General Reduction Methods for the Reliability
Analysis of Distributed Computing Systems

MIN-SHENG LIN AND DENG-JYI CHEN'

Institute of Computer Science and Information Engineering, National Chiao-Tung University, Hsin
Chu, Taiwan, ROC 30050

The reliability of a distributed computing system is the probability that a distributed program which
runs on multiple processing elements and needs to communicate with other processing elements for
remote data files will be executed successfully. This reliability varies according to (1) the topology of the
distributed computing system, (2) the reliability of the communication links, (3) the data files and
program distribution among processing elements, and (4) the data files required to execute a program.
Thus, the problem of analyzing the reliability of a distributed computing system is more complicated
than the K-terminal reliability problem, and many of the reliability-preserving reductions for speeding
up the computation of the K-terminal reliability cannot be applied to this problem. In this paper, we
shall propose several reduction methods for computing the reliability of distributed computing systems.
These reduction methods can dramatically reduce the size of a distributed computing system, and
therefore speed up the reliability computation.
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1. INTRODUCTION

Recently, distributed computing systems (DCS) have
become increasingly popular because they offer high
fault tolerance, the potential for parallel processing and
better reliability in comparison with other processing
systems [3,4]. A typical DCS consists of processing
elements (PE), memory units, data files and programs.
These resources are interconnected through a commun-
ication network that dictates how information flows
between PEs. Programs residing on some PEs can run
using the data files stored in other PEs. For successful
execution of a program, it is essential that communica-
tion links between the PE containing the program and
other PEs that have the required data files are opera-
tional. Distributed program reliability (DPR) is defined
as the probability that a distributed program which runs
on multiple processing elements and needs to communi-
cate with other processing elements for remote files
will be executed successfully. To illustrate the defini-
tion of DPR, consider the specific DCS shown in
Figure 1, which consists of four processing elements
(xy, X3,X3,%4) and five communication links
(X1.2, X1.35 X2.3, X2.4, X3.4). Program Pl requires data
files, f1, f2 and f3 to complete execution, and it is
running at node x;, which holds data files f1 and f2.
Hence, it must access data file f3, which is resident at
both node x, and node x,. Therefore, the reliability of
the distributed program P1 can be formulated as follows:

DPR(program P1) = Prob (x, and x, are connected)
or (x, and x, are connected))

In Kumar [11], a Minimum File Spanning Tree
(MFST) is proposed to represent the multiterminal con-
nections required to execute a distributed program, and

FIGURE 1. A simple DCS. Program P1 needs data files f1, f2 and
f3 to complete execution.

a two-pass method for the reliability analysis of a DCS
is developed. In this method, all MSFTs are obtained
by using the breadth-first search method. Since the
MSFTs it finds are not disjointed, the algorithm requires
other reliability evaluation algorithms, such as SYREL
[5], to generate the reliability expression. Although
Kumar’s method is elegant, it generates many replicated
subgraphs during the procedure for finding all MSFTs
and needs extra time to convert these MSFTs into the
reliability expression. Thus, it is not an efficient reliability
analysis algorithm. Another algorithm, called FARE
[6, 71, has been proposed to compute the DPR directly
by using a connection matrix. FARE does not require
additional reliability evaluation algorithms to convert
MSFTs into the reliability expression. The shortcoming
of this algorithm is that it is not applicable to distributed
programs running from more than one node. Therefore,
more efficient algorithms are needed, such as FST-SPR
[2] and FREA [9], which uses a graph cutting and
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expanding approach to generate disjoint File Spanning
Trees (FSTs). Both FST-SPR and FREA were proven
to be the factoring equivalent problem in [2,9]. The
principal difference between FST-SPR and FREA is that
in FREA the edges incident to the nodes containing the
executing programs are substituted to factor for the
edges of a spanning tree found in FST-SPR. Hence,
FREA does not incur the computational cost of search-
ing for a spanning tree in each induced graph, and it is
in general more efficient that FST-SPR.

To reduce the state space of the associated reliability
problem, most algorithms apply reliability-preserving
reductions. For example, the K-terminal reliability, i.e.
the probability that a given set K of nodes in a network
are connected to each other, can be computed in linear
time for a series-parallel graph by repeated application
of reliability-preserving reductions developed for the
K-terminal reliability problem. Unlike the K-terminal
reliability problem [8], in which K-terminal nodes are
fixed and given, the distributed program reliability prob-
lem does not have fixed K-terminal nodes and the effect
of redundant distributions of data files and programs
must be taken into consideration. Since we do not
specify the set of K-target nodes in DCS, we cannot
directly apply the reductions [8] used in computing
K-terminal reliability to the DPR problem. Obviously,
if there are no replicated files, i.e. if there is only one
copy of each file in the DCS, then the DPR problem
can be transformed into the K-terminal reliability
equivalent problem in which the K set is just the set of
nodes that contain the data files needed for the program
under consideration. However, data files are usually
replicated and distributed in DCS, so the reduction
methods for the K-terminal problem cannot be applied
to the DPR problem. The reliability algorithms pre-
sented in Kumar [11] and Kumar [6] do not perform
any reliability-preserving reductions, while FST-SPR
and FREA use some special reliability-preserving reduc-
tions developed for DPR problem analysis.

