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A b s t r a c t - - T h e  solutions of a gyroscopic vibrat ing system oscillating about  an equilibrium po- 
sition, with no external applied forces and no damping forces, are completely determined by the  
quadratic eigenvalue problem (-A~M + .kiG + K)xi -- 0, for i = 1 , . . . ,  2n, where M, G, and K are 
real n x n matrices, and M is symmetric positive definite (denoted by M > 0), G is skew symmetric, 
and either K > 0 or - K  > 0. Gyroscopic system in motion about  a stable equilibrium position (with 
- K  > 0) are well understood. Two Lanczos-type algorithms, the pseudo skew symmetric Lanczos 
algori thm and the  J-Lanczos algorithm, are studied for computing some extreme eigenpairs for solv- 
ing gyroscopic systems in motion about  an unstable equilibrium position (with K > 0). Shift and 
invert strategies, error bounds, implementation issues, and numerical results for bo th  algorithms are 
presented in details. © 1998 Elsevier  Science Ltd. All r igh t s  reserved. 

K e y w o r d s - - G y r o s c o p i c  system, Lanczos algorithm, Hamiltonian matrix, Quadratic eigenvalue 
problem, Generalized eigenvalue problem. 

1. I N T R O D U C T I O N  

The motion arising in the gyroscopic vibrating systems oscillating about an equilibrium position, 
with no external applied forces and no damping forces, modeled with the finite element method 
leads to systems of constant coefficient differential equations 

- U i i ( t )  + Gi~(t) + Ku( t )  = O, (1) 

in which M, G, and K are real n x n matrices. The leading coefficient matrix M is symmetric 
and positive definite (denoted by M > 0) and is generally the mass matrix of the quadratic form 
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determining the kinetic energy of the system. G is skew symmetric (G T = -G) ,  representing the 
effect of gyroscopic internal forces. K represents the stiffness matrix and is symmetric and either 
K > 0 or - K  > 0, when oscillations may be about unstable or stable equilibrium positions, 
respectively. For example, the Lagrangian function of the motion of a sleeping symmetric top 
leads to the gyroscopic system (1) (see [1,2]). 

A gyroscope can be defined as a rotating body possessing one axis of symmetry and whose 
rotation about the symmetry axis is relatively large compared with the rotation about any other 
axes. In modern usage, a gyroscope is a system consisting of a symmetric rotor spinning rapidly 
about its symmetry axis and free to move about one or two perpendicular axes. A considerable 
number of spinning bodies can be regarded as gyroscopes, for instance, helicopter rotor blades or 
spin stabilized satellites with elastic appendages such as solar panels or antennas. It is therefore 
no surprise that the subject of gyroscopic motion and devices has received so much attention. 

The natural vibration frequencies hi and the corresponding mode shapes xi of the system (1) are 
of prime interest to the designer, and can completely be determined by the quadratic eigenvalue 
problem 

( - ) ~ M  + A iG+ g )  x i = O ,  (2) 

for i = 1 , . . . ,  2n. This problem can be reduced to a linear generalized eigenvalue problem by 
doubling the order of the system 

M 0 ~ixi - -~i Aixi ' (3) 

for i = 1, 2 , . . . ,  2n. For complex structures, the order n of these matrices is usually large and the 
structure of these matrices is often sparse. Hence, numerical methods based on modifying the 
entries of the matrices, e.g., QR or QZ method, become less practical. The subspace method, on 
the other hand, developed originally by Clint and Jennings [3] is well established and is commonly 
used for such large eigenproblems. However, more recently, the Lanczos type methods have been 
gaining increasing popularity since from many numerical observations they are considerably more 
efficient than the subspace iteration method. 

When - K  > 0, the gyroscopic system in motion about a stable equilibrium position is well 
understood (see, e.g., [4-8]). All nonzero eigenvalues of (2) are known to be necessarily pure 
imaginary and semisimple (the case when the eigenvalue has only linear elementary divisors). 
Thus, the system is weakly stable, that is, Ilu(t)l I is uniformly bounded for all t > 0 and all 

I 0 1 in (3)is symmetric positive definite. solutions u(t) of (1). Also in this case the matrix -o K i 
L J 

Suitable numerical algorithms can be derived with less difficulty for solving such problem [9]. 
It is equally important to investigate the gyroscopic system in motion about an unstable 

equilibrium position with K > 0 (see [8,10-12]). A classical treatment of this kind was given by 
Whittaker [2]. Stability criteria for such system were shown in [10,13]. It is also known that the 
spectrum of the quadratic eigenproblem is symmetric about the imaginary axis (see, e.g., [11]). 
However, unlike the previous case, the numerical algorithms for this particular application is 

limited in literature. The fact that matrix ~-o K ° ~ i n  (3) becomes indefinite relatively imposes 
L - -  

greater difficulty on the numerical computation. Some standard numerical methods, such as 
Arnoldi or unsymmetric Lanczos method, may be applied without modification; however, they 
do not take account of the special structure of the coefficient matrices. 

In [14], Parlett and Chen considered the quadratic eigenvalue problem with symmetric positive 
definite coefficient matrices. They reduced the problem to linear form and derived a two-sided 
Lanczos algorithm which retains symmetry in the new coefficients but not the positive definite- 
ness. Recently Rajakumar [15] employed the Lanczos two-sided recursion to solve the quadratic 
eigenvalue problem when M, G, and K are real and unsymmetric. Motivated by their successful 
implementation of the algorithms, we seek to devise the Lanczos type algorithms that can be 
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directly applied to the quadratic eigenvalue problem (2) arising from the gyroscopic system in 
motion about an unstable equilibrium position. 

