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Abstract. Reliability and efficiency are important criteria in the design of interconnection networks. Recently,
thew-wide diameterdw(G), the(w − 1)-fault diameterDw(G), and thew-Rabin numberrw(G) have been used
to measure network reliability and efficiency. In this paper, we studydw(G), Dw(G) andrw(G) using the strong
w-Rabin numberr ∗w(G) for 1 ≤ w ≤ k(G) andG is a circulant networkG(dn; {1, d, . . . ,dn−1}), a d-ary cube
networkC(d, n), a generalized hypercubeGH(mn−1, . . . ,m0), a folded hypercubeFH(n) or a WK-recursive
networkWK(d, t).
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1. Introduction

Reliability and efficiency are important criteria in the design of interconnection networks.
Connectivity is widely used to measure network fault-tolerance capacity, while diameter
determines routing efficiency along individual paths. In practice, we are interested in high-
connectivity, small-diameter networks.

By a network we mean a graph or a digraph. Thedistance dG(x, y) from a vertexx
to another vertexy in a networkG is the minimum number of edges of a (di)path from
x to y. The diameter d(G) of a networkG is the maximum distance from one vertex
to another. Theconnectivity k(G) of a networkG is the minimum number of vertices
whose removal results in a disconnected or trivial network. According to the Menger’s
theorem, there existk (internally) vertex-disjoint paths from a vertexx to another vertex
y in a network of connectivityk. Throughout this paper, “vertex-disjoint” always means
“internally vertex-disjoint.”

For a networkG with connectivityk(G) andw ≤ k(G), the three parametersdw(G),
Dw(G) andrw(G) (defined below) arise from the study of parallel routing, fault-tolerant
systems, and randomized routing, respectively (see (Hsu, 1994; Krishnamoorthy and
Krishnamurthy, 1987; Liaw and Chang, 1998)). Due to widespread use of (and demand for)
reliable, efficient and fault-tolerant networks, these three parameters have been the subjects
of extensive study over the past decade (see (Hsu, 1994)).

Thew-wide diameter dw(G) of a networkG is the minimuml such that for any two
distinct verticesx and y there existw vertex-disjoint (di)paths of length at mostl from
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x to y. The notion ofw-wide diameter was introduced by Hsu (1994) to unify the concepts
of diameter and connectivity.

The (w−1)-fault diameterof G is Dw(G) = max{d(G−S) : |S| ≤ w−1}. This notion
was defined by Hsu (1994), and the special case in whichw = k(G) was first defined by
Krishnamoorthy and Krishnamurthy (1987) who studied the fault-tolerant properties of
graphs and networks.

Thew-Rabin number rw(G) of a networkG is the minimuml such that for anyw + 1
distinct verticesx, y1, . . . , yw there existw vertex-disjoint (di)paths of length at mostl
from x to y1, y2, . . . , yw. This concept was first defined by Hsu (1994) and the special case
in whichw= k(G) was studied by Rabin (1989) in conjunction with a randomized routing
algorithm.

It is clear that whenw= 1, d1(G)= D1(G)= r1(G)= d(G) for any networkG. On
the other hand, these parameters can be very large, as in the case in whichw= k(G).
For example, Hsu and Luczak (1994) showed thatdk(G)= n

2 for some regular graphG
having connectivity and degreek andn vertices. The following are basic properties and
relationships amongdw(G), Dw(G), andrw(G).

Proposition 1 (Liaw et al., 1998). The following statements hold for any network G of
connectivity k.
(1) D1(G) ≤ D2(G) ≤ · · · ≤ Dk(G).
(2) d1(G) ≤ d2(G) ≤ · · · ≤ dk(G).
(3) r1(G) ≤ r2(G) ≤ · · · ≤ rk(G).
(4) Dw(G) ≤ dw(G) and Dw(G) ≤ rw(G) for 1≤ w ≤ k.

In this paper, we studyw-wide diameters,w-fault diameters andw-Rabin numbers for a
class of circulant networks,d-ary cube networks, generalized hypercube networks, folded
hypercube networks and WK-recursive networks. The first two networks are digraphs and
the other three are graphs. Partial results for these networks were obtained in (Duh and Chen,
1999). For technical reasons we need a more general concept we call a strongw-Rabin
number. Thestrongw-Rabin number r∗w(G) of a networkG is the minimuml such that
for anyw + 1 (not necessarily distinct) verticesx, y1, . . . , yw there existw vertex-disjoint
(di)paths of length at mostl from x to y1, y2, . . . , yw. Clearly, we have

Proposition 2. The following statements hold for any network G of connectivity k.
(1) r ∗1(G) ≤ r ∗2(G) ≤ · · · ≤ r ∗k (G).
(2) dw(G) ≤ r ∗w(G) and rw(G) ≤ r ∗w(G) for 1≤ w ≤ k.