In this paper, we shall introduce several general
reliability-preserving reductions for DPR problem
analysis and propose an algorithm, called MFREA
(Modified FREA), which incorporates these general
reliability-preserving reductions to speed up reliability
computation.

2. NOTATION AND DEFINITIONS

In this paper we will make use of the following notation:

X; a node representing a processing
element i

e an edge representing a communication
link k

Pe.(4e,) probability that the link e, works (fails)

X; an edge between processing elements i
and j

pi.i(4:;) probability that the link x; ; works (fails)

fi the data file i

P, the distributed program i

FA; the set of data files available at node x;

D=(V,E,FA) an undirected DCS graph with vertex
(node) set V, edge set E and file distribu-
tion FA ={FA,, FA,, FAs, ...\

Dg an undirected DCS graph with a needed
file set F

R(Dy) the DPR of the Dy

Dp—x; ; the graph D with edge x; ; deleted

Dp + x; the graph D with edge x;; contracted

such that nodes x; and x; are merged
into a single node. This new merged
node contains all data files and pro-
grams that were in nodes x; and x;.

Without loss of generality, we identify a program with
a special type of file. In the above notation, the DPR of
Pl in the example in Figure 1 can be represented by
R(Dg), where D =(V, E, FA) and

V=A_{x1, x5, X3, X4}
E=(xy2,X1,3, X33, X2,4, X34}
FA={FA,, FA,, FA;,FA,} and FA,{Pl,f1,f{2},
FA, ={f1,13}, FA; ={f1,f4}, FA, = {P2, {3}
F={P1,f1,12,f3}

Definition. A node x; is called a reducible node for a
distributed program P; in graph G if and only if (1) the
degree of node x; is two in graph G, and (2) x; is not a
leaf node of any MFST of program P;.

Definition. A File Spanning Tree (FST) [11] is a tree
whose nodes hold all needed files, i.e. U, st FA; 2 F.

Definition. A Minimal File Spanning Tree (MFST)
[11] is an FST such that there exists no other FST
which is a subset of it. By the definition of MFST, the
DPR can be written as

R(Dg) = Prob(at least one MFST is operational), or

#mfst
R(Dg) = Prob( MFSTj>
j=1
where #mfst is the number of MFSTs for a given needed
file set F.

Definition. Let D =(V, E, FA) be a DCS graph. We
say node x; is useless for node x; under the set F of
needed files being considered, represented by x;=x; in
our notation, if and only if

1. edge x; ;is in D

2. for the given set of needed files F, there is no such
MFST in D in which x; is a leaf node and x; is the
incident node of x;.

Definition. In a DCS graph, a chain is an alternating
sequence of distinct nodes and edges. Without loss of
generality, a chain may be labeled (x,, X 1, X;, X1 2, ..

iE}
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X, —1.m» Xu) such that the internal nodes, X1, X2, ..y Xn—15
are all of degree 2 and the end nodes, x, and x, are of
a degree greater than 2.

3. PRELIMINARIES
3.1. The generalized factoring theorem used in FREA

The factoring theorem [10] consists of picking an edge
e; in the graph and decomposing the original problem
with respect to the two possible states of the edge e;:

R(Dg) = p.,R(Dg| e; works) + g, R(Dr|e; fails) (3.1)

which, for a DCS with perfect nodes, can be formulated
as

R(Df) = pe,R(DF + &) + 4., R(Dp — €:) (3.2)

Equation (3.2) can be generalized and represented as
follows:

R(DF)zpelR(DF+el)+qe1qe1pe2R(DF_e1 +e3)
+ ...+ 4geGe, -Gy Pey
X R(Dp—e,—e;— ... —€;_1 +¢€)
+qo,qe, - Qe R(IDF—€1 —€2— ... —e;) (33)

where {es, e, ..., €4} is the set of edges incident to the
nodes containing the programs being executed. Since
the subgraph Dp—e; —e, — ... — e, indicates that the
nodes that include the programs being executed are
disconnected from the other nodes, the reliability of
subgraph Dy —e; —e, — ... —ey is equal to 0. Thus,
we do not need to generate the subgraph
Dp—e,—e,— ... —e; to compute its reliability.
Therefore, (3.3) can be rewritten as

R(Dp)=p.,R(Df +€,) + Ge,Pe,R(DF— ey + es)

+ .4 qe,9e, - Gey_ 1 Pey
e — €4 + ed) (3.4)

Equation (3.4) can be recursively applied to the
induced graph until either (1) the further induced graph
with a node contains all data files needed for the
programs to be executed or (2) the further induced graph
contains no FSTs. The induced graph of the former case
represents success (reliability = 1); the latter case repres-
ents failure (reliability = 0). Since the subgraphs gener-
ated using (3.4) will be completely disjoint, no duplicated
subgraphs will be generated during the expansion of the
computation tree.

XR(DF_el_eZ—

3.2. Special reduction methods for DCS reliability
evaluation

Several reduction methods for the DCS reliability evalu-
ation are proposed in [2,9]. These special reduction
methods are reviewed briefly below.

Degree-1  reduction. Degree-1 reduction removes
(1) degree-1 nodes which contain none of the needed

data files and programs under consideration, and
(2) their incident edges.