Two Lanczos type algorithms are studied in this paper. The first approach, we name it pseudo 
skew symmetric Lanczos algorithm, extends the idea of Parlett and Chen [14] to skew symmetric 
coefficient matrix case. As a result, a two-term recurrence formula is derived to produce a skew 

matrix using an indefinite inner product induced by /-0 K ° / . The second tridiagonal approach 
J 

transforms the quadratic eigenvalue problem to a 2n x 2n linear Hamiltonian eigenvalue problem, 
then applies the J-Lanczos algorithm [16]. The J-Lanczos algorithm uses a sequence of symplectic 
transformations to produces a Hamiltonian tridiagonal matrix so that the eigenvalue quartet 
{#,/2, -~ ,  -/2} always converges at the same time. The symplectic look-ahead Lanczos algorithm 
proposed by Freund and Mehrmann [17,18] may also be applied here. We emphasize that, with 
careful implementation, both approaches avoid the need to work explicitly with matrices of 
order 2n. 

We organize this paper as follows. In Section 2, we derive the two-sided recursion and complex 
shifts formulations for the pseudo skew symmetric Lanczos algorithm. In Section 3, we show how 
to transform the quadratic eigenvalue problem (2) to an enlarged linear Hamiltonian eigenvalue 
problem and apply the J-Lanczos algorithm. Complex shift formulations which preserve the 
Hamiltonian structure are given. Also included in Sections 2 and 3 are error bounds, convergence 
behavior, computational cost, and implementation issues for each approach. Numerical experi- 
ments are presented in Section 4. Conclusion and remarks follow in Section 5. Throughout this 
paper, unless otherwise stated, we only consider the gyroscopic system with K positive definite. 

2. P S E U D O  S K E W  S Y M M E T R I C  L A N C Z O S  A L G O R I T H M  

By letting 

H =  [GM-M]o  and [-0K f ~ ] ,  (4) 

equation (3) can simply be expressed as 

1 
Hz = ~Az.  (5) 

It is easily seen that H is skew symmetric and A is symmetric but indefinite. In [14] Parlett 
and Chen presented the pseudo symmetric Lanczos algorithm for the case where H is symmetric 
and A is symmetric but indefinite. They use a three-term recurrence formulation to produce 
an unsymmetric tridiagonal matrix. We extend their method to our problem (where H is skew 
symmetric) and derive a Lanczos type method, called pseudo skew symmetric Lanczos algorithm, 
with the operator A - I H  using an indefinite inner product defined by A, namely, (u, V)A = sTAy, 
for all u, v E Rn). In contrast to their formulation, the pseudo skew symmetric Lanczos algorithm 
uses a two-term recurrence formula to produce a skew symmetric tridiagonal matrix. 

We start from the theory presented in [19] that there almost always exists a nonsingular 2n × 2n 
matrix Q2n - [ql , . . . ,  q2n] such that 

T H Q2. Q2. = T2. (6) 

and 
T Q2nAQ2n = n2n, (7) 

where 

f/2. = diag (wl, w2, • • •, c#2n) (8) 
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is diagonal and 

T2n 

0 Z2 

-Z2 0 "'. 

• • f~2n 

-32n 0 

is skew tridiagonal. Then we have the two-term recurrence in matrix form 

(9) 

A - 1 H Q 2 n  = Q2nft21T2n. (10) 

As suggested in [14] for the pseudo symmetric Lanczos algorithm, we require the Lanczos 
vectors qj to satisfy 

[[qk[[2 = 1, for k = 1 ,2 , . . . , 2n .  (11) 

Equating the k th column on each side of (10) and letting/31 -- 0 yields the two-term recurrence 
for our pseudo skew symmetric Lanczos algorithm: 

Zk Zk+l A - 1 H q k  = qk-1 - qk+l, (12) 
OJk- 1 0 )k+l  

with 

~ k + l  T = qk Hqk+l ,  

wk+l (qk+l, qk+l)A T = = qk+lAqk+l,  

(13) 

(14) 

for k -- 1, 2 , . . . ,  2n - 1. Since in each iteration k there is only one Lanczos vector qk+l generated, 
we use the term one Lanczos step to denote one iteration in the pseudo skew symmetric Lanczos 
algorithm. 

Dangers 

Equation (12) above shows the possible danger of small values among the {wk}. Hence, the 
pseudo skew symmetric Lanczos algorithm using (11)-(14) may break down and may be unstable 
when close to breakdown• 

In addition, undetected growth of Lanczos vectors in certain directions can occur• Similar to 
the tactical example shown in [14], we construct the following example. Let 

ql = ( a , O , a , O , x , . . . , x )  T, 

A = diag (1, 1, -1 ,  -1 ,  x , . . . ,  x) ,  

and 

Then from (12) it follows that  

ol] [Ol ;][o 0] [o 0]) 
q2 = ( O , a , O , a , x , . . . , x )  T .  

From (13) and (14), it is easily seen that  wk+l and ~ k + l  a r e  independent of cr, and consequently 
both Tk and g~k are independent of a. But the subspace spanned by Ul = (1, 0, 1,0, 0 , . . . ,  0) T and 
u2 = (0, 1,0, 1, 0 , . . . ,  0) T forms an invariant subspace for the matrix pencil (H, A) corresponding 

to the eigenmatrix / 0 01I. When a is arbitrarily large, the subspace spanned by the Lanczos 

vectors ql and q2 is close to the invariant subspace of ul and u2. But the pseudo skew symmetric 
L J 

Lanczos algorithm is blind to detect them when fF~lTk is used to compute the desired Ritz pairs• 
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H o w  to  C o m p u t e  Tk - Af/k 

At each even step k = 2j, the QR-algorithm (in EISPACK, for example) can be used to 
compute the Ritz values and associated vectors of f~-~lTk. The algorithm is stable but takes no 
advantage of the compact tridiagonalization form. On the other hand, let 

and 
I cJ 1 02& / 

h = d i a g  iwl i , . . . , ]wkl  " 

Then the pencil (A~ITkA~-I,I'k) is equivalent to (Tk,ft~) and the HR algorithm [19], which is 
regarded as a generalization of the skew symmetric tridiagonal QR algorithm, can be applied 
to solve this pencil. However, HR algorithm is unstable by using hyperbolic rotations and may 
break down for certain shift values [19]. Furthermore, since ~ - l T k  is skew symmetric, one can 
verify that  if 8 is an eigenvalue, then - 8  is also an eigenvalue in theory. However, neither the 
QR algorithm nor the HR algorithm can guarantee to find both 8 and - 0  at one time. 

