running from more
than one node.

This paper proposed two algorithms, namely the SM
(symbolic method) and the FM (factoring method), for
computing the reliability of DCSs with imperfect nodes.
SM is a two-pass method like Prasnna Kumar’s [3]. SM
employs the graph expanding procedure used in the FREA
(fast reliability evaluation algorithm [1] to find all MFSTs.
Since it has been proved that FREA guarantees that no
replicated subgraphs will be generated during the expansion
of the computation tree, first pass in SM can also guarantee
that no replicated subgraphs will be generated. Therefore,
SM is more efficient than Prasnna Kumar’s algorithm [3].

The second proposed algorithm, FM (factoring method),
is based on the approach of Theologou and Carlier [10] in
which a one-pass method of factoring and reduction was
proposed to solve theK -terminal reliability problem with
imperfect nodes. TheK -terminal reliability problem is
to determine the probability that a specified set of nodes
K ⊆ V are connected, whereV is the entire set of nodes
in the network. In reality, the DPR problem is a logical
OR-ing of Prob{K -terminals are connected}, as shown
in Figure 1, but computing the conditional probabilities
required could be rather unpleasant. Belovich [9] has
proposed approximation methods in this area. Since theK -
terminal reliability problem does not consider the effect of
data file distribution and the set ofK target nodes is not
specified in a DCS, the factoring and reductions [10, 11]
developed to compute theK -terminal reliability cannot be
directly applied to the DPR problem. Obviously, if there
are no duplicated files, i.e. if there is only one copy of each
file, in the DCS, then the DPR problem can be transferred
into an equivalentK -terminal reliability problem in which
the K set is just the set of nodes that contain the data files

needed for the programs under consideration. However,
data files are usually duplicated in DCSs, so the factoring
and reduction methods for theK -terminal problem cannot
be directly applied to the DPR problem. General factoring
and reduction methods developed for the DPR problem with
perfect nodes have been proposed and discussed in [1, 2, 12];
the FM algorithm concerns the case of a DCS with imperfect
nodes.

2. NOTATION AND DEFINITIONS

In this paper we will use the following notation and
definitions.

2.1. Notation

D = (V , E, F) An undirected DCS graph with vertex
(node) setV , edge setE , and data file
set F . Without loss of generality, we
identify a program with a special type
of data file, i.e. program⊆ F .

li = (ei , ui , vi) The link i that contains the edgeei and
its two endpointsui andvi .

F Ai The set of files available at nodei .
M E A subset ofE that represents the edges

merged during the process of finding
all MFSTs with the SM algorithm.

pi Reliability of node, edge or linki
qi 1− pi

H Subset of files ofF , i.e. H ⊆ F ,
whereH contains the programs to be
executed and all data files needed for
the execution of these programs.

R(DH) The DPR ofD with a setH of needed
files: Pr{all data files in H can be
accessed successfully by the executed
programs inH }. We omit H when no
ambiguities arise.

D − e The graphD with edgee deleted.
D + e The graphD with edgee = (u, v)

contracted so that nodeu and v are
merged into a single node. This new
merged node contains all data files and
programs that were in nodesu andv.

Using this notation, we can represent the DPR of program
P1 that needs data files f1, f2 and f3 for its execution in the
example in Figure 1 byR(DH) whereD = (V , E, F) and

V = {n1, n2, n3, n4, n5, n6},
E = {e1 = (n1, n2), e2 = (n1, n3), e3 = (n2, n3),

e4 = (n2, n4), e5 = (n3, n5), e6 = (n4, n5),

e7 = (n4, n6), n8 = (n5, n6)},
F = {P1, P2, f1, f2, f3, f4, f5},

F An1 = {f4, f5}, F An2 = {P1, f1}, F An3 = {f2},
F An4 = {f3}, F An5 = {f3}, F An6 = {P2, f4}, and

H = {P1, f1, f2, f3}.