Irrelevant component deletion. Let D°=(V° E°) be a
connected component of D that is not connected to
the rest of the components of D. If there are no FSTs
in D° then the component D° is irrelevant and is
deleted.

Parallel reduction. Let x; j and x| ; be two parallel edges
in D. D' is obtained by replacing x;; and x;; with
a single edge x/; such that p/;=1— qij*q:,; (or
pi;=Pij+ Pi,j— Pi,j*Pij)- The parallel reduction for
the DPR problem is the same as the parallel reduction
for the K-terminal reliability problem.

Series reduction. There are some differences in series
reduction between the DCS reliability problem and
the K-terminal network reliability problem. The series
reduction for the K-terminal network reliability prob-
lem is recalled here:

Let x; ; and x; be two series edges in G such that
degree(x;)=2 and x;¢K. Then G is obtained by
replacing x;; and x;, with a single edge xj, such
that p;, = Pix* Pi,j-
The series reduction for the DCS reliability problem
is the same as the above description except that the
condition x;¢K is replaced by FA;nFN = . In other
words, if degree(x;)=2 and node x; contains no
required data files and programs to be executed, then
we can apply series reduction on D.

Degree-2 reduction. Suppose node x; is a reducible node;
then one can apply series reduction on node x; and
move data files and programs within node x; to one
of its adjacent nodes x; Or X;.

These reduction methods are not general enough for
every case encountered during subgraph generation.
Therefore, some of these reductions cannot be applied.
For example, degree-1 reduction cannot be applied to
degree-1 nodes containing needed data files.

4. GENERAL REDUCTION METHODS FOR
THE DPR PROBLEM

The reduction methods proposed in [2,9] and
Section 3.2 are not general, and some of the reductions
may not be applicable during subgraph generation. In
this section we first discuss some properties of DCS
graphs with respect to topology, file distribution, and
reliability, and then propose more general reduction
methods for DPR problem analysis.

4.1. Properties of DCS graphs

THEOREM 1. Consider a DCS graph D with a set of
needed files F and an edge x; ;. If (FA;nF) = (FA;nF)
then x;=x;.

Proof. To show that x;=x;, we must prove that for
the given set F of needed files there exists no MEFST
that contains a leaf node x; with an incident node
x;. Suppose there exists one MFST T that contains
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a leaf node x; with an incident node x;. Then
(FA;nF) = (FA;nF), implying that the subset T' of T
with deleted x; and x; ; is also an FST. By the definition
of MFST, T is not an MFST. This is a contradiction.
Therefore, there exists no MFST in D that contains a
leaf node x; with an incident node x;. So x;=x;. QED

COROLLARY 1. Let (Xq, Xg,15X1s X125 ces Xp—1.m> Xn)
be a chain in a DCS graph D = (V, E, FA) with a set of
needed files F. If there exist x; and x; between x, and x,
such that (FA;nF) = (FA;n F), then

x;=>x;.; forO0<i<j<n, or

x;j=x;,_, for0<j<i<n

THEOREM 2. For a DCS graph D = (V, E, FA) with a
set of needed files F, if x; = x; then R(Dy) = R(D}), where
D'=(V,E, FA') and FA' is FA with FA;U FA; substituted
for FA; (i.e. copying the files in node x; into node x;).

Proof. Figure 2 illustrates the basic concept behind
the proof of this theorem. By (3.2), we get

R(Df) = p; jR(Dp + x; ;) + q; ;R(Dp — x; ;)
=pijR(D1g) + q; ;R(D2¢), and
R(Dg) = pi jR(DF + x; ;) + q; jR(DF — x; ;)
= p;jR(D1f) + q; jR(D3F)
Hence, if we can show R(D2p)=R(D3;), then
R(Dg) = R(Dy). To prove R(D2;)= R(D3j), we create a
new DCS graph D4 that is D2 with a new node x,, new
edge x;., and FA,=FA;. Since x;=>x; in D, by the
definition of =, D has no MFST that contains a leaf

node x; with an incident node x;. Therefore, D4 has no
MFST in which x, is a leaf node with an incident node

x;. Thus, D4 and D2 must have the same MFSTs. So
R(D4;) = R(D2y)
and
R(D4g) = p;x R(D3g) + g,k R(D2F)

by (3.2). Then we get R(D2z) = R(D4y) = R(D3;). Hence
Theorem 2 follows. QED

THEOREM 3. For a DCS graph D =(V, E, FA) with
a set of needed files F, if x;=x;, x;=>x;, and
degree (x;) =2, then R(Dy)=R(Dy), where D' =
(V,E, FA') and FA' is FA with FA, = FA;UFA;UFA,.

Proof. This can be proved in a manner similar to
the proof of Theorem 2.

COROLLARY 2. Let (X, Xg,15 X1, X1,25 o5 Xp—1.p5 Xp)
be a chain in a DCS graph D = (V, E, FA) with a set of
needed files F. If there exist x; and x; (i < j) between x,
and x, such that x;=x;, | =X;,,= ... =x;_; =X;, then
R(Dfg) = R(Dy), where D' = (V, E, FA') and FA' is FA with
setting FA; = Uf_; FA,.