Error Bounds 

Suppose 
(Tj - Of~j)s = O, 

with Ilsll2 = 1, defines a typical eigenpair (8, s) of the reduced problem obtained by applying the 
pseudo skew symmetric Lanczos algorithm to the operator A-1H.  Let y = Qjs  be a Ritz vector 
corresponding to the Ritz value 0. After j iterations, in exact arithmetic, one has 

("-~J+----~l -T~ (15) A - 1 H y -  8y = - tt/3-t-1 o2j_t_1 c3 7 8. 

Suppose (I, S) is another eigenpair of flj-lTj such that  ¢ is the computed eigenvalue that.is closest 
to -6 .  We may argue that  it + 01 < O(e), where e is the machine unit roundoff, and ~ = - 0  in 
exact arithmetics. Let z = Qjg. Then, similar to (15), one has 

A - 1 H z  - ~z = /e ~j+l -Tk 
-- tqj- l- l~j+lCZj ) 8. (16) 

Since A is symmetric and H is skew symmetric, by adding 0z and premultiplying by H to (16), 
one obtains 

( , ,  (A-1H)  x (Hz) - 8(Hz) = - t n q j + l ~ j + l e j  ) g + (I + 8)(Hz). (17) 

Thus, Hz can be viewed as an approximated "left Ritz vector". Note that  

Similarly, Ilzll~ _< J. 
Next we define 

Ilyll ] = Is"QTQ~sl ___ Y IJ 'sl  = j. 

5(j) = m a x  {le~ Tsl, le~-~l + ~ I¢ + oi}. 
Then (0, y, Hz)  is an eigentriplet of A - 1 H  - E  for some E satisfying 

S le;sl leS l iis<q.lli: + it + eliiS<:ii2 t IIEIli < ~j+l m a x  

- ~ j + l  ], Ilyl12 I IHz l l2  J {1 H-H } <~ ~(j) ~j+l max , . 
- W j + l  IlYlI2 Ilgzll2 

(18) 

(19) 
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When the computation has proceeded enough that  le~sl,  l e ~ l ,  and IC + 01 tend to zero so 
that  6(j)flj+l/Wj+l is very small, then first-order perturbation theory may be invoked to obtain 
an accurate error estimate for 0 by regarding A - 1 H  as a perturbation to A - 1 H  - E. If A is the 
eigenvalue of A - ] H  closest to 0, we have, in general, 

I~X - ol = Ilyl12" ItHzll2 IzTHEyl  
IzTHYl IlYlI=" IIHzll2 + O (IIEII~) • (20) 

Note that  
zT Hy  = $T Q j H Q j s  = ~Tjs. 

Now we can obtain an error bound, as [IEII2 --, 0, using (19) and (20), 

Ilyl12" IIHzlb. IIEII2 + o Im - Ol _< ~~fi-djy~ (IIEII~) 

,,,,12.,,Hzl,= f l , + ,  { 1 ,,HI,2 } 
< ~--~-~.y~ 5( j )  max , + O (IIEII~) 
- -  ~dj+l I l y l 1 2  I I H z l I 2  

< ~(j) ~+1 vq IIHII2 +O(IIEII~). 
- -  0d j+ 1 I.iTT~sl 

(21) 

Similar to the error bound derived for the pseudo symmetric Lanczos algorithm [14], the attraction 
of the last inequality is that  the dominant term can be calculated at step j ,  without recourse 
to n-vectors, provided that  IIHII2 is provided along with the subroutine that  multiplies vectors 
by H. 

Complex Shifts 
Let H - #A be the pencil defined in (4). We consider the following complex shifts for the 

proposed pseudo skew symmetric Lanczos algorithm. 

TYPE I. Pure imaginary single shift a = i~. By taking the real operator with complex shift a 
on the pencil we get the shifted problem 

( ')  1 1 + z. (22) R e [ ( H - a A )  - 1 ] A z = - ~  # - a  # -  

Notice that  the operator (H - aA) -1 can be factored into 

E1 :lifo.,, _,,o ],[: _;,, (23) 

where G~, = G + a K  - (1 /a )M.  Since a = i~, Re[(H - aA)  -1] is also skew symmetric. Thus, 
the proposed pseudo skew symmetric Lanczos algorithm can be applied to the pencil A(Re[(H - 
a A ) - I ] ) A  - #A.  

TYPE II. Complex single shift. If Re(a) # 0, then R e [ ( H -  aA) -1] is neither skew symmetric nor 
symmetric. The pseudo skew symmetric or symmetric Lanczos algorithm can no longer be ap- 
plied. For this case, we can only use the unsymmetric Lanczos (two-sided Lanczos) algorithm [14] 
to the unsymmetric matrix (Re[(n - aA) - I ] )A .  

