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Abstract

This paper is to investigate the nonlinear e}ect of the self!induced electric _eld on the di}usion!induced
stresses in a long bar[ We _rst approximate the nonlinear concentration!dependent di}usivity as a series of
third!degree polynomials by the least!squares curve!_tting techniques\ and then calculate the distributions
of concentration by the Galerkin method[ Afterwards\ the di}usion!induced stresses inside the bar are
determined analytically by introducing the Goodier displacement potential and Airy stress function[ It is
found that the nonlinear self!induced electric _elds can depress both the concentration gradient and the
maximum di}usion!induced stresses apparently\ and these e}ects are more signi_cant at short times than at
long times[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Di}usion!induced stresses\ during mass transfer\ can change the mechanical properties in metal
systems such as hardening "Reed!Hill\ 0862^ Hertzberg\ 0872#[ The di}usion!induced stresses in
semiconductor materials during di}usion processes have been studied extensively over recent
decades\ because they can cause dislocation generation which a}ects solute distribution and
subsequent electronic properties "Bardsley\ 0859#[ The di}usion!induced stresses are built up by
composition inhomogeneity during mass transfer\ i[e[\ they are caused by concentration gradients\
similar to those caused by temperature gradients in an otherwise unstressed body[ Prussin "0850#
was the _rst to analyze the transverse stresses developed in a thin plate during di}usion process[
The di}usion!induced stresses related to the dislocation density was studied in detail by Tuck

� Corresponding author[
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"0863#[ Li "0867# solved the di}usion!induced stresses in a single!phase elastic medium of various
geometries and corrected an error made by Prussin "0850#[ Further\ Lee and Li "0870# proposed
that the most rapid di}usion processes occur without generation of dislocation[ Lee and Ouyang
"0876# derived a general solution for boundary stress as a function of time[ Chu and Lee "0889#
obtained di}usion!induced stresses in two!phase elastic media[ Chu and Lee "0882# carried out a
study of di}usion!induced stresses in a long bar of square cross section[ Hwang et al[ "0883# further
investigated di}usion!induced stresses in a long bar under an electric _eld[ However\ the above
calculations of di}usion!induced stresses only treated the simple linear systems with a constant
di}usivity[ Because the chemical stresses arising from di}usion are not only related to geometric
shape but also related to the boundary conditions\ Larche� and Cahn "0871\ 0874# studied the stress
dependence of the local di}usion ~ux in crystalline solids[ Chu and Lee "0883# investigated the
e}ect of chemical stresses on di}usion[ In order to accurately predict the electrical properties of
the device\ an accurate description of the _nal concentration distributions is necessary[ In 0852\
Weisberg and Blanc "0852# studied the nonlinear interstitial!substitutional equilibrium Zinc
di}usion in GaAs[ Hu and Schmidt "0857# introduced a concentration dependent di}usion model
which included the e}ects of both the charged vacancy reaction and the impurity!induced electric
_elds[ Warner and Wilson "0879# investigated the e}ect of the self!induced electric _eld on di}usion
by numerical method[ Kath and Cohen "0871# studied the waiting!time behavior in a nonlinear
di}usion equation using singular!perturbation techniques[ King "0877# obtained the approximate
similarity solutions to a nonlinear di}usion equation in one and two dimensions[ Schwendeman
"0889# calculated the fully two!dimension nonlinear di}usion of impurities in semiconductors by
numerical techniques[ Moreover\ Menon et al[ "0882# studied the nonlinear di}usion in CuÐAu
multilayer thin _lms[

Lin and Hwang "0884# investigated the nonlinear e}ect of self!induced electric _eld on di}usion!
induced stresses in a thin plate[ However\ in practice\ the application of mass transfer to manu!
facture is not con_ned to the generalized one!dimensional di}usion processes[ It prompted us to
investigate the nonlinear di}usion!induced stresses in a long bar of square cross section[ In this
work\ we _rst approximate the nonlinear concentration!dependent di}usivity as a series of third!
degree polynomials by the least!squares curve!_tting techniques\ and then calculate the dis!
tributions of concentration by the Galerkin method[ With these results\ the di}usion!induced
stresses inside the bar are determined analytically by introducing the Goodier displacement poten!
tial and Airy stress function[ A comparison is made between the present results and the linear
di}usivity model to investigate the nonlinear e}ect of self!induced electric _eld on the di}usion!
induced stresses in a long bar[