4.2. General reliability preserving reductions for the
DPR problem

For a DCS graph D =(V, E, FA) with a set of needed
files F, we shall now introduce the following reduction

methods to reduce the size of D for the computation
of DPR.

4.2.1. RI (general degree-1) reduction

Let x; be a degree-1 node in D such that x;; is its
incident edge and x;=x;. Then, a reduced DCS graph

FIGURE 2. A snapshot of the derivation of the graph D’s.
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D' is obtained by (1) deleting x; and x; ; and (2) replacing

Proof. Consider the DCS graph in Figure 3. Since
x;=x;, by Theorem 2, R(Dg)= R(D1g). Moreover, by
(3.2),

R(D1g) = p; ;R(D1g + x; ;) + q; ;R(D1p — x; ;)
= p;,jR(DF) + q;,;R(DF)
= R(DF)

Hence R(Dg)= R(Dy) and R1 reduction is reliability-
preserving.

It is clear that the degree-1 reduction proposed in
[8,9] is just a special case of R1. Since FA,nFN =,
the condition in degree-1 reduction just meets the condi-
tion (FA;nF) = (FA;n F) in Theorem 1. Then x;= x; can
be obtained by Theorem 1 and the R1 reduction can be
performed.

4.2.2. R2 (general degree-2) reduction

Let x;, and x;, be two series edges in D such that
degree (x;) = 2, x;=x;, and x;=Xx,. Then a reduced DCS
graph D' is obtained by (1) replacing x;, and x;, with a
single edge xj,, (2) setting pj, = p; j*pix, and (3) repla-
cing FA; and FA, with FA;UFA; and FA,UFA;,
respectively.

Proof. Consider the DCS graph in Figure 4. Since
x;=>x; and x;=x,, by Theorem 2, R(Dg)=R(D1f).
Moreover, by (3.2),

R(D1) = q; ;i x R(DPr) + 4;,jPi x R(DPF) + pi, ;9i k R(DPF)

+ pi,jpix(Dap)
= (1 = p; jpi x)RIDBF) + pi ;Pix R(Daf)
R(DF) = (1 — pji«)R(DBF) + PjuR(Dor)
Letting R(D1) = QR(D%), we get the equations
1— Di.jPik = Q1 — P}.k)
Di,jPix = QP},k
Solving these equations, we obtain
Q=1 and P},k = Di,j*Pik

Hence, the R2 reduction is reliability-preserving.

COROLLARY 3. Let (Xg,Xq.15X15X1.25 > Xn—1.n> Xn)
be a chain in D. If there exist x;, x;, and x;, j<i<k,
between x, and x, such that (FA;nF)< (FA;nF) and
(FA;F)= (FA,nF), then we can supply the R2 reduc-
tion on D by (1) replacing x;;_, and x;;,, with a single
edge x; 41, (2) setting p;_y ;41 =Pii—1*Pii+1, and (3)
replacing FA;_, and FA;,, with FA;_;UFA; and
FA; ., UFA;, respectively.

It is clear that the series reduction and degree-2
reduction proposed in [2, 9] are just special cases of the
R2 reduction.

4.2.3. R3 reduction

Let x;; and x;, be two series edges in D such that
degree (x;) = 2, x;=x; and there exists an edge x; in D.
Then a reduced DCS graph D' is obtained by (1) deleting
x;, and (2) replacing FA; with FA;UFA;. Then the new

If xi => xj and xi => xk

reduce to

FIGURE 4. A snapshot of general degree-2 reduction.
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reliability of links x;, and x; ; will be TABLE 2. Success and failure modes of D’
Pix=1—q;u*qix Pi.j Pl Category
and 0 0 DB
’ 0 1 D’y
Pii=(Pjk + 4jx*DPi,j*Pii)/(Pjk + qjk*Pix) 1 0 DB
1 1 Da

Proof. Consider the DCS graph in Figure 5. Since
x;=Xx;in D, by Theorem 2, R(D¢) = R(D1g). For D, and
D', there are three classes of subgraphs, namely D,D;,
and D,. We must now enumerate the success and failure
combinations of edges x;;, X, and x;, in D, (see The R3 reduction can be generalized as stated in the
Table 1), and edges x| ; and x;, in D’ (see Table 2). Let following theorem.

R(D1;) = QR(Dy). We then obtain the equations

THEOREM 4. If a DCS graph D = (V, E, FA) contains

% 4ijPikt PidikPixt PiiPie=QPiiPik the topology of Figure 6(a) such that there exists an
B iadjn=S2ix edge X, and a chain (xo, Xo 1, X125 X2» ++es Xps Xypg 15 -oes
Vo GiPixdie= Q4 Dix Xn—1.> X,) between x, and x,, and
Solving these equations, we obtain Xip1=>Xx;, for0<i<gr—1
Q=1 X;> X4, forr+1<i<n—1 4.1)
Pix=1—q;x*qix then, a reduced DSC graph D' is obtained by (1) deleting

;o edge x,, and (2) replacing FA, and FA, with Uj_, FA;
Py = (Pia yuc*Prs* Pis (s + Qe Pis) and U"_,,  FA;, respectively. The new reliability of links
Hence the R3 reduction is reliability-preserving. X0.1>X1,25 ---s Xpp+15-.. and x,_; , will be

if xi=> xj

reduce to

FIGURE 5. A snapshot of the R3 reduction.