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

RELIABILITY ANALYSIS OF DISTRIBUTED COMPUTING SYSTEMS 131

Algorithm SM
Input: the originalDCSgraphD = (V , E, F) and the setH of needed files
Output: the distributed program reliability DPR
begin

repeat // reduce the original DCS graphD //
perform the degree-1 and parallel reductions
perform the series and degree-2 reduction

until no reductions can be made
Let D′ be the DCS graph after the reduction step
FOUND← ∅

ME← ∅

FIND FST(D′, M E) // call FIND FST to find FSTs //
for all s, tεFOUND do // remove the FSTs which are not MFSTs //

if t ∩ s = s then removet from FOUND
else ift ∩ s = t then removes from FOUNDendif

endif
od
introduce the nodes which are endpoints of the edges inFOUND
apply SYREL [8] to all MFSTs stored inFOUND // call the terminal reliability algorithm //
output the DPR.

end SM

FIND FST(D, M E)
begin

if there are no FSTs inD then return endif // failure case //
if there exists one noden such thatF An ⊇ H then FOUND← FOUND∪ {M E}

return // success case //
endif
for all ei ∈ the set of edges incident on the nodes containing the programs to be executeddo

FIND FST(D + ei , M E ∪ {ei }) // decompose D by Equation (3.1) //
D← D − ei

remove the irrelevant components fromD
if there are no FSTs inD then return endif

od
end FIND FST

ALGORITHM 1.

DEFINITION 1. A file spanning tree (FST) [3] is a tree
whose nodes hold all needed files inH .

DEFINITION 2. A minimal file spanning tree (MFST) [3]
is a FST such that there exists no other FST that is a subset
of it.

From the definition of a MFST, the DPR can be written as

R(DH) = Prob(at least one MFST is operational), or

R(DH) = Prob

(
#m f st⋃

j=1

MFSTj

)

where #mfst is the number of MFSTs for a given needed file
setH .

DEFINITION 3. A noden is called a reducible node [1] if
and only if: (a) the degree of noden is two in the original
DCS graph, and (b) noden is not a leaf node of any MFST.

FIGURE 2. The subgraphs generated using Equation (3.1).

DEFINITION 4. A working set is a subset of nodes of
V such that if and only if all nodes in the working set fail
simultaneously then there are no FSTs in the DCS.

3. SM ALGORITHM: THE SYMBOLIC METHOD

When the DPR is computed by a symbolic method, node
failure can be accounted for by using the following steps:

(i) all MFSTs are derived for the DCS with nodes
considered perfect;

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

132 M.-S. LIN, D.-J. CHEN AND M.-S. HORNG

FIGURE 3. The process of finding all MFSTs using SM for the example in Figure 1.

(ii) introduce the nodes which are endpoints of the edges of
MFSTs;

(iii) a terminal reliability algorithm, such as SYREL [8], is
performed on the resulting expression.

To find all MFSTs, we can use the following equation
proposed in FREA [1] to decompose the original DCS graph
into d subgraphs:

R(DH)

= pe1 R(DH + e1)+ qe1 pe2 R(DH − e1+ e2)+ . . .

+ qe1qe2 . . . qed−1 ped R(DH − e1− e2− . . .

− ed−1+ ed) (3.1)

where {e1, e2, . . . , ed } is the set of edges incident to the
nodes containing the programs being executed, and where
with each subgraph we associate a setM E of edges to store
the edges merged in that subgraph. This decomposition
operation is performed recursively and the setM E is
updated for each induced subgraph until the further induced
graph is obtained in which either (a) there exists a node
containing all needed data files inH , or (b) there are no
FSTs. In the first of these two cases, an FST can be identified
and composed by the edges stored in the setM E . After the

FSTs covered by other FSTs are deleted, all MFSTs can be
found.

THEOREM 3.1. The subgraphs generated by Equa-
tion (3.1) are completely disjoint.

Proof. According to Equation (3.1), the original graph can
be decomposed intod subgraphs as shown in Figure 2.
The leftmost branch corresponds to classTe1, the set of
subgraphs including edgee1. All the other branches
correspond to classTe1, the set of subgraphs without edges
e1. Within Te1, the second branch splits it into two classes,
one to includee2, another without it, and so on. When
the algorithm progresses at each internal node such kinds of
splitting occur. This guarantees that no replicated subgraph
will be generated. �

Since the subgraphs generated using Equation (3.1) will
be completely disjoint, no duplicateM E sets will be
generated during the expansion of the computation tree.
Therefore, the SM does not need the CLEAN procedure used
in Prasnna Kumar [3] to check and remove duplicate sets.