1[ Analysis of concentration distribution

Consider a long bar of isotropic material with square cross section in the region −a ¾ X\ Y ¾ a\
as shown in Fig[ 0[ Initially there is no charged impurity inside the bar\ while as process begins\
the concentration at the outer surface is maintained constant at Cs during di}usion[ The di}usion
with the nonlinear e}ect of the self!induced electric _eld can be modeled as in Warner and Wilson
"0879#[ Hence\ the concentration C"X\ Y\ t# for arsenic in silicon is described by the following
equation]
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Fig[ 0[ Physical con_guration of a long bar[
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and D"a#\ the concentration dependent di}usion coe.cient\ is de_ned by

D"a# � D9

0¦bða¦za1¦0Ł
0¦b $0¦

a

za1¦0% "1#

here ni is the intrinsic carrier concentration\ D9 is the phenomenological low concentration di}usion
constant and b � 099 for arsenic "Warner and Wilson\ 0879#[

The corresponding initial and boundary conditions just mentioned are

a"X\ Y\ 9# � 9\

a"2a\ Y\ t# � as\

a"X\ 2a\ t# � as "2#

where

as �
Cs

1ni

[

Then\ if the dimensionless variables
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are introduced\ eqns "0#Ð"2# will take the forms]

1a�
1t

�
1

1x$D"a�#
1a�
1x %¦

1

1y$D"a�#
1a�
1y %\ "4#

D"a�# �
0¦bðas "0¦a�#¦za1

s "0¦a�#1¦0Ł
0¦b $0¦

as "0¦a�#

za1
s "0¦a�#1¦0% "5#

and

a�"x\ y\ 9# � −0\

a�"20\ y\ t# � 9\

a�"x\ 20\ t# � 9[ "6#

To be suitable for solving the nonlinear equation by the Galerkin method\ eqn "5#\ which
referred to the di}usion coe.cient\ may be approximated in a series of third!degree polynomials
by the least!squares curve!_tting method as the following form]

D"a�# � B9¦B0as "0¦a�#¦B1a
1
s "0¦a�#1¦B2a

2
s "0¦a�#2\ "7#

the coe.cients can be regarded as phenomenological parameters[
Solving the above equations through the Galerkin method\ we selected the solution

a�"x\ y\ t# � s
�

j�9

s
�

i�9

Aij"t# cos "rjx# cos "viy# "8#

where

rj �
1j¦0

1
p\vi �

1i¦0
1

p\ "09#

and cos"rjx# cos"viy# satis_ed the boundary conditions\ then Aij"t# for i\ j � 9\ 0\ 1\ [ [ [ \ � can be
determined from the set of the coupled nonlinear equations in Appendix A with the initial condition
of Aij"9# � −3"−0#i¦j:"rjvi#[

The in_nite series in eqn "8# is truncated at j � J\ i � I so as to obtain the results to four
signi_cant digits[ For accuracy\ in the present calculations\ a choice of I � J � 29 is made and
Aij"t# less than 09−7 is deleted[ Hence\ the solution of the concentration can be expressed by
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C
Cs

� 0¦ s
J

j�9

s
I

i�9

Aij"t# cos "rjx# cos "viy#[ "00#

2[ Diffusion!induced stresses

As the concentration distribution is obtained one can proceed to _nd the di}usion!induced stress
distributions[ The derivation of stress distribution arising from solute transfer is similar to that
arising from heat transfer\ if the thermal expansion coe.cient and temperature are replaced by
one!third of partial molal volume and concentration\ respectively "Chu and Lee\ 0882^ Li\ 0867#[

In the present work\ from the practical point of view\ we assume that it is a quasistatic and
uncoupled di}usion!induced!stress problem[ Further\ because of the long bar\ we consider only
the elastic plane strain states[ In a similar way to Nowinski|s work "0867#\ we introduce the
dimensionless Goodier displacement potential f9 and the Airy stress function fA which\ respec!
tively\ have to satisfy