TYPE III. Pure imaginary double shift a = i~/. We consider the shifted problem 

A ( H  - ~ A ) - I A ( H  - a A ) - l A z  = 1 (# - a ) ( l~  - ~ )  A z .  (24) 



Undamped Gyroscopic Systems 55 

[j 
I 

where Ga = G + ~ K  - ( 1 / a ) M .  

TYPE IV. Complex double shift. 

Since a = i7/is pure imaginary, both  A ( H -  # A ) - I A ( H -  a A ) - I A  and A are symmetric,  one can 

apply the pseudo symmetr ic  Lanczos algorithm [14] to the operator  ( H  - # A ) - X A ( H  - a A ) - 1 A .  

Note that ,  similar to (23), ( H  - #A) -1 can be factored as 

01 [i l I  o , (25) 
- # M  0 I 

When Re(a)  ~ 0, we consider the shift matr ix  ( H  - #A) -1 
A ( H  - a A ) - X A  which is a real matr ix  but  is unsymmetric.  Therefore, one has to use the unsym- 

metric Lanczos algorithm in this case. 

I m p l e m e n t a t i o n  I s s u e s  

For clarity, we summarize  the pseudo skew symmetr ic  Lanczos method in the following algo- 

r i thm and point out the implementat ion details. 

G i v e n  ql. 

I n i t i a l i z e  q0 = 0, w0 = 1, and/~1 -- 0. 

C o m p u t e  wl = qT Aql.  

F o r  k = 1, 2 , . . . ,  until converge. 

f~k 
• rk = qk-  1 - A -  1 Hqk 

O)k-1 
rk 

• qk+l = ilrkll 2 

• f~k+l  T = qk Hqk+~ 
T • Ct)k+ 1 = qk+~Aqk+l 

E n d  

In the computer  implementation,  matrices A and H are never assembled and A - 1 H  is not 
formed explicitly. However, one has to factor K (e.g., LU-factorization), and only K ,  so tha t  the 
computat ions involving K -1 can be performed efficiently as will be seen in (26) in the following. 

For convenience, we part i t ion a 2n-vector into two n-subvectors. For example, we denote 
[q(:,] q(2) 

qk = [q(k2) , where q(1), are n-vectors. At the k th Lanczos step, rk is formulated as rk = 

(13k/Wk-1)qk-1 -- A - 1 H q k ,  and one can compute rk by 

r(1) - 
OJk-1 

f~k 
O)k-1 

[ql 1) o 
- -  0 
_ _ _  r q(ki_)l (Gq (1 , -  Uq (2)) 

Lq~i]  - [ K-~ q(kl) ] 
(26) 

] [  ]rq l, ] [q(kl) T G - M  / k+l 
] ~ k + l  ~--- [q(2) M 0 / (2) 

Lqk+l 

~qk ) ( M q ( ~ l )  + ~qk+l) 

(27) 

We may  assume tha t  the vectors Gq 0)  and M q  (2) have been computed in the last i teration and 

are available at the present stage. In this iteration, they will be updated  to Gq (1) and Mq (2) k+l k+l 
(see (27) below) for use in the next iteration. Therefore, only K - i r k ,  where vk = Gq (1) - Mq~ 2), 

has to be computed  at  the current step. 
Now we examine the computat ions  involved in computing t~k+l = qTHqk+l .  Since 
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one computes the matrix-vector multiplications W2•(1) and "" (2) ~Uk+l Ivlqk+l. The resulting vectors are 
T stored for computing wk+l and passed to the next Lanczos step. In computing Wk+l = qk+lAqk+l, 

we have 

"Jk+,I - K  0 [q(k~l 
(2) Cdk+l---- uk+l'(2) ~/ 0 M [qk+l (28) 

/ ( 1 ) , T  (Kq(1)+i) + [ ( 2 ) , T  ( / q ( 2 )  
= -- ~qk+l) (qk+l) ~ k+l) '  

... (1) 
hence, only 2~qk+l is computed. 

In summary, the dominant computations in the pseudo skew symmetric Lanczos algorithm are 
those matrix-vector operations including K-lvk ,  ~xqk+l , ' "  (1) Gq (1)k+l, and ""uk+l"a/r"(2) 

Next we consider the single complex shift a = iT. From (23), 

([I 011[: 
Re [(H - aA) -1] = R e  11 - a M  

O" 

Re(a-2) 

1 1 Re ( G ; ' )  --~ Im ( a ;  1 ) ~-~ 

-!I" 
6r 

I 
) 

(29) 

and rk is computed by 

rk ---- 
~k qk-1 - A -1ARe [(H - aA) -1] Aqk 

0)k-1 

- ~----~k qk_l -- Re [(U - aA) -1] Aqk. 
0)k-1 

(30) 

We may assume that  fk -- Aqk and Re [(H - aA)-l]fk have been computed in the previous 
Lanczos step and are available. Hence only vector operation is required for computing rk. For 
f~k+l, since 

f~k+l : q'~A Re [(H - aA)- ']  Aqk+l (31)" 

= (Aqk) T Re [ (g  - aA) -1] Aqk+l, 

one needs to compute fk+l =-- Aqk+l and Re [(H - aA)-l]fk+l, store the resulting vectors for 
computing wk+l, and pass to the next Lanczos step. Note that  

[ - K  |qk+l --nqk+l / : k + l /  (32) 
f k + l - -  0 i (2) = . .  (2) - | d 2 )  ! ,  

I qk+l 1V1 qk+l L J k+l J 

"" (1) and "" (2) have to be performed. And hence ltqk+l Ivi qk+l 

Re ( G ;  1) f(1) f(2) + 1 Im ( G ;  1) k+l k+l 
Re [(H - aA) -1] fk+, -- 1 " (33) 

- -  Jk+l + Re ( a ;  1) ¢(2) Jk+l  

The factorization, e.g., LU-factorization, of Ga is done once at the initialization step, and the 
solutions ~_-1 ¢(1) and G -1¢(2) have to be performed in complex arithmetics. Once fk+l is "'a Jk+l a Jk+l  
available, Wk+l = q-~+lAqk+l = q-~+lfk+l can be computed easily. 