Before the original DCS graph is decomposed by
Equation (3.1), the original DCS graph can be reduced to a

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

RELIABILITY ANALYSIS OF DISTRIBUTED COMPUTING SYSTEMS 133

Algorithm FM
Input: the originalDCSgraphD = (V , E, F) and the setH of needed files
Output: the distributed program reliability DPR
begin

repeat // reduce the original DCS graphD //
perform the degree-1 and parallel reductions
perform the series and degree-2 reduction

until no reductions can be made
Let D′ be the DCS graph after the reduction step
Output (factoring(D′))

end FM

function factoring (D)
begin

if there are no FSTs inD then return (0) endif
if there exists one noden in D such thatpn 6= 1 (noden is an imperfect node) and

contains the programs to be executed // identify the working set of nodes //
then D1← D with settingpn = 1;

D2← D with deleting noden and its adjacent edges
return (pn· factoring(D1)+ qn·factoring(D2)) // Equation (4.2) //

endif
return (e factoring(D)) // call edge factoring //

end factoring

function e factoring(D)
begin

if there exists one noden such thatF An ⊇ H then return (1) endif // success case //
if there are no FSTs inD then return (0) endif // failure case //
repeat // reduction step //

perform degree-1 and parallel reductions
perform series and degree-2 reductions

until no reductions can be made
let D′ be the DCS graph after the reduction step
R← 0
C ← 1
for all link li = (ei , ui , vi) in the links (edges) incident to the nodes containing

the programs to be executeddo
R← R + C · (pei · pui · pvi) · e factoring(D + ei) // Equation (4.3) //
C ← C (̇1− pei · pui · pvi)

D← D − ei

p′vi
← (pvi · qei)/(qvi + pvi · qei) // Equation (4.4) //

p′ui
← (pui · qei)/(qui + pui · qei) // Equation (4.4) //

remove the irrelevant components fromD
if there are no FSTs inD then return (R) endif

od
return (R)

end e factoring

ALGORITHM 2.

smaller size by the following reduction methods developed
for the DPR problem with imperfect nodes.

• Degree-1 reduction.A node is referred to as a degree-
1 node if it has only one incident edge. Degree-
1 reduction removes (i) degree-1 nodes that contain
none of the needed data files and programs under
consideration and (ii) their incident edges.

• Irrelevant component deletion.Let D′ be a connected
component ofD that is not connected to the rest of the
components ofD. If there are no FSTs inD′, then the
componentD′ is irrelevant and can be deleted.

• Parallel reduction.Let ea = (u, v) andeb = (u, v) be
two parallel edges inD. D′ is obtained by replacing
ea and eb with a single edgeec = (u, v) such that
pec = 1− qea · qeb (or pec = pea + peb − pea · peb).

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

134 M.-S. LIN, D.-J. CHEN AND M.-S. HORNG

FIGURE 4. The computation tree of FM for the example in Figure 1.

The parallel reduction for the DPR problem is the same
as the parallel reduction for theK -terminal network
reliability problem.

• Series reduction.Let ea = (u, v) and eb = (v,w)

be two series edges in a DCS graphD such that
degree(v) = 2 andF Av∩H = ∅, i.e. nodev contains
no required data files or programs to be executed. Then
a DCS graphD′ is obtained by replacingea andeb with
a single edgeec = (u, w) such thatpec = pea · pv · peb .

• Degree-2 reduction. Suppose nodev is a reducible
node; then one can apply series reduction on nodev

and move data files and programs within nodev to a
nodeu or w.

The complete SM algorithm can be stated as in
Algorithm 1.

EXAMPLE 3.1. We use the example in Figure 1 to
illustrate our symbolic method. Assume all nodes and edges
have the same reliability, 0.9. The process of finding all
MFSTs is shown in Figure 3.

All MFSTs found in the set FOUND are
{(e4, e9), (e4, e5, e10), (e5, e9)}; we then introduce the nodes
which are the endpoints of the edges inFOUND. All MFSTs
become {(e4, e9, n2, n3, n4), (e4, e5, e10, n2, n3, n4, n5),
(e5, e9, n2, n3, n5)}. Applying the terminal reliability
algorithm SYREL [8] to these MFSTs, we obtain the
disjoint terms

d1= pn2 · pn3 · pn4 · qn5 · pe4 · pe9,

d2= pn2 · pn3 · pn4 · qn5 · pe4 · qe5 · pe9,

d3= pn2 · pn3 · pn4 · qn5 · pe4 · qe5 · pe9 · pe10,

and

d4= pn2 · pn3 · pn5 · pe5 · pe9.

The DPR is computed to be
∑4

i=1 di = 0.7736.

4. FM ALGORITHM: THE FACTORING METHOD

For theK -terminal reliability of a network with imperfect
nodes, a modified factoring method has been proposed in

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

RELIABILITY ANALYSIS OF DISTRIBUTED COMPUTING SYSTEMS 135

TABLE 1. File distributions used for comparison in the ARPA network.