Df9 � C:Cs "01#

DDfA � 9 "02#

where D � 11:1x1¦11:1y1 and C:Cs is shown by eqn "00#[ Then\ in similar procedures to the work
of Iwaki and Kobayashi "0870#\ the di}usion!induced stresses are given by

sij � s9ij¦sAij
\ "03#

where

s9xx � −
11f9

1y1
\

s9yy � −
11f9

1x1
\

s9zz � −Df9\

s9xy �
11f9

1x 1y
\ "04#

and

sAxx �
0
1m

11fA

1y1
\

sAyy �
0
1m

11fA

1x1
\
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sAzz �
n

1m
DfA\

sAxy � −
0
1m

11fA

1x 1y
[ "05#

Here m is the Lame� constant and n is the Poisson|s ratio[ It should be noted that the dimensionless
forms of f9\ fA\ and sij are given by

f9 �
F9

a1L
\ fA �

FA

a1L
\ sij �

Sij

1mL
\ "06#

where F9\ FA\ Sij are the dimensional Goodier displacement potential\ the Airy stress function and
stresses\ respectively\ and L �"0¦n#VÞCs:2"0−n#[ Here VÞ is the partial molal volume of solute and
assumed to be constant "Li\ 0867#[ The traction!free boundary conditions are adopted\ i[e[\

sxy"x\ 20\ t# � syy"x\ 20\ t# � 9\ "07a#

sxx"20\ y\ t# � sxy"20\ y\ t# � 9[ "07b#

Since the dimensionless concentration C:Cs has been found in the preceding section\ by sub!
stituting eqn "00# into eqn "01#\ we have a particular solution]

f9 � s
J

j�9

s
I

i�9

−
0

r1
j ¦w1

i

Aij"t# cos "rjx# cos "viy#¦
0
3
"x1¦y1#[ "08#

The Airy stress function is constructed in the form

fA � f0¦f1\ "19#

thus

sAij
� s0ij¦s1ij\ "10#

where the stresses s0ij and s1ij are derived from f0 and f1\ respectively[
An admissible solution of the function f0\ suitable for the present problem\ has the form

"Nowinski\ 0867#

f0 � 1m6 s
J

j�9

ðEj cosh"rjy#¦Fj sinh"rjy#¦Gjy cosh"rjy#¦Hjy sinh"rjy#Ł cos "rjx#

¦
0
3
"x1¦y1#7\ "11#

where the unknowns Ej\ Fj\ Gj and Hj are determined so as to satisfy the boundary conditions of
eqn "07a# at the edges along x � 20
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s9yy"x\ 20\ t#¦s0yy"x\ 20\ t# � 9\

s9xy"x\ 20\ t#¦s0xy"x\ 20\ t# � 9[ "12#

Consequently\ one has

Ej � 6−sinh rj s
I

i�9

"−0#ivi

r1
j ¦v1

i

Aij"t#7:Dj\

Fj � 9\

Gj � 9\

Hj � 6cosh rj s
I

i�9

"−0#ivi

r1
j ¦v1

i

Aij"t#7:Dj\ "13#

where

Dj � rj¦
sinh"1rj#

1
[ "14#

To satisfy the boundary conditions of eqn "07b# at the edges along y � 20\ the function f1 is
taken in the form "Nowinski\ 0867#

f1 � 1m cos "gx#ðP cosh"gy#¦Qgy sinh"gy#Ł\ "15#

which automatically satis_es eqn "02#[
In determining f1\ the subsequent boundary conditions from the above calculation require

s1yy"x\ 20\ t# � s1xy"x\ 20\ t# � 9\ "16#

and

s1xx"20\ y\ t# � −s9xx"20\ y\ t#−s0xx"20\ y\ t#\

s1xy"20\ y\ t# � −s9xy"20\ y\ t#−s0xy"20\ y\ t#[ "17#

By condition "16#\ one _nds that g must be the root of the transcendental relation

sinh"1g#¦"1g# � 9\ "18#

with

P � −
g sinh g

cosh g
Q[ "29#

Equation "18# has in_nitely many complex roots[ Let gn by the nth root\ thus f1 now can be
expressed as the following series
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f1 � 1m s
N

n�0

Knfn"x\ y#\ "20#

where

fn"x\ y# � cos"gnx#ð−sinh gn cosh"gny#¦y cosh gn sinh"gny#Ł\ "21#

and Kn|s are unknown complex coe.cients[ The remaining work of solving f1 is to determine Kn|s
by using eqn "17#[ By using eqn "20#\ with eqn "21#\ for the left!hand side of "17# and by using the
known functions f9 and f0 for the right!hand side of "17#\ the exact solution is expected[ However\
due to the constraint of the form of power series\ these coe.cients can only be approximately
determined by numerical methods[ In this work\ they are determined by the method of least
squares\ so the boundary conditions\ "17#\ may be satis_ed at a number of midpoints "ym\ m � 0\
1\ [ [ [ \ M# across the surfaces at x � 20[ Thus\ we can establish the simultaneous equations