For complex shift Re (a) # 0, one has to apply the unsymmetric Lanczos algorithm. The 
dominant computations will be Re [(H - aA)- l]Ax and (Re [(H - aA)-I]A)Ty for single shift 
and (H - 6"A)-IA(H - a A ) - l A x  and ((H - ~A) - IA (H  - aA)- IA)Ty  for double shift. The 
implementations of these computations are similar to those in (30)-(33). 
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C o s t  o f  C o m p u t a t i o n s  

Suppose the matrices K, G, and M have the same banded structure. Denote Z as a general 
matrix having the same banded structure as K. We define a matrix operation "mop" as the 
computational cost of the multiplication between Z and a vector, or the backward and forward 
substitution for solving the linear system associated with Z. With the discussion above, we 
summarize the dominant computational cost for the pseudo skew symmetric Lanczos algorithm 
in each iteration as following: 

1. origin shift (a = 0): four mops; 
2. pure imaginary single shift (a = iT): six mops; 
3. complex shift (Re (a) # 0) with unsymmetric Lanczos algorithm: 12 mops; 
4. pure imaginary double shift (a = iT) with pseudo symmetric Lanczos algorithm: 14 mops; 
5. complex double shift (Re (a) # 0) with unsymmetric Lanczos algorithm: 28 mops. 

Here we use the convention that one complex multiplication equals to four real multiplications. 

3. T H E  J - L A N C Z O S  A L G O R I T H M  

In this section we apply the d-Lanczos algorithm proposed by Ferng, Lin and Wang [16] to 
solve the quadratic eigenvalue problem (2) arisen in the undamped gyroscopic system (1). With 
the definition of H and A in (4), the quadratic eigenvalue problem (2) can be transformed to the 
following linear generalized eigenvalue problem: 

1 
HA-1Hz = ~Hz (34) 

or, equivalently, 

[~ 0 ~] [ ~  2~] [~ 0 ~] [;]-~[~ 0 ~] [;] (35) 

Let 

and 

~=[~ 'o] , o 0 M -1 (36) 

0 0,1 
0 - M  -1 _ 

By multiplying X and Y from the left and right, respectively, to the matrix pair 

X(HA-1H, H)Y = 

we get 

I 0 _ K _ I  

- M  0 I 

= 2 

- M  (GK-1G) (GK-1) 
4 2 

- ( H ,  I~,~). 

['0 0] / 
' I 

(37) 

HA-1H, H) 

(3s) 

Since G is skew symmetric, it is easy to verify that the matrix H in (38) is Hamiltonian and 

nonsingular. Recall that a matrix H is Hamiltonian if (H J)T = H J = - JHT,  where J -- [ _° I ~]. 

The inverse of a Hamiltonian matrix, if it exists, is still Hamiltonian. 
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From [20] we know that there almost always exists a symplectic matrix, Q~nJQ2n = J and 
Q2n =- [ql,--. ,qnlqn+l,... ,q2n], such that 

where 

HQ2n = Q2nT2n, (39) 

T~n = 

a l  

k l  

a n  

kn 

Cl b~ 

bl "'. 

- a l  

" .  bn-1 
bn-1 an 

- a  n 

(40) 

is J-tridiagonal. If we require the Lanczos vector qj to satisfy 

[[qjH2 = 1 and qj _l_ qn+j, Vj = 1 , . . . , n ,  (41) 

then equating the jth and (n + j)th columns, respectively, on each side of (39), for j = 1, . . . ,  n, 
yields the uniquely determined two-four-term recurrence for our J-Lanczos algorithm: 

aj = q~ Hqj, kj = q~ JHqj ,  

qn+j = ~-~j (Hqj - ajqj), 

(42) 

(43) 

(44) 

(45) 

cj = -q~+jJHqn+j,  

r j  ----- S q n + j  - b j _ l q j _  1 - c j q j  d- a j q n + j ,  

= IIrjll , + + 1  = (46) 

Since in each iteration j, there are two Lanczos vectors qn+j and q#+l generated by the J- 
Lanczos algorithm, we define that there are two Lanczos steps in each iteration j in comparison 
with the pseudo skew symmetric Lanczos algorithm• 

Next we show that the linear eigenvalue problem Hz = (1/A)z in (38) is equivalent to the 
original quadratic eigenvalue problem (2) without inverting M. From (38), one has 

i I :] _ 1 -I r~l r ~ l l  

- L ~ J  " ' L ~ J  

It follows that 

~ z  + y = - K x  =~ y = - G x -  K x  (48) 

~ K -  ~ x  + y - M x =  -~y. 

and 

(49) 

Substituting (48) into (49), we have 

- A 2 M x  + AGx + K x  = O. 

Dangers 

The J-Lanczos algorithm may also break down if kj in (42) vanishes. But if bj in (46) be- 
comes zero, then we get the invariant subspace. Detailed analysis on loss of symplecticity and 
convergence behavior can be found in [16]. 
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H o w  to  C o m p u t e  T2j - A 

The J-Lanczos algorithm preserves the 2 x 2 block Hamiltonian structure and one can apply 
the SR-algorithm [20] which takes advantage of the compact J-tridiagonal form to compute 
the desired Ritz pairs from T2j. The SR-algorithm guarantees to find the quartet of Ritz values 
(0, 0, -0 ,  -0 )  at one time. However, the algorithm uses a Gauss-type elimination without pivoting 
at some steps. Thus, the SR-algorithm is unstable and may break down in some cases. If 
breakdown occurs, one can recM1 the conventional QR-algorithm. 