P1 f1 f2 f3 f4 f5

Set 1 8, 18 18, 21 9, 13 3, 18 11, 17 2, 20
Set 2 18, 21 9, 13 3, 18 11, 17 2, 20 8, 20
Set 3 5, 18 3, 8 11, 4 2, 19 8, 10 2, 19
Set 4 9, 16 15, 10 6, 8 9, 17 4, 10 3, 18
Set 5 8, 17 19, 20 8, 18 18, 21 9, 13 3, 18
Set 6 8, 15 4, 9 6, 12 20, 21 1, 12 4, 20
Set 7 11, 14 2, 18 6, 7 7, 19 3, 12 11, 16
Set 8 2, 8 2, 20 10, 5 10, 12 2, 8 7, 9
Set 9 17, 18 4, 12 4, 5 13, 15 12, 14 2, 21

Set 10 4, 9 1, 20 10, 18 15, 16 4, 16 17, 18

Set 11 2, 8, 18 6, 7, 13 5, 7, 19 3, 12, 21 1, 11, 16 11, 13, 21
Set 12 8, 9, 11 4, 10, 16 3, 5, 15 7, 11, 12 6, 8, 11 7, 10, 19
Set 13 3, 16, 21 12, 14, 19 2, 11, 13 1, 4, 14 3, 4, 17 5, 9, 13
Set 14 8, 11, 15 4, 9, 20 6, 12, 20 2, 20, 21 1, 2, 12 4, 6, 20
Set 15 5, 11, 18 5, 6, 10 2, 5, 8 12, 14, 17 5, 11, 19 4, 15, 18
Set 16 2, 5, 15 12, 15, 21 1, 13, 14 10, 16, 18 5, 17, 20 2, 4, 11
Set 17 4, 17, 19 2, 10, 18 6, 13, 14 6, 11, 12 5, 6, 20 1, 5, 8
Set 18 5, 9, 13 2, 3, 18 8, 11, 17 2, 19, 20 8, 18, 20 18, 20, 21
Set 19 11, 14, 19 4, 6, 17 10, 18, 21 2, 5, 11 6, 17, 18 5, 13, 15
Set 20 7, 12, 16 7, 11, 20 1, 17, 20 2, 3, 9 1, 7, 13 6, 18, 20

Set 21 1, 16, 18 9 2, 6, 12 5, 8, 11, 13, 10, 14, 19, 21 3, 4, 7, 15
17, 20

Set 22 1 3, 4, 9, 12, 6, 7, 8, 16, 18 19 5, 10, 11, 21 2, 15
13, 14, 17, 20

Set 23 3 5, 6, 11, 14, 8, 9, 10, 18, 21 7, 12, 13 1, 2, 4, 17
15, 16, 19 20

Set 24 7 1, 2, 9, 10, 12, 13, 14 4 3, 11, 16, 17 5, 6, 8, 21
15, 18, 19

Set 25 16, 21 3, 15 1, 10 2, 7, 8 5, 6, 9, 11, 4, 14, 18, 19,
12, 13, 17 20

Set 26 13, 18 12, 20 7 4, 5, 19 2, 3, 6, 8, 9, 1, 11, 15, 21
10, 14, 16, 17

Set 27 10 8, 12, 13 2, 21 4, 7, 15, 16 3, 5, 6, 14, 1, 9, 11, 19,
17, 18 20

Set 28 4, 11 2, 5, 6, 13, 1, 16, 17, 18 3, 8 7, 15, 20, 21 9, 10, 12
14, 19

Set 29 6, 14 2, 9 4, 7, 10, 11, 3, 8, 18, 21 1 5, 12, 13, 16,
15, 19 17, 20

Set 30 3, 4, 9, 21 7, 10 1, 11, 19 2, 6, 8, 14, 12, 13, 20 5, 17
15, 16, 18

[10]. This method is very elegant since it is a one-pass
method and only requires a small additional cost for the
perfect nodes case. However, the DPR problem is very
different from and more complicated than theK -terminal
reliability problem. Hence, the factoring and reduction
methods proposed in [10] cannot be directly used for the
DPR problem.

If we consider a DCS with imperfect nodes, the first step
in the FM algorithm is to select aworking setof nodes. We
can choose as a working set a set of nodes including the
programs to be executed. Since there is usually only one
copy of each program to be executed and each program is
stored in only one site in the DCS, the size of the working
set we choose can be very small. Once the working set has

FIGURE 5. ARPA network.

been decided, we factor the nodes in this working set just as
we do with edges. For example, if we select the working

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

136 M.-S. LIN, D.-J. CHEN AND M.-S. HORNG

TABLE 2. File distributions used for comparison in the Pacific Basin network.