The main purpose of this paper is to determinedw(G), Dw(G), rw(G) andr ∗w(G) for the
above-mentioned networksG and 1≤ w ≤ k(G).

2. Circulant networks

For a positive integerN, let ZN be the additive group of residue classes moduloN. The
circulant digraph G(N; A) associated withN and a subsetA ⊆ ZN −{0} is a digraph with
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a vertex setZN and an edge set{xy : x, y ∈ ZN andy− x ∈ A}. It is clear thatG(N; A)
is a vertex-transitive digraph in which every vertex has an indegree and an outdegree equal
to |A|.

This section studiesG(dn; A) for A={1, d, . . . ,dn−1} with d≥ 2 and n≥ 1.
Hamidoune (1984) showed thatk(G(dn; {1, d, . . . ,dn−1})) = n. It is easy to show that
d(G(dn; {1, d, . . . ,dn−1})) = n(d − 1); in fact,d(0, dn − 1) = n(d − 1) in this digraph.
Hsu and Lyuu (1994) and Duh and Chen (1997) have previously shown:

Theorem 3 (Hsu and Lyuu, 1994; Duh and Chen, 1997). If A = {1, d, d2, . . . , dn−1},
then dn(G(dn; A)) = rn(G(dn; A)) = n(d − 1)+ 1.

Moreover, Liaw et al. (1998) proved:

Theorem 4 (Liaw et al., 1998). If A = {1, d, d2, . . . ,dn−1}, then

Dw(G(d
n; A)) = dw(G(d

n; A)) =
{

n(d − 1), for 1≤ w ≤ n− 1,

n(d − 1)+ 1, for w = n.

For any vertexx in G(dn; A), we can writex= xn−1dn−1 + · · · + x1d + x0, where
0≤ xi ≤ d − 1 for 0≤ i ≤ n − 1. x is often denoted by(xn−1, xn−2, . . . , x0), where
ci (x)= xi is called theith coordinateof x. Denote pi (x)= (xn−1, xn−2, . . . , x1, i ) for
x= (xn−1, xn−2, . . . , x1, x0). Gn is short-form notation forG(dn; A). For 0≤ i ≤ n− 1,
the ith unit vectorin Gn is the vectoren

i with ci (en
i )= 1 andcj (en

i )= 0 for 0≤ j ≤ n− 1,
with j 6= i . Similar notions will be used in following sections for different networks.

The vertex setV(Gn) of Gn can be decomposed intoVn−1
0 ∪ Vn−1

1 ∪ · · · ∪ Vn−1
d−1 , where

Vn−1
i ={x ∈ V(Gn) : c0(x)= i }. Note thatVn−1

i induces a subdigraphGn−1
i of Gn that is

isomorphic toGn−1 according to the natural mapping:

(xn−1, xn−2, . . . , x1, i )→ (xn−1, xn−2, . . . , x1).

For instance,pi (0) in Gn−1
i corresponds to 0 inGn−1, and pi (en

k) in Gn−1
i corresponds to

en−1
k−1 in Gn−1 for 1≤ k ≤ n− 1.

Theorem 5. If A={1, d, d2, . . . ,dn−1}, then

rw(G(d
n; A))= r ∗w(G(d

n; A))=
{

n(d − 1), for 1≤ w ≤ n− 1,

n(d − 1)+ 1, for w= n.

Proof: From Theorem 4 and Propositions 1 (4) and 1 (2), it suffices to prove by induction
on n that r ∗w(G

n) ≤ n(d − 1) + δ, whereδ= 1 for w= n andδ= 0 for 1 ≤ w ≤ n − 1.
Since the network is vertex-transitive, we only need to prove that forx= 0, y1, y2, . . . , yw,
there existw vertex-disjoint dipaths fromx to y1, y2, . . . , yw that are of length at most
n(d − 1) + δ. The claim is trivial forn= 1. Suppose it holds forn − 1 and we consider
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the case ofn. The desired dipaths are constructed according to the following three cases.
Without loss of generality, we may assumey1

0 ≤ y2
0 ≤ · · · ≤ yw0 .

Case 1. y1
0 < yw0 . Letai = yi

0 for 1≤ i ≤w and j =a1. Lets be the largest index such that
y1

0 = ys
0. By the induction hypothesis, there existw− 1 vertex-disjoint dipathsq′2, q′3, . . . ,

q′w from 0 to p0(y2), p0(y3), . . . , p0(yw), respectively, of length at most(n−1)(d−1)+δ,
where

q′i : 0→ en
k′i
→ ui → · · · → p0(y

i ) for 2≤ i ≤ w.