E r r o r  B o u n d s  

Suppose that  at the 2j th iteration of the J-Lanczos algorithm, T2j is the computed J-tridiagonal 

U~IT2~U2j = 

matrix and 
01 

-01 
(50)  

is the J-diagonalization of T2j, in which 8~ are called the J-Ritz values and U s -- [ u l , . . . ,  uj [ 

u j + l , . . . , u 2 j ] ,  with Ilui[12 = [[uj+ill2 = 1, i = 1 , . . . , j .  IfY2j = [ Y l , . . . , y j  l Yn+l , . . . ,Yn+j]  = 
Q2jU2j, then yi and Yn+i are called the J-Ritz vectors corresponding to the J-Ritz values 0i 
and -0~, respectively. Moreover, the following identities hold (see [16, Theorem 3.6]): 

(51)  

and 

HHYn+i + O~Yn+it[2 = [/3j,j+~l, 

where flj,i = bju2j,~ and ~j,j+~ = bju2j,j+i, for i = 1 , . . .  , j .  
Suppose tha t  rj  is the residual vector such that  

(52) 

Hyi  - Oiyi = u2j,irj (53) 

and 

(y Xn+iJ) H -  8i (yXn+iJ) = u2j,j+i(Jrj)X. (54) 

Applying the results in [21], it follows that  (0i, x j Yi, Yn+i ) is an eigentriplet of H - E. The norm 
of the perturbation E satisfies 

[[Z[[2 < Ibj[ m a x  (55)  - ',J Ily, 

and the error bound on the J-Ritz value 8i is 

Ib~lllQa3112 
I~ (') - Oil <_ luH+ijjuil max {lu2j,il, lu2j,j+,l} + O (llEll~). (56) 

When compared with the error bound (21) for the pseudo skew symmetric Lanczos algorithm, 
the attraction of the last inequality is that  it does not depend on I[H[[2 and that  the v~  factor 
does not appear here. This bound can also be calculated with little cost at each step. 
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C o m p l e x  Shifts 

We now consider complex shifts on the Hamiltonian matrix H. The detailed shift strategy 
techniques for Hamiltonian matrices are given in [16]. Two types of shifts are considered here. 

TYPE I. Real shift =t=v/~ or pure imaginary shift +iv/- ~. Since from (38), 

I' :1 [! :] H - -  0] , 
7 - 

one can factor 

let 

Then we have 

and 

H - l =  

Hence, 

[: 0] 
_ M - 1 G  .M-1 

2 [, o,] ( o,]) 
G , ~ L -1 = . (57) 

n _ l s n =  [g0-1 01] [ZM G =M] [~ M0 1] (58) 

L_IH_IL = [/(0 -1 ~] [ 0 -GK] [~ 0 M _ l ]  (59) -K 

- G  0_] L_I. (60) 
I J  

The matrix in (60) is the shifted Hamiltonian matrix of H with the transformation # ~ ~ 
#/(#2 + rl). Note that equation (60) also holds when M is singular. 

TYPE II. Complex shift + a  +/3i. For the complex shift 2a = a + ~i, we consider solving the 
shifted Hamiltonian eigenvalue problem derived in [16]: 

R e [ ( H  c H - 1 +  i/~I)-1] 1 ( # # ) (61) - z =  ~ ( u + ~ ) ( u - ~ )  + ( ~ + ~ u - ~ )  z, 

where c = (1/4)(o 2 +/32). Using (58) and (59) we can derive the factorization 

Re [ ( H -  cH -1 + i/3I) -1] 
0 ([-G+iflK -M+cK]  -~) (62) =L[~ MIRe [-M+cK -cG+i~MJ [Ko ~] L-l" 

I m p l e m e n t a t i o n  Issues 

In the computer implementation of the J-Lanczos algorithm, the Hamiltonian matrix H as 
defined in (38) is never formed explicitly. The computation of Hqj can be arranged as follows: 

-q~= [o ~]~ 
- z Ld~)J 

[ -h;') 1 
= l l~h(1) , .  (1)/ 

L - ~  ~ 3 -~v~qj j 

(63) 

(64) 
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where h~ 1) = K - l f (1 )  and f~l) ~__ (1/2)Gq~1) + qJ2). Hence, same as the pseudo skew symmetric 
Lanczos algorithm, the factorization of K has to be computed at the initialization step. Notice 
that  JI-Iqj is just a permutation of entries but no floating-point arithmetics. The computation 
for Hq ,+ j  is similar. 

In summary, the dominant computations in one Lanczos step of the J-Lanczos algorithm are 
those matrix-vector operations involved in computing Gq~ 1) , h~l )= K - i f  (1) , Gh~. 1), and Mq~ 1) . 

For the shifted Hamiltonian matrix, (60) or (62), we replace the J-Lanczos vectors qj with Lqj 
I and J-orthogonalization with L x JL-orthogonalization, i.e., [_c I 0 ]-°rth°g°nahzati°n" In the 

implementation, two extra vectors ~j and qn+j, where L~j = qj and L~n+j = qn+j, are used to 
reduced the computational cost. The computation of Hqj is replaced by (H ± ~H-1 ) - l q j  and 
R e  [ ( H  - cH -1 + i /3I)-l]qj  for real shift or pure imaginary shift and complex shift, respectively. 
Since the implementation for both cases are similar, we denote 

['o 01[ t-I = M - M  T w K  

for the real shift or pure imaginary shift case and 

- M  T w K ]  -1 o,1 (65) 

for the complex shift case. Then L~IL-1  is equivalent to the shift matrices (H + wH-1)-1  and 
R e  [ ( H  - cH -1 + il3I) -1] for either case. The computations of the shifted J-Lanczos algorithm 
can then be described in detailed as follows. 