P1 f1 f2 f3 f4

Set 1 5, 15 3, 4 12, 14 4, 6 11, 15
Set 2 3, 19 8, 13 12, 14 10, 14 13, 18
Set 3 8, 14 8, 9 6, 13 5, 6 5, 15
Set 4 10, 13 10, 15 3, 13 9, 19 8, 15
Set 5 14, 19 1, 19 8, 11 1, 7 5, 13
Set 6 9, 18 9, 10 9, 17 1, 10 10, 19
Set 7 4, 19 10, 15 2, 4 8, 18 4, 18
Set 8 13, 19 1, 8 8, 12 5, 16 1, 13
Set 9 7, 17 6, 15 4, 9 11, 14 4, 7

Set 10 4, 15 3, 10 6, 8 6, 18 3, 14

Set 11 11, 13, 19 3, 15, 17 1, 6, 14 2, 6, 18 7, 12, 14
Set 12 3, 8, 19 4, 10, 16 6, 16, 19 5, 6, 18 4, 11, 16
Set 13 7, 9, 12 11, 13, 14 1, 12, 17 10, 14, 18 4, 14, 18
Set 14 12, 15, 17 5, 7, 13 2, 8, 19 2, 3, 18 6, 9, 12
Set 15 13, 15, 16 5, 8, 13 7, 11, 12 7, 14, 15 1, 3, 4
Set 16 1, 4, 18 5, 12, 16 5, 13, 19 6, 16, 18 4, 10, 13
Set 17 7, 12, 15 6, 10, 16 5, 6, 10 1, 12, 13 7, 9, 14
Set 18 2, 8, 11 3, 4, 9 2, 11, 15 3, 16, 19 1, 7, 15
Set 19 2, 7, 9 13, 14, 19 4, 7, 13 7, 8, 17 1, 6, 15
Set 20 1, 5, 7 2, 12, 15 3, 4, 8 7, 10, 15 1, 7, 13

Set 21 6, 8, 12, 13, 16, 17 2, 7, 14 1, 4, 9, 11, 19 3, 5, 10, 15
18

Set 22 5, 10, 17, 18 3, 6, 7, 8, 11, 9, 16 4, 15 1, 2, 13, 14
12

Set 23 7, 10, 11, 18 1, 6, 9, 13 12, 16, 19 2, 4, 5, 8, 14 3, 15, 17
Set 24 2, 7, 10, 18, 19 8, 9, 12, 16 1, 3, 4, 6, 14, 17 11, 15 5, 13
Set 25 1, 5, 13, 18 6, 7, 12, 14, 15, 2, 3, 9 10, 11 4, 8, 17

16, 19
Set 26 4, 10, 12 5, 6, 11, 15 3, 9, 14, 16 13, 15, 17, 18 1, 2, 7, 8, 19
Set 27 12 6, 10, 13, 14, 8, 9, 18 1, 2, 3, 15 4, 5, 7, 11, 17

16, 19
Set 28 5 7, 8, 9, 15, 18 12, 14, 19 2, 3, 4, 10, 16 1, 6, 11, 13, 17
Set 29 14, 17, 18 2, 8, 11, 12 5, 7 1, 3, 4, 6, 16 9, 10, 13, 15,

19
Set 30 4, 10, 18 8, 11, 14, 15 6, 9, 12, 13, 17, 5, 7, 16 1, 2, 3

19

FIGURE 6. Pacific Basin network.

set {n1, n2} to be factored, then there are four possible
combinations in the factoring process and four different
disjoint subgraphsD′ will be produced from the original

DCS graphD. The reliability of the original DCS can then
be stated as

R(DH) = pn1 · pn2 · R(DH |n1 andn2 work)

+ pn1 · qn2 · R(DH |n1 works andn2 failed)

+ qn1 · pn2 · R(DH |n1 failed andn2 works)

+ qn1 · qn2 · R(DH |n1 andn2 failed). (4.1)

Since the set{n1, n2} is a working set, by the definition of
a working set, the whole DCS will fail if nodesn1 andn2
fail simultaneously. Hence, Equation (4.1) can be rewritten
as

R(DH) = pn1 · pn2 · R(DH |n1 andn2 work)

+ pn1 · qn2 · R(DH |n1 works andn2 failed)

+ qn1 · pn2 · R(DH |n1 failed andn2 works).
(4.2)

In Equation (4.2), each subgraph of (i)D with n1 and
n2 working, (ii) D with n1 working andn2 failed, and (iii)

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

RELIABILITY ANALYSIS OF DISTRIBUTED COMPUTING SYSTEMS 137

FIGURE 7. Plots of execution time for various file distributions.