Without loss of generality, we may assume thatq′a has a length less than or equal to
the length ofq′b when p0(ya)= p0(yb) and 2≤a< b≤w. Note thatk′2, k′3, . . . , k′w are
distinct. So there exists at most oneen

k′i
= p0(y1). For the case in whichen

k′i
= p0(y1) for

somei > s, exchange the roles ofyi and yw in the following argument. According to
the induction hypothesis, there existw− 1 vertex-disjoint dipathsq′′1 , q′′2 , . . . , q′′w−1 from
pj (0) to pj (y1), pj (y2), . . . , pj (ys), pj (en

k′s+1
), . . . , pj (en

k′w−1
), respectively, of length at

most(n− 1)(d − 1)+ δ, where

q′′i : pj (0)→ pj
(
en

k′′i

)→ vi → · · · → pj (y
i ) for 1≤ i ≤ s.

Note thatk′′1, k′′2, . . . , k′′s , k′s+1, k′s+2, . . . , k′w−1 are distinct. Then the followingw dipaths
are vertex-disjoint and of length at most(n− 1)(d − 1)+ δ + ai ≤ n(d − 1)+ δ.

qi : 0→ en
k′′i
→ p1

(
en

k′′i

)→ · · · → pj
(
en

k′′i

)→ vi → · · · → pj (yi )= yi

for 1≤ i ≤ s;
qi : 0→ en

k′i
→ p1

(
en

k′i

)→ · · · → pai

(
en

k′i

)→ pai (u
i )→ · · · → pai (y

i )= yi

for s< i < w;
qw : 0→ p1(0)→ p2(0)→ · · · → paw (0)→ paw

(
en

k′w

)→ paw (u
w)→ · · ·

→ paw (y
w)= yw.

Case 2. y1
0 = y2

0 = · · · = yw0 = j > 0. Use the argument in Case 1 to obtainw vertex-
disjoint dipaths from 0 toy1 − 1, y2, . . . , yw of length at mostn(d − 1) + δ. In fact, the
dipath from 0 toy1−1 is of length at mostn(d−1)+ δ−1. Replace this dipath by adding
vertexy1 at the end to obtain the desired dipaths.

Case 3. y1
0 = y2

0 = · · · = yw0 = j = 0. According to the induction hypothesis, there exist
w − δ vertex-disjoint dipaths

qi : 0→ en
ki
→ ui → · · · → yi (1≤ i ≤ w − δ)

of length at most(n−1)(d−1)+1≤ n(d−1)+δ from 0 toy1, y2, . . . , yw−δ, respectively.
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So the case ofw≤ n − 1 is done. For the case in whichδ= 1 (i.e.,w= n), consider the
0-yn dipath

qn : 0→ p1(0)→ p2(0)→ · · · → pd−1(0)→ · · · → yn − 1→ y,

wherepd−1(0)→ · · · → yn − 1 is a shortest dipath inGn−1
d−1 with length at most(n− 1)

(d − 1). Note thatqn is of length at most(d − 1)+ (n− 1)(d − 1)+ 1= n(d − 1)+ 1.

2

3. d-Ary cube networks

A d-ary cube network C(d, n) (see (Hsu and Lyuu, 1994)) is a digraph ofdn vertices, in
which any vertexx has the form(xn−1, xn−2, . . . , x0)where 0≤ xi ≤ d−1 for 0≤ i ≤ n−1,
andx is adjacent to(xn−1, . . . , xj−1, xj +1, xj+1, . . . , x0) for 0≤ j ≤ n−1 where additions
are taken modulod. We can defineci (x), pi (x) anden

i as in Section 2. The vertex set of
C(d, n) can be viewed as a module overZd. Thenx can also be written asx= xn−1en

n−1+
· · · + x0en

0.
It is straightforward to show that the diameterd(C(d, n))= n(d − 1). Hsu and Lyuu

(1994) showed thatdn(C(d, n))= n(d− 1)+ 1 for d ≥ 2 andrn(C(d, n))= n(d− 1)+ 1
for d ≥ 3. Note thatC(2, n) is then-dimensional binary hypercubeQn, and Rabin (1989)
proved thatrn(Qn)= n+1. The above results, and the fact that each vertex has degreen in
C(d, n), imply thatk(C(d, n))= n. In this section we considerDw(C(d, n)), dw(C(d, n)),
rw(C(d, n)) andr ∗w(C(d, n)) for d ≥ 2 and 1≤w≤ n.

Theorem 6. If d ≥ 2 and1≤w≤ n, then

Dw(C(d, n))= dw(C(d, n))=
{

n(d − 1), for 1≤w≤ n− 1,

n(d − 1)+ 1, for w= n.