Assume that  both qj and ~j are available, then 

a i = q ~ L ~ I L - i q j  = q~L~IOj (67) 

can be obtained once we have computed H~j and L(H~j). The computation for kj = q~JL~I~j  
is obvious. And qn+i and qn+j can be updated with vector operations by 

1 ( L ~ i L _ l q j _ a j q i )  = 1 qn+j = -~j -~j \L~I~j  - a j q j ]  (68) ( 

and 
1 (H(~j - a j0j)  (69) = 

One can verify that  qn+j = L~n+j. Both qn+j and qn+j are stored for later computations. 
Moreover, since 

cj = - q~+j J L ~ I L -  I qn+j = - q~+j T JL~IV?n+j, (70) 

so cj can be obtained after the multiplications of Hqn+j and L(t-I~n+j ). Then one computes 

rj = LH77,~+j - b j - lq j  - cjqj + ajq~+j (71) 

and 
rj = Hqn+j - b j - l~ j  - cj~j + aj~n+j (72) 

with only vector operations. Note that  rj = L?j. And the J-Lanczos vectors qj+l and qj+l are 
updated by 

rj ~j (73) qi+l = [[rjl[ 2 and qj+l = i[ri[[ 2, 

respectively. 
In summary, one can see that  the dominant computations in each Lanczos step are the matrix- 

vector multiplications with H for the J-Lanczos algorithm and with L and H for the shifted 
J-Lanczos algorithm. We comment that  none of the enlarged matrices H,  L, or ~r need to 
formed explicitly. All computations can be done in terms of n x n matrices M, G, and K. 
Therefore, if there is any special structure or sparsity pattern in theses matrices, one should 
certainly take the advantage and perform the dominant computations with appropriate efficient 
routines. 

(66 )  
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Cost of  Computations 

We use the same definition for "mop" as in Section 2 and suppose that it costs four mops and 
16 mops for solving the linear systems involving the real matrix 

[ a 1 
- M  ::F ~K ±~G J 

and the complex matrix 
- G  + i ~ K  - M  + cK ] 
- M  + cK - c G  + i ~ M  J ' 

respectively. With the discussion above, we point out that the dominant computations for our 
J-Lanczos algorithm in each Lanczos step are those formulated in (64), (67), and (70). Therefore, 
we summarize the computational cost in the following: 

1. origin shift (a = 0): four mops, 
2. real or pure imaginary shift (a = v ~ or ivf~): seven mops, 
3. complex shift (a = a + f~i): 19 mops. 

Remarks 

By comparing the computational cost, one can see that the J-Lanczos algorithm with zero 
or pure imaginary shift to the matrix H in (38) needs about the same number of mops at each 
Lanczos step as the pseudo skew symmetric Lanczos algorithm with zero or pure imaginary 
shift to the pencil H - #A in (4). For the complex shifted eigenvalue problem (62), the J- 
Lanczos algorithm can converge to a quartet of eigenvalues {+#, +/2} at one time. However, the 
pseudo skew symmetric Lanczos algorithm is no longer applicable to the complex shift case. The 
alternative unsymmetric Lanczos (two-side Lanczos) algorithm can only converge to a pair of 
eigenvalues {#,/2} at once. Hence, in this case it should count 24 mops for computing {±#, ±/2} 
when compared with the 19 mops by the J-Lanczos algorithm. 

4. N U M E R I C A L  E X P E R I M E N T S  A N D  R E S U L T S  

In this section, we use several numerical experiments to assess the viability of the proposed 
Lanczos-type algorithms to extract the eigenpairs for undamped gyroscopic systems. Based on 
the numerical results, we compare the convergence behavior and numerical efficiency of J-Lanczos 
algorithm with the pseudo skew symmetric Lanczos algorithm. In the experiments, we focused 
on finding the eigenvalues with minimal absolute values and the corresponding eigenvectors. The 
results reported herein were obtained using Pro-Matlab 4.x on a Sun SPARCstation. 

TEST SUITE # 1. Random n x n, n = 1000, matrices (M, G, K) with known exact eigenvalues 
were generated such that the minimal eigenvalues in magnitude to the solutions of the qua- 
dratic problem (2) appear on the imaginary axis. Figure 1 plots the reciprocal of the spectrum 
distributions. Table 1 summarizes the numerical results for pseudo skew symmetric Lanczos 
(S.S. Lanczos) algorithm and J-Lanczos algorithm. We observed that the J-Lanczos algorithm 
performs better than the pseudo skew symmetric Lanczos algorithm in terms of number of Lanc- 
zos steps and computational cost. The results are typical among all testings we have conducted. 

Table 1. Numerical results for Test Suite # 1. SSL denotes the pseudo skew sym- 
metric Lanczos algorithm and J-L denotes the J-Lanczos algorithm. 

No. of Lanczos Steps 
E 

SSL J-L 

0.15 51 46 

0.10 52 42 

0.05 55 50 

0.02 84 74 

mops 

SSL J-L 

206 184 

210 168 

222 200 

338 296 

No. of Eigenpaim 

SSL J-L 

2 2 

4 2 

2 4 

2 2 
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Figure 1. Distribution of reciprocal of all eigenvalues for the associated gyroscopic 
system in 'rest Problem # 1 with different e. 