ðSŁ1M×1N ðUŁ1N×0 � ðVŁ1M×0\ "22#

where the elements of each matrix in eqn "22# are shown in Appendix B[ After f9\ f0 and f1 have
been solved\ we then can combine eqns "03#Ð"05# and eqns "19#Ð"10# to obtain the dimensionless
di}usion!induced stress sij[

3[ Results and discussion

The di}usivity is approximately constant at low concentration levels "Warner and Wilson\ 0879^
King\ 0877^ Schwendeman\ 0889#[ While\ for arsenic di}usion in silicon\ and as an example of
high concentration levels\ Warner and Wilson "0879# take as � 19 "this corresponds to a surface
concentration at forty times the intrinsic carrier concentration#\ the di}usivity is concentration!
dependent\ and the nonlinear e}ect on concentration is increased with increasing as[ From our
previous work "Lin and Hwang\ 0884#\ the concentration!dependent coe.cients B9ÐB2 of eqn "7#
are calculated by the least!squares curve!_tting method[ As we known\ a higher!degree polynomials
will reduce the deviations of the points from a curve\ and one increases the degree of approximating
polynomial as long as there is a statistically signi_cant decrease in the variance[ The criterion of
choosing the optimum degree with good precision is that the sum of the deviations squared of the
points from the curve should continually decrease as the degree of the polynomial is raised
"Gerald and Wheatley\ 0883#[ For simplicity\ in the present study\ the nonlinear case of as � 09 is
considered[ Then\ B9 � 4[33210×09−0\ B0 � 2[51917\ B1 � 5[21306×09−1\ B2 � −2[42238×09−2\
and the variance is 3[78115×09−2[ As shown in Fig[ 1 of our previous study "Lin and Hwang\
0884#\ the least!squares approximation is one of good _ts to eqn "5#[

To investigate the nonlinear e}ect of the self!induced electric _eld\ comparing these results of
nonlinear D model with the solution to a linear case with a constant e}ective di}usivity of
D"a�# � 0 "linear D9 model#[ The contours of concentration C:Cs at t � 9[90 in both nonlinear
and linear models are plotted in Fig[ 1[ Because the contours are symmetric\ we only show them
in the one!eighths domain of 9 ¾ x ¾ 0\ 9 ¾ y ¾ 0[ It is easy to see that the concentration gradient
in the nonlinear di}usivity model is smaller than that in the linear one[ The distribution of C:Cs
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Fig[ 1[ ConcentrationC:Cs contours at t � 9[90[

Fig[ 2[ Concentration C:Cs distribution along y axis[

along the y axis at di}erent times is shown in Fig[ 2[ It is found that the nonlinear self!induced
electric _elds can depress the concentration apparently in a short time[ Further\ as the time is
increased\ the concentration gradient is decreased in both models[ These results are in conformity
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Fig[ 3[ The evolution of concentration C:Cs at x � 9\ y � 9[

with the Warner and Wilson "0879# work[ Also\ in Fig[ 3\ the evolution of C:Cs at x � 9\ y � 9 is
plotted[ We _nd that the di}erence between the nonlinear model and the linear one is increased
with increasing time extremely at short times "t ³ 9[914#[ But\ as the time is increased long enough
" for example\ t � 9[4#\ i[e[ at a long time di}usion\ because the concentration distribution will
approach uniform\ the nonlinear e}ects at long times will be less apparent than at short times[

In this article\ the stress that is calculated is the equivalent shear stress Se which is de_ned by