Proof: We claim that between any two vertices inC(d, n), there existn vertex-disjoint
dipaths of length at mostn(d − 1), except that at most, one of them has a length of
n(d − 1) + 1. Since the network is vertex-transitive, it suffices to prove the claim for
vertices 0= (0, 0, . . . ,0) andx= (xn−1, xn−2, . . . , x0). Supposex has exactlyk nonzero
coordinates, sayxi > 0 for 0≤ i ≤ k − 1 andxi = 0 for k≤ i ≤ n− 1. Constructn vertex-
disjoint 0-x dipathsq0, q1, . . . ,qn−1 as follows. Supposea1, a2, . . . ,ar are positive in-
tegers andi1, i2, . . . , i r are (not necessarily distinct) nonnegative integers. Denote by
〈〈a1en

i1
,a2en

i2
, . . . ,ar en

ir
〉〉 the following dipath from 0 to

∑r
j = 1 aj en

i j
:

0→ en
i1 → 2en

i1 → · · · → a1en
i1

→ a1en
i1 + en

i2 → a1en
i1 + 2en

i2 → · · · → a1en
i1 + a2en

i2

→ · · · →
r−1∑
j = 1

aj e
n
i j
+ en

ir →
r−1∑
j = 1

aj e
n
i j
+ 2en

ir → · · · →
r−1∑
j = 1

aj e
n
i j
+ ar e

n
ir .



376 LIAW AND CHANG

The desiredn dipaths are:

qs :
〈〈
xsen

s , xs+1en
s+1, . . . , xk−1en

k−1, x0en
0, x1en

1, . . . , xs−1en
s−1

〉〉
for 0≤ s≤ k− 1;

qs :
〈〈
(d − 1)en

s , x0en
0, x1en

1, . . . , xk−1en
k−1, 1en

s

〉〉
for k≤ s≤ n− 1.

Note that each dipathqs has a length of at mostn(d − 1), except for the case in which
x= (d− 1)en

0 + (d− 1)en
1 + · · · + (d− 1)en

n−2 the dipathqn−1 has a lengthn(d− 1)+ 1.
Therefore,dn−1(C(d, n))≤ n(d − 1) anddn(C(d, n))≤ n(d − 1)+ 1.

dn−1(C(d, n))≤ n(d − 1), along withd(C(d, n))= n(d − 1) and Proposition 1, lead to
Dw(C(d, n))= dw(C(d, n))= n(d − 1) for 1≤ w≤ n− 1.

Let x′ = ∑n−2
i = 0(d− 1)en

i andS={en
0, e

n
1, . . . ,e

n
n−2}. SincedC(d,n)(en

n−1, x′)= n(d− 1),
we havedC(d,n)−S(0, x′)= n(d− 1)+ 1, and so,Dn(C(d, n)) ≥ n(d− 1)+ 1. This, to-
gether with Proposition 1, impliesDn(C(d, n))= dn(C(d, n))= n(d − 1)+ 1. 2

Theorem 7. If d ≥ 2 and1≤w≤ n, then

rw(C(d, n))= r ∗w(C(d, n))=
{

n(d − 1), for 1≤w≤ n− 1,

n(d − 1)+ 1, for w= n.

Proof: The proof is the same as that for Theorem 5, excepty1− 1 is replaced bypy1
0−1(y

1)

in Case 2 andyn − 1 by pd−1(yn) in Case 3. 2

4. Generalized hypercube networks

Generalized hypercubes (see (Bhuyan and Agrawal, 1984)) are natural generalizations of
(binary) hypercubes. Supposem0, m1, . . . , mn−1 are positive integers greater than or equal
to 2. Thegeneralized hypercube GH(mn−1, . . . ,m0) is the graph whose vertices are those
x= (xn−1, xn−2, . . . , x0) with 0 ≤ xi ≤mi − 1 for 0≤ i ≤ n − 1, and two vertices are
adjacent if and only if they differ by exactly one coordinate. As in Section 2, we use
the notationci (x), pi (x) anden

i . We also useGn for the networkGH(mn−1, . . . ,m0), and
decompose the vertex setV(Gn) of Gn into Vn−1

0 ∪ Vn−1
1 ∪ · · · ∪ Vn−1

d−1 , whereVn−1
i =

{x ∈ V(Gn) : c0(x)= i }. EachVn−1
i then induces a subgraphGn−1

i of Gn that is isomorphic
toGn−1=GH(mn−1, . . . ,m1)according to the natural mapping:(xn−1, xn−2, . . . , x1, i )→
(xn−1, xn−2, . . . , x1).

It is straightforward to show that the diameterd(GH(mn−1, . . . ,m0))= n. Duh et al.
(1996) showed that the connectivityk(GH(mn−1, . . . ,m0))=

∑n−1
i = 0(mi − 1)≡ k and

thek-wide diameterdk(GH(mn−1, . . . ,m0))= n+ 1. In this section we completely deter-
mine Dw(GH(mn−1, . . . ,m0)), dw(GH(mn−1, . . . ,m0)), rw(GH(mn−1, . . . ,m0)) and
r ∗w(GH(mn−1, . . . ,m0)) for 1≤w ≤∑n−1

i = 0(mi − 1).