n—1
TABLE 1. Success and failure modes of graph D1 Pont qon* ]l:[: Pjj+1 )
o for0<i<r—1;
Pi; Pix Pix Category Pontdon* [l Pjj+s
j=it1
8 8 (1) gg Pii+1=1— qO,n*qi,H-.l fori=r,
0 1 0 Dy :
0 1 X Du Pont qon* H Pjj+1
I 0 0 DB e forr+1<i<n—1
! 0 1 Da Pon+ qon* H Pjj+1
1 1 0 Da i=0
1 1 1 Da 4.2)
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Proof. Consider the DCS graph in Figure 6. Since
condition (4.1) holds, we get R(Dg)=R(D1g) by
Corollary 2. For D1 and D', there are n+ 1 classes of

subgraphs, ie. ag, oy, ..., &, ..., &1, and f. We now
enumerate the success and failure combinations of edges
X015 X1,25 o> Xppt1s o> Xa—1,n and Xo , (see Table 3) in

D, and edges X 1, X}.25 oes Xpps15 oo @nd X,_y, in D’
(see Table 4). Let R(D1;) = QR(Dy). We then obtain the
equations

Oo: 40.n90,1P1,2 -+ Prn+1=Uq0,1P1 2 --- Pnn+1)
Oy qo.n91,2P2,3 -+ Pnn+1 = Qqy,205,3 - Pun+1)

o 1"

LAREE

Opt2:

9o,n9r—1,rPrr+1 -+ Pnn+1
=Gy 1, Prr+1 -+ Prnt1)

QonGrr+1="2Grr+1)

9o,nPo,1P1,2 -+ Prr+19r+1,r+2

/ U / !
=Q(po,1 P12 - Pro+v1Gr+1,+2)
90,nP0,1P1,2 -+ Prr+1Pr+1r+29r+2,r+3

_ ’ ’ ’ ’ ’
=Q(po,1P1,2 - Pro+1Pr+ Lr+2Gr+2,0+3)

90,nP0,1P1,2 -+ Pn—-2,n-19n—1,n

=Q(po,1P1,2 - Prn-2n-19n—1,1)

FIGURE 6. A snapshot of the proof of Theorem 4.
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TABLE 3. Success and failure modes of graph D1 (where an asterisk indicates ‘DON’T CARE’)

Po.n Po.1 P1.2 Pr-1.r Drr+1 Protr+2 Pn-2.n-1 Pn-1.n Category
0 1 1...1 1 1 1 [...1 1 1 %
0 * 0 1...1 1 1 1 1...1 1 1 a
0
0 * * * Lk 0 1 1 1.1 1 1 %,
O * * * * * O * * * * * 1'
0 1 1 1...1 1 1 0 ¥ * * %41
0 1 1 1...1 1 1 1 o*. .. * * * %42
0
0 1 1 1 1 1 1 1 1 0 %y q
0 1 1 1 1 1 1 1 | 1 B
1 * * * * * * * * * ﬁ

TABLE 4. Success and failure modes of graph D’ (where an asterisk indicates DON'T CARE’)

Po.1 Pi. Pr-1r Prr+1 Protr+2 Pa-2.4-1 Pr-1n Category
0 1 1...1 1 | 1 1...1 1 1 %o
* 0 1...1 1 1 1 1.1 1 1 %

* * x * 0 1 1 1.1 1 1 %,
* * *”.* * 0 * *. * * * :x’
1 1 1T1 1 1 0 ¥ ¥ * * %4y
1 1 1.. 1 1 1 1. * * * % s
1 1 1 1 1 1 1 1 0 ey
1 1 1 1 1 1 1 1 1 B
B: 40.nP0.1P1.2 -+ Pn—1nt Pon "
nPo1 L, n P, \U FA;nF)<(FA,AF) (4.3)
i=r+1

=(Po.1P1,2+ Pn—1.,n)

Solving these equations, we obtain
n—1
Po.n Tt do.n* l_[ Pjj+1
j=i

n—1

Pont qon* I_I Pjj+1
j=it1

foro<<igsr—1;

/ s .
Piiv1=1—qon*qii+1 fori=r;

Pont qon* 11) Pjj+1
i

- forr+1<ig<n—1

Pont don* H Dj,j+1
j=0
Therefore, the generalization of the R3 reduction is also
reliability-preserving. QED

CoroLLARY 4. If a DCS graph D=(V, E, FA) has
the topology in Figure 6(a) and satisfies the conditions

<O FAir\F) S (FAyNF)

i=1

and

then we can apply the reduction in Theorem 4 on D.
Proof. From condition (4.3), we get (FA,NnF)<
(FAonF) for 1<i<r and (FA;nF)=(FA,nF) for
r+ 1 <i<n-—1. Then, by Corollary 1, we get x;,,=x;
for0<i<r—1and x;=x;;, forr+ 1 <i<n—1. This
meets condition (4.1) in Theorem 4. Hence we can apply
the reduction in Theorem 4. QED

The R3 reduction follows immediately from
Theorem 4 by letting n =2 and r = 1. Note that parallel
reduction is also a special case of Theorem 4 where
n=1 and r=0. Moreover, by applying Theorem 4 we
have the following reductions.