D with n1 failed andn2 working has at least one node
working, that is, eithern1 or n2. These working nodes
can be identified with perfect nodes just as theK target
nodes are identified with the perfect nodes in theK -terminal
problem. Once we have identified the perfect nodes in each
subgraph, the factoring technique used in [10] can be applied

to each subgraphD′, and the technique can be generalized
as follows:

R(D′H) = pl1 · R · (D′H + e1)+ ql1 ṗl2

· R(D′H − e1+ e2)+ . . .+ ql1 · ql2 . . .

· pld · R(D′H − e1− e2− . . .− ed−1+ ed)

(4.3)

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

138 M.-S. LIN, D.-J. CHEN AND M.-S. HORNG

TABLE 3. Comparison of running times (in s) for different sets of file distributions.

The ARPA network The Pacific Basin network

MFST1 FM1 SM1 DPR1 MFST1 FM1 SM1 DPR1

Set 1 31,886 12 52 0.72208 120,426 3 69 0.62321
Set 2 35,613 4 55 0.70664 336,382 3 56 0.75127
Set 3 29,709 7 106 0.85759 8704 0.7 2 0.90212
Set 4 79,298 23 576 0.77292 10,128 2 43 0.79601
Set 5 74,879 12 33 0.62265 566,992 4 2843 0.72288
Set 6 393,575 37 1797 0.62333 122,442 1 5 0.84335
Set 7 2330 2 10 0.77055 112,050 2 17 0.65175
Set 8 4141 2 5 0.84159 146,150 3 460 0.73069
Set 9 47,862 7 139 0.71358 51,973 3 90 0.86122

Set 10 263,853 32 2046 0.70700 12,201 2 144 0.86894

Set 11 3671 73 311 0.90007 44,053 23 2559 0.88738
Set 12 4652 41 845 0.90489 59,003 12 168 0.94013
Set 13 10,029 99 3040 0.87593 241,796 37 3520 0.93582
Set 14 43,565 32 936 0.89481 313,406 18 20,305 0.87653
Set 15 2538 22 100 0.85926 76,356 17 2672 0.78671
Set 16 24,679 123 1097 0.81013 169,286 38 18,246 0.89207
Set 17 47,313 83 4093 0.89348 202,565 13 1075 0.90548
Set 18 11,785 31 40 0.77215 39,632 17 934 0.93888
Set 19 7597 18 253 0.82016 128,042 32 1637 0.91192
Set 20 14,706 27 583 0.88712 56,692 34 5532 0.93303

Set 21 48,126 80 496 0.77612 327,540 414 439 0.67141
Set 22 42,324 1 8 0.48504 76,588 141 6058 0.82579
Set 23 33,687 3 62 0.53779 219,423 222 6203 0.89497
Set 24 84,666 5 208 0.70892 142,629 608 4479 0.81395
Set 25 15,848 19 1414 0.73106 55,135 330 2831 0.79374
Set 26 4382 6 50 0.67767 104,456 162 39681 0.92176
Set 27 1663 5 329 0.76526 356 1 156 0.67407
Set 28 7130 88 3666 0.88650 44,681 6 1206 0.81330
Set 29 161,932 16 246 0.76793 246,909 31 8060 0.91986
Set 30 16,200 146 1599 0.83323 26,970 18 311 0.81735

1A Sun SPARC system 600 workstation was used to run the program(s).

FIGURE 8. Benchmark DCSD8,6.

whereD′ is a subgraph generated by the process of factoring
on the working set ofD, the set{l1 = (e1, v1, u1), l2 =
(e2, v2, u2), . . . , ld = (ed , vd , ud)} is the set of links
incident to the nodes that are identified with perfect nodes
andpli = pei ·pvi ·pui is the probability of linki working, for

TABLE 4. File distribution table.