Se � zSijSij:1\ "23#

where Sij is the stress deviator Sij � Sij−Skkdij:2[ We choose Se to be calculated because it is a
measure of that part of the stress tensor which causes plastic deformation by dislocation slip[
Although\ in the di}usion!induced stress analysis\ we have obtained the analytical solutions of the
stress tensor\ only numerical results are in fact calculated "Hwang et al[\ 0882#[ If the local
equivalent shear stress Se exceeds the critical value\ i[e[ the yield stress\ a dislocation occurs in the
bar[ Their presence may degrade both the mechanical and electronic properties of the material[

In the present calculations of the di}usion induced!stresses\ a choice of N � 08 and M � 10 is
made in order to provide better accuracy "Iwaki and Kobayashi\ 0870\ 0875# and the Poisson ratio
is chosen as n � 9[2[ The contours of non!dimensional se � 099"Se:1mL# at di}erent times in both
models are plotted in Fig[ 4[ As might be expected\ the di}erences between the nonlinear model
and the linear one are seen clearly[ It is found that the maximum equivalent shear stress developed
in the bar is located at the midedge in the beginning of di}usion[ Further\ the maximum se is
decreases with increasing time for both models[ In Fig[ 5\ we show the distribution of se along the
y axis at di}erent times[ It is found that the se distribution can be depressed by the nonlinear e}ect
of the self!induced electric _elds[ In addition\ for instance at the time of t � 9[90\ we also _nd
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Fig[ 4[ Non!dimensional equivalent shear stress se � 099"Se:1mL# contours "a#] t � 9[90\ "b#] 9[904\ "c#] 9[91[

from Fig[ 4"a#\ the maximum equivalent shear stress of the nonlinear model may be less than 19)
that of the linear one[

Finally\ in Fig[ 6\ the evolutions of the maximum se developed at the midedge "x � 9\ y � 0# of
the bar for both models are demonstrated[ With increasing time\ the maximum se in both models
will approach 099=szz =:z2 which is the value of se when sxx � 9 � syy � sxy\ i[e[ the concentration
distribution is approximately uniform in the xÐy plane of the bar[ So\ the dimensionless value of
099=szz =:z2 is equal to 099"0−n#:z2 which is the same as the value in a thin slab[ We also _nd
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Fig[ 5[ Non!dimensional equivalent shear stress se � 099"Se:1mL# distribution along y axis[

Fig[ 6[ The evolution of non!dimensional equivalent shear stress se � 099"Se:1mL# developed at the midedge of the bar[

that the di}erence of se between the nonlinear model and the linear one is increased with increasing
time at short times\ but is decreased with increasing time at long times[ As the time is increased
long enough\ there will be signi_cant di}erence in se between the nonlinear model and the linear
one[ This means that the nonlinear e}ects on the induced!stress se are more apparent at short
times than at long times[
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For an example of boron di}usion in silicon\ the elastic constant of silicon at 0114>C for di}usion
into a "099# surface\ 1m"0¦n#:"0−n#\ is a value of 1[045×0901 dynes:cm1 "104[5 GPa#[ And\ the
values of VÞ and Cs for boron at 0114>C are\ respectively\ 4[5×09−13 cm2:atoms and 4×0919

atoms:cm2 "Prussin\ 0850#[ Then\ a value of 1mL in eqn "06# is calculated to be 1[90×098 dynes:cm1

"190 MPa#\ which is the maximum Se in both models at the beginning of di}usion[ Further\ if we
assumed the value of b in eqn "1# is also equal to 099 in this case\ the maximum Se in both nonlinear
and linear models are\ respectively\ 9[72×098 dynes:cm1 "72 MPa# "se � 30[1# and 0[0×098

dynes:cm2 "009 MPa# "se � 43[3# at t � 9[90[ The yield stress in silicon whiskers is given by
4[4×098 dynes:cm1 "449 MPa# at 799>C\ and extrapolating the data to 0114>C reduced the value
of the yield stress by an order of magnitude[ With a comparison between the maximum Se and the
yield stress\ it is found that the di}usion!induced stresses may not be ignored in semiconductor
materials during di}usion processes especially at short times[