4.2.4. R4 reduction

Suppose D has the topology in Figure 7(a), with x;= x;
and x,=>x,. Then a reduced DCS graph D’ (see
Figure 7(b)) is obtained by (1) deleting edges x;, and
(2) replacing FA; and FA, with FA;UFA; and FA;u FA,,
respectively. Then the new reliability of links x; ;, x;,,
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If xi=> xj and xk =>‘/
Xi

x1
reduce to
Xk
D

(b)
FIGURE 7. A snapshot of the R4 and RS5 reductions.

and x,, will be
Pij=Pju+ qja*Pi j*Pis*Pi)/(Pja + 4ju* Pic* Pic)
Pik=1—4qji*qix
Pia = (Pju+ 4ju*Pij*Pisc*Pia)/(Pja + qji*Pi,jPi)

Proof. This follows immediately from Theorem 4 by
letting n=3 and r=1.

4.2.5. RS reduction

Suppose D has the topology in Figure 7(a) with x; = x;
and x,=x;. Then a reduced DCS graph D" (see
Figure 7(c)) is obtained by (1) deleting edge x;, and
(2) replacing FA; with FA;UFA;UFA,. Then the new
reliability links p; ;, pi., and p; , are as follows:

P:‘,j = (Pj.t + qj.l*pi,j*pi,k*pk,l)/(pj.l + qj,l*Pi.k*pk.l)
Pix= (pj'l + qj.l*pi,k*pk,l)/(pj,l + qj,l*pk,l)
Piy=1— qj1*qk,1

Proof. This reduction follows immediately from
Theorem 4 by letting n=3 and r = 2.

4.3. The identification of x; = x;

Reductions R1 through RS proposed above are based
on checking the relation of = for any pair (x;, x;). Using
Theorem 1 or Corollary 1 to check whether x;=x; is
very efficient, but the condition in Theorem 1 is only a
sufficient condition, and not a necessary condition.
Hence there may exist some x;=>x; that do not satisfy
the condition in Theorem 1, i.e. FA; is not a subset of
FA;. Therefore, if we rely on Theorem 1 alone we may
not find all x; and x; for which x;=x;. We now present
an algorithm called CHECK_USELESS for checking if

/ f xk=> xi and xi=> ]
reduce to
X Xk

x;=>Xx;. By using this algorithm to check all (x;, x;) pairs,
we can find all x;=Xx;.

Input:
node x; and node x;
Output:
true  if and only if x;= x;
false otherwise
/* assume the original DCS graph D has performed
the parallel reduction, i.e. there is no parallel edge in
D */
CHECK_USELESS(x;, x;)
begin
if there is no edge x; ; in D then
return (false);
D1 =deleting all incident edges of x; except edge
x; ; from D;
for each file f; in FA;nF do
D2 = deleting all nodes except x; such that contain
file f; from DI,
if there exists one or more FSTs in D2 then
return ( false);
od
return (true),
end

4.4. Example

Consider the DSC graphs in Figure 8. If program P4
needs data files f1, f2, {4 and f6 to complete execution,
then the original DCS graph D1 with eight edges can be
reduced to D8, which has only one edge, by the follow-
ing steps:

Step 1: Since D1 has x,=>x, and x;=x;, it can be
reduced to D2 by applying the R2 reduction.
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F={P4,1,2,f4,f6)
Per = Pea = ..

.. =pes=0‘9

Ad=
{P2,P3,f1,£2,
f4,£5)

AG=
(P1,£3,£5,f6)

FIGURE 8. An example of applying general reliability-preserving reductions for the DPR problem.

Step 2: D2 can be reduced to D3 by applying parallel
reduction.

Step 3: Since D3 has x3;=>x, and x3;=Xxs, it can be
reduced to D4 by applying the R2 reduction.

Step 4: Since D4 has x4=>Xxs, it can be reduced to D5
by applying the R3 reduction.

Step 5: Since D5 has x,=>x, and x,=X,, it can be
reduced to D6 by applying the R2 reduction.

Step 6: Since D6 has xs=>xg, it can be reduced to D7
by applying the R3 reduction.

Step 7: Since D7 has xs=>xs, it can be reduced to D8
by applying the R1 reduction.

5. THE MFREA ALGORITHM
5.1. The algorithm

MFREA uses (3.4) and the general reliability-preserving
reductions discussed in Section 4.2 to compute the
reliability of DCS. The complete MFREA algorithm is
stated below.

Input
D =(V, E, FA): the DCS graph D with node set E,
edge set V and file distribution FA
F: the set of needed files to be connected
Output:
R(Dy): the distributed program reliability
MFREA(D, F)
begin
Step 1: The checking step
if there exists one node x; such that FA; 2 F then
return (1);
if there are no FSTs in D then
return (0);
Step 2: The reduction step for D
repeat
Perform parallel reduction
Perform R1, R2, R3, R4, and RS reduction
Until no reductions can be made
Step 3: The formulating step for (3.4)
D’ = the new graph after the above reduction
D” =D"=D'/* D" and D" are temporary variables
for graph D" */

/* using DFS */

R=0 /* set reliability to 0 */
C=1 /* the constant terms in (3.4) */
for all e; e the set of edges incident on the nodes
containing the executing programs
P;e PN do
C=C*p,,
R =R+ C*MFREA(D"” +e;, F)
C=C*q,,
D'=D"—e¢

D” =the new graph after deleting irrelevant
components from D”
if there are no FSTs in D" then
return(R)
od
return(R)
end /* MFREA */
5.2. Example

Consider the DCS D1 in Figure 8 and substitute FAs =
{f1,12,f3} for FAs={f1,f2,{3,f6}. Using MFREA to
evaluate the reliability of program P4, which needs data
files f1, f2, f4 and 6 for its execution, we generate the
subgraphs shown in Figure 9.