F An1 = {f1, f2, f3}
F An2 = {f2, f3, f4}
F An3 = {f3, f4, f5}
F An4 = {f4, f5, f6}
F An5 = {f5, f6 ,f7}
F An6 = {f6, f7, f8}
F An7 = {f1, f7, f8}
F An8 = {f1, f2, f8}
F An9 = {f3, f7, f8}
F An10 = {f1, f4, f7}

i = 1 to d. In each subgraph ofD′ with edgeei = (ui , vi)

deleted, the reliability of the two endpointsui and vi , is
updated with the new reliability

p′vi
= (pvi · qei)/(qvi + pvi · qei), and

p′ui
= (pui · qei)/(qui + pui · qei) (see [10]). (4.4)

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

RELIABILITY ANALYSIS OF DISTRIBUTED COMPUTING SYSTEMS 139

TABLE 5. Number of subgraphs generated and actual execution time against different topologies.

Number of subgraphs generated Execution time (s)

DCS MFST1 ENR/KW2 SM1 FM1 MFST1 ENR/KW2 SM1 FM1 DPR1

D8,4 35 16 10 8 <0.01 <0.01 <0.01 <0.01 0.8915513
D10,4 55 20 9 7 < 0.01 0.01 <0.01 <0.01 0.8893553
D8,6 306 72 32 20 0.02 0.02 0.01 <0.01 0.8988961
D8,7 1159 289 181 64 0.81 0.06 0.28 0.01 0.8990611
D10,7 3443 462 151 60 1.30 0.15 0.21 0.02 0.8990729
D8,8 3225 1196 1356 260 21.83 0.22 20.66 0.08 0.8990899
D10,8 20,464 2556 1195 250 103.82 0.82 16.69 0.09 0.8990949
D10,9 131,899 17,832 8619 1255 5023.68 5.64 183.72 0.51 0.8990990

1An Intel Pentium P133 PC was used to run the program(s).
2These values were obtained by Ke and Wang [5].

Equations (4.3) and (4.4) and the reduction methods
described in Section 3 can be recursively applied to each
induced graph until either (i) the further induced graph with
a node contains all needed data files and all programs to be
executed or (ii) the further induced graph contains no FSTs.
The former case represents success (reliability= 1); the
latter case represents failure (reliability= 0). The complete
FM algorithm is stated in Algorithm 2.

EXAMPLE 4.1. To illustrate the FM algorithm, we shall
again use the example in Figure 1. Assume the reliability
of all the nodes and links is 0.9. The complete computation
tree of FM is shown in Figure 4.

From Figure 4, the DPR can be computed as

DPR= 0.9 · 0.81 · 0.8948+ 0.9 · 0.1662· 0.81= 0.7736.

5. COMPLEXITY AND COMPARISONS

5.1. Complexity analysis

It is well known that computingK -terminal reliability in
general isN P-hard, or #P-complete [13]. However, for
some classes of networks, for example, tree and series-
parallel networks, theK -terminal reliability problems can
be computed in linear time by applying well known
reductions like series, degree-2, parallel and polygon-to-
chain reductions [14]. However, the DPR problem is much
more complicated than theK -terminal problem, since its
computational complexity is dependent not only on the
topology of the network but also on the file distributions.
Actually we have shown that the DPR problem for series-
parallel, tree and star networks is stillN P-hard [15].
Therefore, there exists no polynomial time algorithm to
compute the reliability of the distributed program for general
distributed computing systems. Naturally, the SM and FM
require exponential time, i.e. 2|V |+|E |, in the worst case.
An appropriate and rational comparison for these different
algorithms can be made based on the counting approach
which counts the number of intermediate trees or subgraphs
generated during the whole reliability evaluation. From
such a comparison, one can tell how much memory space

and time units are required for their algorithms to run the
distributed programs under the effects of different topologies
of the DCS and file distributions.

5.2. Comparisons

The algorithms developed in this paper will now be
compared with the existing algorithms under the changes in:

(i) the file distribution on the nodes of the DCS; and
(ii) the topology of DCS.

5.2.1. Effect of data file distributions on performance of
different algorithms

The algorithms were tested using the examples of the ARPA
network and the Pacific Basin network. The topologies of
the ARPA and Pacific Basin networks are shown in Figures 5
and 6. All edges and nodes have reliability= 0.9. Thirty
sets of file distributions, generated randomly, for each of the
ARPA and Pacific Basic networks are listed in Tables 1 and
2. In Tables 1 and 2, sets, 1–10 are those file distributions
for which two copies of each file are distributed randomly in
the network while sets 11–20 are for three copies of each file.
We also generate randomly the other kind of file distribution,
sets 21–30, where each node contains only one data file.
Table 3 gives running times and the reliability obtained for
the example of Tables 1 and 2. The execution time is also
plotted in Figure 7. From Table 3 and Figure 7, it is clear
that the SM and FM algorithms are much more efficient than
Prasnna Kumar’s [3] algorithm.