In the table, mops denotes the number of n-dimensional matrix-vector multiplications (defined 

in Section 2) and the last two columns show the number of extreme eigenpairs obtained when the 

stopping criterion is satisfied and the iteration terminates. We comment that  both algorithms 

require four mops in each Lanczos step; however, pseudo skew symmetric Lanczos algorithm 

requires four mops for initialization and the J-Lanczos requires two. The J-Lanczos algorithm 

converges faster to the required accuracy and hence uses less mops. 

TEST SUITE ~ 2. Again, random n x n, n -- 1408, matrices (M, G, K) with known exact 
eigenvalues were generated. But in contrast to the previous setting, the desired eigenvalues may 

not appear on the imaginary axis. Figure 2 shows the reciprocal of the spectrum distributions, and 

Table 2 summarizes the numerical results. One can see that  the pseudo skew symmetric Lanczos 

algorithm is slightly better than the J-Lanczos algorithm, but the the J-Lanczos algorithm is 

competitive. 

Table 2. Numerical results for Test Suite # 2. SSL denotes the pseudo skew sym- 
metric Lanczos algorithm and J-L denotes the J-Lanczos algorithm. 

I 

No. of Lanczos Steps mops No. of Eigenpairs 
E 

SSL J-L 

0.9 63 64 
0.7 59 60 
0.5 57 62 
0.3 59 58 

SSL 

254 
238 
230 
238 

J-L SSL 

256 4 
240 4 
248 4 
232 4 

J-L 

4 
4 
4 
4 

Based on our numerical experience, we comment that  the J-Lanczos algorithm seems to out- 
perform the pseudo skew symmetric Lanczos algorithm on the first type of problems (Test Suite 

# 1) and is competitive on the second type of problems. 

TEST SUITE ~fi 3. In contrast to the first two settings, we consider band matrices of dimension 

n = 100 in this test. K and M are random band matrices with bandwidth seven. G is chosen to 

be a random skew symmetric tridiagonal matrix with zeros on the diagonal. 
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Figure 2. Distribution of reciprocal of all eigenvalues for the associated gyroscopic 
system in Test Problem # 2 with different ~. 

Since M,  G, and K are all band matrices, the matrix-vector multiplications can be treated 

as element-wise vector multiplications. We use the same definition for mop as before and define 
"vec" to to an element-wise product  of two vectors. Hence one mop with M or K is equivalent 
to seven vecs while one mop with G involved is only counted for two vecs. In Table 3 we report 

the number  of operations performed and the number of eigenpairs converged after 12 , 14, 16, 
and 20 iterations for both  algorithms. 

Table 3. Numerical results for Test Suite # 3. 

No. of 
Iterations 

12 
14 
16 
20 

mops/vecs 

S.S. Lanczos J-L 

50/290 48/216 
58/336 56/252 
66/382 64/288 
82/474 80/360 

No. of Eigenpairs 

S.S. Lanczos J-L 

4 4 
6 6 
8 8 

10 10 

We comment  tha t  with the same number of Lanczos steps performed, both  algorithm obtain 
the same number  of desired eigenpairs and the same dimension of Krylov subspace, however, 
the J-Lanczos algorithm requires much less '~¢ecs" operations. Equivalently, more eigenpairs can 

be obtained by the J-Lanczos if the same amount  of operations are spent. Consequently, the 
J-Lanczos algorithm converges much faster when G has narrow bandwidth. We also comment 
tha t  breakdown occurred frequently with the pseudo skew symmetric  Lanczos algorithm during 

this test  due to the tiny values of (w=} as formulated in (12). A new start ing vector is chosen to 
restart  the Lanczos iteration when this happens. Break down was not observed for the J-Lanczos 

algorithm. 

5. C O N C L U S I O N S  A N D  R E M A R K S  

In this paper,  we proposed two Lanczos-type approaches, pseudo skew symmetric  Lanczos 
algorithm and J-Lanczos algorithm, for computing a few extreme eigenpairs of the quadratic 
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eigenvalue problem (2) which in turn solves the undamped gyroscopic system (1) in motion 

about an unstable equilibrium position. Some remarks are summarized in the following. 

1. The dimensions of the Krylov subspaces constructed by each algorithm with the same 

number of Lanczos steps are identical. And the computational costs for both algorithms 

are about even if the matrices are general dense matrices without any special sparse 

structures. Hence, the convergence behaviors are similar. 

2. If M, G, and K are banded and the bandwidth of G is much less than that  of K, then the 

J-Lanczos algorithm has advantages over the pseudo skew symmetric Lanczos algorithm 

in terms of computational cost. Consequently, the J-Lanczos algorithm converges much 

faster. 

3. The J-Lanczos algorithm incorporating the SR-algorithm can find a quartet of eigenvalues 

{±#,  ±#}  at one time. However, the pseudo skew symmetric Lanczos algorithm has to 

incorporate the QR-algorithm or HR-algorithm that  can only find a pair of eigenvalues 

{#,/2} at a time. 

4. The J-Lanczos algorithm preserves not only the Hamiltonian structure but also the 

2 × 2 block structure of the enlarged matrix form. The pseudo skew symmetric Lanc- 

zos algorithm, on the other hand, preserves only the skew symmetry structure, but not 
the 2 × 2 block structure of the enlarged matrix. 

5. For some complex shifted problems, the pseudo skew symmetric or symmetric Lanczos 

algorithm can no longer be applied since the shifted matrix is neither symmetric nor 

skew symmetric. One can only resort to the unsymmetric Lanczos (two-sided Lanczos) 

algorithm. However, the Hamiltonian structure is preserved in the shifted problems. 

6. In the numerical experiments, breakdown is observed more often with the pseudo skew 

symmetric algorithm than the J-Lanczos algorithm. 

Based on the theoretical point of view as well as the numerical observations we may suggest that  
the J-Lanczos algorithm has to be preferred. 
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