The DPR of program P4 can be compared as follows:

DPR,
= Pe,Pe,, T e PesPe,s
= Pe,[1 — 4e,(1 = PeyPe,,)]
+ qe [(1 = (1 = pe,Pe,)e;)Pe IPe
= Pe,(1 = qe, (1 — pe, [1 — g, (1 — P, 1))
+ qe, (1 = (1 = pe, Pe;)de,)Pes) [1 = Geg (1 — pegpe,)]
= Pe,(1 = g, (1 — pe (1 — g,
x (I = [(1 = (1 = pe, Pe,)de,)Pes 1))
+ e, (1 = (1 = pe, Pe,)e, )P (1 — Gey (1 = PegPe,))
= Pe, — Peyde, T Peyde;Pes — Peilecde, Pes
+ PePesdede; Pes — deyPesPeseqder Pes
+ Pe, Pe;esPeyPesdesder Pes + deyPes — desde.Pes

/¥ 10=16|9 */
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FA2= FA2=
{P1,P4,f1) {P1,P4,f1}

F={P4,f1,£2,f4,f6} F={P4,f1,f2,f4,f6}
ey = Pey = .. = Peg = 09 Pa =0.81 Pes = Pes= ... =Pa =09  Ppao=0.981
D2

FA2=
{P1,P2,P3,
,P4.f1f4)}

}

€11

(P1,P2,P3,f1
£2.13.£4,16)

F={P4,11,12,4,16} F={P4,f1,12,f4 .16}

Des =Pes =Pe; =Pey=0.9  Pen =0.8829 De,= 0.9 Pe; = 0.9 pe= 09909091 pe,, = 08829

D4 DS

X2/ EA2=

{P1,P2,P3,,
PAf1.£2.f4,
3}

X2/ FA2=
{(P1,P2,P3,
Paf1£264
£5)

FA6=
{P1,P2,P3 1,
£2,£3,f4,£5,f6)

{P1,P2,P3 f1.f
2,f3,f4.£5 6}

e eg /
F={P4,f1,£2,f4 16} F={P4,£1,f2,f4f6)
Pa =09909091 p., = 0.8829 pa, =0.891 Pes = 09991138 Pey = 0.9872361
D6 D7

X2

FA2=
{P1P2P3,
P4.f1,£2.f4,

AS=
{P1,P2,P3 f
1,£2,£3,f4,£5
f6)

€11
Xs
F={P4,1,f2,f4,f6}

Pe, = 0.9872361
D8

FIGURE 8. continued.

+ Pe,Pe,de;desPes — eiPesdes + desesPesdes where p, is the probability of link i working and
_ qei =1- pe."

PeiPe;desdesPeses + esPesPecPerdes Let the probability of any link being operational be
—Go,qe,PesPegPer ey + Pe,PeyesdesPesPegPeses 0.9. Then the DPR, is computed as 0.9766640.
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O 4 O\7
"‘ FAs=(P4,1)
O 3 o
Reduce 9=[(1*2)I3]*5
4 07 FAs=
‘b. (P1,P2,P3,P4
9 () 8 aflvf4}
4 4,9
7 FAs=
FAs=
4’ (P1,P2,P3,P4, 6I>> }f gé’lﬁip“’
£1,£2,£4,£5) g [hiald
Reduce 11=(8%(69))17 Reduce 12=(6*7)8
11 FAs= O FAs=
.\o (P1,P2,P3,P4, o> (PLP2P3P4,
£1,£2,£3,£4.£5) f1 £2,£3.£4.£5)
11 12
FAs= FAs=
® (P1,P2,P3,P4, e {P1,P2,P3,P4,
£1,£2,£3.£4.£5.f £1,£2,£3,64,£5,
6) 6)
Success Success

FIGURE 9. The subgraphs generated by MFREA supplied to
Figure 8 with FA5 ={f1, f2, f3}. Key: *, R2 reduction; |, parallel
reduction; @, the node including the executing programs; O, nodes;
€, edge e is deleted; e, edge e is merged; s, the index of dark nodes.