4[ Conclusions

In this paper\ we have investigated the nonlinear e}ect of the self!induced electric _eld on the
di}usion!induced stresses in a long bar of square cross section[ The mass transfer process of
constant surface concentration is considered[ We _rst approximate the nonlinear concentration!
dependent di}usivity as a series of third!degree polynomials by the least!squares curve!_tting
techniques\ and then calculate the distributions of concentration by the Galerkin method[ After!
wards with these results\ the di}usion!induced stresses inside the bar are determined analytically
by introducing the Goodier displacement potential and Airy stress function[ It is found that the
maximum equivalent shear stress developed in the bar is located at the midedge in the beginning
of di}usion[ With increasing time\ both the concentration gradient and the maximum induced!
stresses are decreased[ Further\ the nonlinear self!induced electric _elds can depress the con!
centration gradient and the maximum di}usion!induced stresses\ and these e}ects are more appar!
ent at short times than at long times[
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Appendix A

dAij

dt
� −BÞ"r1

j ¦v1
i #Aij−CÞ s

j

l�9

s
i

k�9

Ai−k\j−lAkl ð"r1
l ¦ v1

k #FÞ−rj−lrlGÞ−vi−kvkHÞŁ

−DÞ s
j

l�9

s
i

k�9

s
l

q�9

s
k

p�9

Ai−k\j−lAk−p\l−qApq ð"r1
q¦v1

p #IÞ−1rl−qrqJÞ−1vk−pvpKÞŁ
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−EÞ s
j

l�9

s
i

k�9

s
l

q�9

s
k

p�9

s
q

s�9

s
p

r�9

Ai−k\j−lAk−p\l−qAp−r\q−sArs

×ð"r1
s ¦v1

r #LÞ−2rq−srsMÞ−2vp−rvrNÞŁ for i\ j � 9\ 0\ 1\ [ [ [ \ �

where

BÞ� B9¦B0a
1
s ¦ B2a

1
s ¦B2a

2
s \

CÞ � B0as¦1B1a
1
s ¦2B2a

2
s \

DÞ � B1a
1
s ¦2B2a

2
s \

EÞ� B2a
2
s \

FÞ� g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rlx# cos"viy# cos"vi−ky# cos"vky# dx dy\

GÞ � g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# sin"rlx# cos"viy# cos"vi−ky# cos"vky# dx dy\

HÞ � g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rlx# cos"viy# sin"vi−ky# sin"vky# dx dy\

IÞ� g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rl−qx# cos"rqx#

×cos"viy# cos"vi−ky# cos"vk−py# cos"vpy# dx dy\

JÞ� g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# sin"rl−qx# sin"rqx#

×cos"viy# cos"vi−ky# cos"vk−py# cos"vpy# dx dy\

KÞ � g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rl−qx# cos"rqx#

×cos"viy# cos"vi−ky# sin"vk−py# sin"vpy# dx dy\

LÞ� g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rl−qx# cos"rq−sx# cos"rsx#

×cos"viy# cos"vi−ky# cos"vk−py# cos"vp−ry# cos"vry# dx dy\

MÞ � g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rl−qx# sin"rq−sx# sin"rsx#

×cos"viy# cos"vi−ky# cos"vk−py# cos"vp−ry# cos"vry# dx dy\

NÞ � g
0

−0 g
0

−0

cos"rjx# cos"rj−lx# cos"rl−qx# cos"rq−sx# cos"rsx#

×cos"viy# cos"vi−ky# cos"vk−py# sin"vp−ry# sin"vry# dx dy[
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Appendix B

The element ðSŁ1M×1N\ ðUŁ1N×0\ and ðVŁ1M×0 in eqn "22# are]

Vm � 9\

VM¦m � s
j

s
i

"−0#j rjvi

r1
j ¦v1

i

Aij"t# sin"viym#−s
j

rj"−0#j ðrjEj sinh"wiym#

¦rjHjym cosh"rjym#¦Hj sinh"rjym#Ł\

Un � Re Kn\

UN¦n � Im Kn\

Sm\n � Re
11fn
1y1

"0\ ym#\

Sm\N¦n � −Im
11fn
1y1

"0\ ym#\

SM¦m\n � Re
11fn
1x 1y

"−0\ ym#\

SM¦m\N¦n � −Im
11fn
1x 1y

"−0\ ym#\

where Re and Im denote the real and imaginary part of a complex number\ respectively\ and m\ n
are integers\ 0 ¾ n ¾ N\ 0 ¾ m ¾ M[
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