5.2.2. Effect of topology on performance of different
algorithms

In this study, we want to see the effect of topological
configuration on the performance of different algorithms
used. Consider the benchmark networks given in ENR/KW
[5]. Let Dij be the benchmark DCS withi nodes and node
n1 to noden j being completely connected. Figure 8 depicts
the example ofD8,6. The file distributions are given in
Table 4. Assume program P1 needs data files{ f 1, f 3, f 5}

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

140 M.-S. LIN, D.-J. CHEN AND M.-S. HORNG

FIGURE 9. Plots of the number of subgraphs generated and execution time for topology variations.

for its executions. These topologies and file distributions
are the same as those used in ENR/WK [5]. Table 5 shows
the number of subgraphs generated and the actual execution
time against different topologies based on program P1 as

executed at noden1. In addition, Figure 9 shows the plots of
Table 5. From Table 5 and Figure 9, it is clear that the FM
algorithm is much more efficient, compared with the other
algorithms, in any of these different topologies.

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

RELIABILITY ANALYSIS OF DISTRIBUTED COMPUTING SYSTEMS 141

6. CONCLUSION

In this paper we have proposed two algorithms for
computing the reliability of distributed computing systems
with imperfect nodes. The first algorithm, SM, is a two-
pass method that requires the terminal reliability algorithms
to compute the reliability values of symbolic expressions
obtained from the SM. The second algorithm, the FM, uses
a factoring approach that directly computes the reliability
without enumerating the symbolic expressions. In addition,
the use of various reliability preserving reduction techniques
in the SM and FM implies that the size of the graph
will be reduced and, therefore, fewer subgraphs will be
generated. Comparisons with existing methods on various
file distributions and network topologies show the usefulness
of the FM algorithm for complex DCSs.

REFERENCES

[1] Chen, D. J. and Lin, M. S. (1994) On distributed comput-
ing systems reliability analysis under program execution con-
straints.IEEE Trans. Comput., 16, 87–97.

[2] Chen, D. J. and Huang, T. H. (1992) Reliability analysis of
distributed systems based on a fast reliability algorithm.IEEE
Trans. Parallel Distrib. Syst., 3, 139–153.

[3] Prasnna Kumar, V. K., Hariri, S. and Raghavendra, C. S.
(1986) Distributed program reliability analysis.IEEE Trans.
Software Eng., 12, 42–50.

[4] Kumar, A., Rai, S. and Agrawal, D. P. (1988) On computer
communication network reliability under program execution
constraints.IEEE J. Select. Areas Commun., 6, 1393–1399.

[5] Ke, W. J. and Wang, S. D. (1997) Reliability evaluation for
distributed computing networks with imperfect nodes.IEEE
Trans. Reliability, 46, 342–349.

[6] Lopez-Benitez, N. (1994) Dependability modeling and
analysis of distributed programs.IEEE Trans. Software Eng.,
20, 345–352.

[7] Kumar, A. and Agrawal, D. P. (1993) A generalized algorithm
for evaluating distributed program reliability.IEEE Trans.
Reliability, 42, 416–426.

[8] Hariri, S. and Raghavendra, C. S. (1987)SYREL: A Symbolic
Reliability Algorithm based on Path and Cutset Methods.
IEEE Trans. Computers, 36, 1224–1232.

[9] Belovich, S. G. (1995) A design technique for reliable
networks under a non-uniform traffic distribution.IEEE
Trans. Reliability, 44, 377–387.

[10] Theologou, O. R. and Carlier, J. G. (1991) Factoring and
reductions for networks with imperfect vertices.IEEE Trans.
Reliability, 40, 210–217.

[11] Satyanarayana, A., Chang, M. K. (1983) Network reliability
and the factoring theorem.Networks, 13, 107–120.

[12] Lin, M. S. and Chen, D. J. (1993) General reduction methods
for the reliability analysis of distributed computing systems.
Comp. J., 36, 631–644.

[13] Ball, M. O. (1986) Computational complexity of network
reliability analysis: an overview.IEEE Trans. Reliability, 35,
230–239.

[14] Satyanarayana, A. and Wood, R. K. (1985) A linear-time
algorithm for computingK -terminal reliability in series-
parallel networks.SIAM J. Comput., 14, 818–832.

[15] Lin, M. S. and Chen, D. J. (1997) The computational
complexity of the reliability problem on distributed systems.
Inform. Process. Lett., 64, 143–147.

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999