Theorem 8. If mi ≥ 2 for 0≤ i ≤ n− 1, then
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Dw(GH(mn−1, . . . ,m0))= dw(GH(mn−1, . . . ,m0))

=


n, for 1≤w≤ n− 1;
n, for w= n and the existence of at least two mi ≥ 3;
n+ 1, for w= n and the existence of at most one mi ≥ 3;
n+ 1, for n+ 1≤w≤ ∑n−1

i = 0(mi − 1).

Proof: We first claim that between any two vertices inGH(mn−1, . . . ,m0), there exist
n−1 (orn if there exist at least twomi ≥ 3) vertex-disjoint paths of length at mostn. Since
the graph is vertex-transitive, it suffices to prove the claim for vertices 0= (0, 0, . . . ,0)
andx= (xn−1, xn−2, . . . , x0). Supposex has exactlyh nonzero coordinates, say,xi > 0 for
0≤ i ≤ h− 1 andxi = 0 for h≤ i ≤ n− 1. Constructn− 1 (orn) vertex-disjoint 0-x paths
q0, q1, . . . , qn−2 (or q0, q1, . . . ,qn−1) as follows.

Let aen
i denote the vertex for whichci (aen

i )=a andcj (aen
i )= 0 for 0≤ j ≤ n− 1, with

j 6= i . For any vertexy= (yn−1, yn−2, . . . , y0) and positive integera, let y + aen
i denote

the vertex(yn−1, yn−2, . . . , yi+1,a, yi−1, yi−2, . . . , y0). Supposea1, a2, . . . , ar are positive
integers andi1, i2, . . . , i r are (not necessarily distinct) nonnegative integers. Denote by
〈〈a1en

i1
,a2en

i2
, . . . ,ar en

ir
〉〉 the following path from 0 to

∑r
j = 1 aj en

i j
:

0→ a1en
i1 → a1en

i1 + a2en
i2 → · · · →

r∑
j = 1

aj e
n
i j
.

The desiredn− 1 (orn) paths are:

qs :
〈〈
xsen

s , xs+1en
s+1, . . . , xh−1en

h−1, x0en
0, x1en

1, . . . , xs−1en
s−1

〉〉
for 0≤ s≤ h− 1;

qs :
〈〈
xsen

s , x0en
0, x1en

1, . . . , xh−1en
h−1, 0en

s

〉〉
for h≤ s≤ n− 1.

Note that eachqs has a length of at mostn, except thatqh has a length ofn + 1 for the
case in whichh= n − 1. If h = n − 1 and there exist at least twomi ≥ 3, implying
that mi ≥ 3 for some 0≤ i ≤ h − 1, say,m0≥ 3, then there exists 0≤ x′0≤m0 − 1, with
x′0 6= x0. We use the 0-x path〈〈x′0en

0, x1en
1, x2en

2, . . . , xh−1en
h−1, x0en

0〉〉 asqn−1, which has
a length ofn. Therefore,dn(GH(mn−1, . . . ,m0))≤ n if there exist at least twomi ≥ 3 and
dn−1(GH(mn−1, . . . ,m0))≤ n.

On the other hand, letx′ = (1, 1, . . . ,1)andS={en
0, e

n
1, . . . ,e

n
n−1}. ThendGH(mn−1,...,m0)−S

(0, x′) = n+1, and so,Dn+1(GH(mn−1, . . . ,m0))≥ n+1. For the case in which there exists
at most onemi ≥ 3, saymj = 2 for all j ≥ 1, letx′ = (1, . . . ,1, 0)andS={en

1, e
n
2, . . . ,e

n
n−1}.

ThendGH(mn−1,...,m0)−S(0, x′)= n+ 1, and so,Dn(GH(mn−1, . . . , m0))≥ n+ 1.
The above results, along withd(GH(mn−1, . . . ,m0))= n < n+ 1= dk(GH(mn−1, . . . ,

m0)), and Proposition 1, lead to
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Dw(GH(mn−1, . . . ,m0))= dw(GH(mn−1, . . . ,m0))

=


n, for 1≤w≤ n− 1;
n, for w= n and the existence of at least twomi ≥ 3;
n+ 1, for w= n and the existence of at most onemi ≥ 3;
n+ 1, for n+ 1≤w ≤∑n−1

i = 0(mi − 1).

2

Lemma 9. If mi ≥ 2 for 0≤ i ≤ n − 1, then r∗k (GH(mn−1, . . . ,m0))≤ n + 1, where
k= ∑n−1

i = 0(mi − 1).