5.3. Complexity analysis

It is well known that computing K-terminal reliability
in general is NP-hard, or #P-complete [11]. We have
stated that the K-terminal problem is a special case of
the DPR problem, so the DPR problem is also NP-
hard. Thus, there exists no polynomial time algorithm
for computing the reliability of distributed programs for
general distributed computing systems. However, for the
K-terminal reliability problem, some classes of networks,
e.g. tree and series—parallel networks, can be computed

SRI UTAH
2

TABLE 5. File distributions

Node File distribution FA;
1 PL,f2,f6
2 P3,f3,f11
3 f7
4 P10, f10
5 f3,f6
6 P8, {5
7 f11
8 P9, f12
9 PS5, f4, f8

10 f9,f10
11 f1,{7
12 f5

13 f10
14 P2,f1,f2
15 P4, 4,17
16 f8

17 f3

18 f6, 9
19 P7,f1
20 )

21 P6, {2

TABLE 6. Data files required to execute the program P,

Program Required files
P3 f9,f10,f11
P4 f10,f11,f12
P7 f1,f8,f12
P9 f1,f11

P10 f4,£8,f12

in polynomial time by applying well-known reductions
like series, degree-2, parallel, and polygon-to-chain
reductions [8]. However, the DPR problem is much
more complicated than the K-terminal problem, since
its computational complexity depends not only on the
topology of the network but also on the file distributions.
Hence tree and series—parallel networks cannot yet be
computed in polynomial time for the DPR problem.
Actually, we have proven that the DPR problem for tree
and series—parallel networks is still NP-hard [10].
However, we have proposed a number of reduction

NCAR AWS CASE

STANFORD CMU
UCSB
MITRE
ETAC
3\ 5 { 8) { 1\ m 1
U/ N\ |\
UCLA RAND ALB BBN HARVARD  BURROUCHS
FIGURE 10. ARPA computer network.
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TABLE 7. Comparison of algorithms for ARPA network

Comparison factor Algorithm Program
P3 P4 P7 P9 P10
No. of subgraphs Kumar [11] 172907 197541 82759 72005 257333
generated Kumar [6] 35515 38120 25135 22436 66752
FST-SPR 2755 57 57 285 1339
MFREA 50 145 23 16 267
Execution time Kumar [11] 1462.69 >1800 474.28 246.17 >1800
(s) Kumar [6] 7.29 1.75 5.11 4.56 13.40
FST-SPR 0.71 7.34 0.31 0.71 3.40
MFREA 0.39 1.05 0.14 0.16 1.33
DPR 0.97668 0.93457 091438 0.97039 0.96955

FIGURE 11. An eight-node completely connected DCS graph.

TABLE 8. File distributions

Node File distribution FA;

P1, P8, f1,f2
P2, P7,12,f3
P3, P6, {3, f4
P4, PS5, {4, f5
P4, PS5, f1
P3, P6, f2
P2, P7,f3
P1, P8, f4

0NN AW -

methods developed for the DPR problem to speed up
its computation.

6. COMPARISONS

We implemented our algorithm and reduction methods
in approximately 1100 lines of C. We then ran our
program on an IBM RS/6000 workstation and tested it
against FST-SPR [2] and the algorithm in Kumar [11]
and Kumar [6]. We used the number of subgraphs
generated during algorithm execution and the execution
time for our comparison indexes.

TABLE 9. Data files required to execute the program P;

Program Required files
Pl f1,£2,f3
P4 f1,f2,f4,f5
PS5 f1,f3,f5
P8 f1,f4,f5

6.1. Example 1

Figure 10 depicts a well-known example of a computer
communications network, the ARPA computer network,
in which there are 21 nodes and 26 links with a reliability
of 0.9. Suppose that there are 12 data files and 10 pro-
grams distributed in the ARPA computer network and
that the file distribution is as shown in Table 5. We ran
five distributed programs, P3, P4, P7, P9 and P10; the
data files required for these programs are shown in
Table 6. A comparison of the number of subgraphs
generated by and the execution time of the different
algorithms is presented in Table 7.

6.2. Example 2

Consider the DCS graph in Figure 11, which has eight
completely connected nodes. Assume that all links have
a reliability of 0.5. The file distributions are shown in
Table 8. We ran four programs, P1, P4, PS and P8; the
data files they required are shown in Table 9. Table 10
gives the comparison results for the four algorithms for
example 2.

7. CONCLUSION

The DPR problem is more complicated than the
K-terminal problem, since for the DPR problem we
need to consider the file distributions in the DCS and
we cannot specify the set of K target nodes. Therefore,
most reliability-preserving reductions for the analysis of
K-terminal reliability cannot be applied to the DPR
problem. In this paper, we have investigated some
properties of DCS and developed many general reduc-
tion methods for the DPR problem. We have also
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TABLE 10. Comparison of algorithms for the eight-node completely connected graph

Comparison factor Algorithm Program
Pl P4 PS P8
No. of subgraphs Kumar [11 34321 > 300000 > 300000 > 300000
generated Kumar [6] 16173 65468 69701 123274
FST-SPR 8343 11673 14018 9663
MFREA 956 840 890 3986
Execution time Kumar [11] 357.26 >1800 >1800 >1800
(s) Kumar [6] 3.26 12.22 13.07 27.23
FST-SPR 12.02 17.87 20.36 1531
MFREA MFREA 2.17 1.98 2.09 9.15
DPR 0.99929 0.99081 0.99065 0.99050

designed and implemented the MFREA algorithm, a
modified version of FREA that incorporates new general
reductions. Our comparisons of computational time and
number of subgraphs generated show that MFREA is
much faster than several previously proposed algorithms,
such as MFST [11], FARE [6] and FST-SPR [2].
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