Proof: Since the network is vertex-transitive, it suffices to prove by induction onn that
for verticesx= 0= (0, 0, . . . ,0), y1, y2, . . . , yk, there existk vertex-disjoint paths fromx
to y1, y2, . . . , yk that are of length at mostn+ 1. The claim is trivial forn= 1. Suppose it
holds forn− 1 and we consider the case ofn. Without loss of generality, we may assume
that y1

0 ≤ y2
0 ≤ · · · ≤ yk

0. Let y0
0 =−1 andsi be the maximum index such thatysi

0 ≤ i for
−1≤ i ≤ n− 1. Note thatsi = si−1 is equivalent to there being now such thatyw0 = i .

Case 1. 0 = s−1< s0< s1< · · ·< sm0− 1= k. Note that s0≤ k− (m0− 1)= ∑n−1
i = 1

(mi − 1). According to the induction hypothesis, there exists0 vertex-disjoint paths
q′1,q

′
2, . . . , q′s0

in Gn−1
0 from 0 to y1, y2, . . . , ys0, respectively, of length at mostn, where

q′j : pi (0)→ t j = (0, . . . ,0, t j
r , 0, . . . ,0, i

)→ u j → · · · → y j , (1)

with i = 0, t j
r > 0 and 1≤ r ≤ n− 1 for 1≤ j ≤ s0. Note that allt1, t2, . . . , ts0 are distinct.

Onceq′j ’s are constructed for 1≤ j ≤ si−1, we constructq′j ’s for si−1< j ≤ si as follows.
Consider the verticesy j for si−1< j ≤ si andpi (t j ) for 1≤ j ≤ si−1 with j 6= anysa. The
total number of such vertices is less than or equal tok− (m0−1− i )+ i = ∑n−1

i = 1(mi −1).
According to the induction hypothesis, there exist vertex-disjoint paths inGn−1

i from pi (0)
to these vertices. For the case in which somey j = somepi (t j ), we may assume the path
from pi (0) to y j is at least as long as the path frompi (0) to pi (t j ). Now identify the path
from pi (0) to y j asq′j (si−1< j ≤ si ), which also has the same form in (1). Note that there
exists at most onep0(t j )= ts0. For the casep0(t j )= ts0 for somej 6= si , exchange the roles
of y j andysi in the following argument. Continue this process untili =m0 − 1. Then we
have a 0-y j pathq′j of length at mostn for 1≤ j ≤ k such that allt j (with j 6= anysa) are
distinct. The desired paths of length at mostn+ 1 are:

qj : 0→ pi (0)→ t j → u j → · · · → y j for j = si ;

qj : 0→ p0(t j )→ pi (t j )= t j → u j → · · · → y j for si−1< j ≤ si .

Case 2. si−1= si for somei . For each suchi , choosey j such thaty j
0 = y j+1

0 and replace
y j with pi (y j ). This results in the new sequenceȳ1, ȳ2, . . . , ȳk that satisfies the conditions
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in Case 1. Constructq′j as in Case 1, except for thosey j replaced bypi (y j ), use 0→
pi (0)→ · · · → pi (y)→ y for qj , where the deletion of 0 andy from qj is just a shortest
p0(0)-pi (y) path inGn−1

i . 2

Lemma 10. If mi ≥ 2 for 0≤ i ≤ n − 1, then r∗n(GH(mn−1, . . . ,m0))≤ n when there
exist at least two mi ≥ 3 and r∗n−1(GH(mn−1, . . . ,m0))≤ n.

Proof: Since the network is vertex-transitive, it suffices to prove by induction onn that
for verticesx= 0= (0, 0, . . . ,0), y1, y2, . . . , yw, there existsw vertex-disjoint paths fom
x to y1, y2, . . . , yw that are of length at mostn, wherew= n, when there exists at least
two mi ≥ 3 andw= n− 1, otherwise. The claim is trivial forn= 1. Suppose it is true
for n− 1, and consider the case ofn. Without loss of generality, we may assume that
m0≤m1≤ · · · ≤mn−1, which implies thatGn−1

j has also at least twomi ≥ 3 whenGn

does. The desired paths are constructed according to the following three cases. Without
loss of generality, we may assume thaty1

0 ≤ y2
0 ≤ · · · ≤ yw0 .

Case 1. y1
0 < yw0 . Let ai = yi

0 for 1≤ i ≤w and j =a1. Let s be the largest index such
thaty1

0 = ys
0. According to the induction hypothesis, there existw−1 vertex-disjoint paths

q′2, q′3, . . . , q′w from 0 to p0(y2), p0(y3), . . . , p0(yw), respectively, of length at mostn− 1,
where

q′i : 0→ ui e
n
k′i
→ · · · → p0(y

i ) for 2≤ i ≤w.

Without loss of generality, we may assume thatq′a has a length less than or equal to the
length ofq′b when p0(ya)= p0(yb) and 2≤a < b≤w. Note thatu2en

k′2
, u3en

k′3
, . . . , uwen

k′w
are distinct. So there exists at most oneui en

k′i
= p0(y1). For the case in whichui en

k′i
= p0(y1)

for somei > s, exchange the roles ofyi andyw in the following argument. According to the
induction hypothesis, there existw − 1 vertex-disjoint pathsq′′1 , q′′2 , . . . , q′′w−1 from pj (0)
to pj (y1), pj (y2), . . . , pj (ys), pj (us+1en

k′s+1
), . . . , pj (uw−1en

k′w−1
), respectively, of length at

mostn− 1, where

q′′i : pj (0)→ pj
(
vi e

n
k′′i

)→ · · · → pj (y
i ) for 1≤ i ≤ s.

Note thatv1en
k′′1

, v2en
k′′2

, . . . , vsen
k′′s

, us+1en
k′s+1

, us+2en
k′s+2

, . . . , uw−1en
k′w−1

are distinct. Then the
following w paths are vertex-disjoint and of length at mostn.

qi : 0→ vi en
k′′i
→ pj

(
vi en

k′′i

)→ · · · → pj (yi )= yi for 1≤ i ≤ s;
qi : 0→ ui en

k′i
→ pai

(
ui en

k′i

)→ · · · → pai (y
i )= yi for s+ 1≤ i ≤w − 1;

qw : 0→ paw (0)→ paw

(
uwen

k′w

)→ · · · → paw (y
w)= yw.

Case 2. y1
0 = y2

0 = · · · = yw0 = j > 0. Use the argument in Case 1 to obtain thew vertex-
disjoint paths from 0 top0(y1), y2, . . . , yw of length at mostn. In fact, the path from 0 to
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p0(y1) is of length at mostn− 1. Replace this path by adding vertexy1 at the end to get
the desired paths.

Case 3. y1
0 = y2

0 = · · · = yw0 = j = 0. SinceGn−1
0 is isomorphic toGn−1, the claim follows

from Lemma 9 and Proposition 1. 2

Lemmas 9 and 10 and Propositions 1 and 2 lead to the following theorem.

Theorem 11. If mi ≥ 2 for 0≤ i ≤ n− 1, then

rw(GH(mn−1, . . . ,m0))= r ∗w(GH(mn−1, . . . ,m0))

=


n, for 1≤w≤ n− 1;
n, for w= n and the existence of at least two mi ≥ 3;
n+ 1, for w= n and the existence of at most one mi ≥ 3;
n+ 1, for n+ 1≤w ≤∑n−1

i = 0(mi − 1).

5. Folded hypercube networks

A folded hypercube network FH(n) (see (El-Amawy and Latifi, 1991)) is a graph whose
vertices are binary sequencesx= (xn−1, xn−2, . . . , x0) with xi = 0 or 1 for 0≤ i ≤ n − 1,
and two vertices are adjacent if and only if they differ by exactly one coordinate or by
all coordinates. Folded hypercubes are enhancements of hypercubes. They are basically
binary hypercubes augmented by extracomplement edgeswhose two end vertices differ by
all coordinates. El-Amawy and Latifi (1991) showed that the diameterd(FH(n))=d n

2e;
Duh et al. (1995) thatdn+1(FH(n))=d n

2e+1. The above result and the fact that each vertex
has degreen+1 inFH(n) imply k(FH(n))= n+1. In this section we considerDw(FH(n)),
dw(FH(n)), rw(FH(n)) andr ∗w(FH(n)) for n ≥ 2 and 1≤w≤ n+ 1.

Theorem 12. If n ≥ 2, then

Dw(FH(n))= dw(FH(n))=
{ d n

2e, for 1≤w ≤ d n
2e − 1,

d n
2e + 1, for d n

2e≤w≤ n+ 1.

Proof: We first claim that for any two vertices inFH(n), there existd n
2e−1 vertex-disjoint

paths of length at mostd n
2e. Since the graph is vertex-transitive, it suffices to prove the claim

for vertices 0= (0, 0, . . . ,0)andx= (xn−1, xn−2, . . . , x0). Supposex has exactlyk nonzero
coordinates, say,xi = 1 for 0≤ i ≤ k − 1 andxi = 0 for k≤ i ≤ n− 1. Constructdn

2e − 1
vertex-disjoint 0-x pathsq0, q1, . . . , qd n

2 e−2 as follows. Leten
n= (1, 1, . . . ,1). Suppose

i1, i2, . . . , i r are (not necessarily distinct) nonnegative integers. Denote by〈〈en
i1
, en

i2
, . . . ,en

ir
〉〉

the path from 0 to
∑r

j = 1 en
i j

, where additions are performed modulo 2,

0→ en
i1 → en

i1 + en
i2 → · · · →

r∑
j = 1

en
i j
.
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The desiredd n
2e − 1 paths are:

qs :
〈〈
en

s , e
n
s+1, . . . ,e

n
k−1, e

n
0, e

n
1, . . . ,e

n
s−1

〉〉
for 0≤ s≤ k− 1 andk ≤ d n

2e;
qs :

〈〈
en

s , e
n
0, e

n
1, . . . ,e

n
k−1, e

n
s

〉〉
for k≤ s ≤ d n

2e − 2;

qs :
〈〈
en

s+k, e
n
s+k+1, . . . ,e

n
n, e

n
k , e

n
k+1, . . . ,e

n
s+k−1

〉〉
for 0≤ s≤ n− k andk > d n

2e;
qs :

〈〈
en

s , e
n
n, e

n
n−1, . . . ,e

n
k+1, e

n
s

〉〉
for n− k+ 1≤ s ≤ d n

2e − 2 andk > d n
2e.

Note that eachqs has a length of at mostd n
2e. Therefore,dd n

2 e−1(FH(n)) ≤ d n
2e.

dd n
2 e−1(FH(n)) ≤ d n

2e, along withd(FH(n))=d n
2e (see (El-Amawy and Latifi, 1991))

and Proposition 1, leads toDw(FH(n))= dw(FH(n))=d n
2e for 1≤w ≤ d n

2e − 1.
Let x′ = ∑d n

2 e−2
i = 0 en

i andS={en
i : 0≤ i ≤ d n

2e− 2}. ThendFH(n)−S(0, x′)=d n
2e+ 1, and

so, Dd n
2 e(FH(n)) ≥ d n

2e + 1. This, along withdn+1(FH(n))≤d n
2e + 1 (see (Duh et al.,

1995)) and Proposition 1, leads toDw(FH(n))= dw(FH(n))=d n
2e+1 ford n

2e≤w≤ n+1.
2

Corollary 13. If n ≥ 2, then

r ∗w(FH(n)) ≥ rw(FH(n)) ≥
{ d n

2e, for 1≤w ≤ d n
2e − 1,

d n
2e + 1, for d n

2e≤w≤ n+ 1.

Determining the exact values ofr ∗w(FH(n)) andrw(FH(n)) remains an open question.

6. WK-Recursive networks

WK-Recursive networks WK(d, t)were proposed by Vecchia and Sanges (1988) as a general
class of recursively scalable network topologies for message-passing architectures. The
vertex set ofWK(d, t) is {(xt , . . . , x1) : 0≤ xi ≤ d − 1 for 1≤ i ≤ t}, and a vertexx=
(xt , . . . , x1) is adjacent to the following two types of vertices:

(1) (xt , . . . , x2, x′1), wherex′1 6= x1 and 0≤ x′1≤ d − 1,

(2) (xt , . . . , xi+1, xi−1, (xi )
i−1) when xi 6= xi−1= xi−2= · · · = x1, where (xi )

i−1 re-
presentsi − 1 consecutivexi ’s.

An open edgewhose one end vertex is unspecified is incident to(xt , . . . , x1) if xt = xt−1=
· · · = x1. For each 1≤ i ≤ t , a vertexx= (xt , . . . , x1) is called ani -frontier if x= (xt , . . . ,

xi+1, (xi )
i ). So,WK(d, 1) is ad-complete graph augumented byd open edges, each at a

vertex; andWK(d, t) with t ≥ 2 is composed ofd WK(d, t − 1)’s that are connected by
edges of type (2).

Chen and Duh (1994) showed thatd(WK(d, t))= 2t − 1, k(WK(d, t))= d− 1, dd− 1

(WK(d, t))= 3 · 2t − 1− 1, and the distance between any two oft-frontiers is 2t − 1. In
this section we considerDw(WK(d, t)), dw(WK(d, t)), rw(WK(d, t)) andr ∗w(WK(d, t)) for
t ≥ 1 and 1≤w≤ d− 1.
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For convenience, letGt =WK(d, t) andGt−1
i be the subgraph ofGt induced byVt−1

i =
{x ∈ V(Gt ) : xt = i } for 0≤ i ≤ d− 1. Note that eachGt−1

i is isomorphic toWK(d, t − 1)
according to the natural mapping:(i, xt−1, . . . , x1)→ (xt−1, . . . , x1).

Lemma 14. Suppose1≤w≤ d − 1. If x1, x2, . . . , xw arew (not necessarily distinct)
vertices and y1, y2, . . . , yw are w distinct t-frontiers, then there existw vertex-disjoint
paths qi from xi to yi ( for 1≤ i ≤w) each of length at most2t − 1.

Proof: We prove the lemma by induction ont . The proof is trivial for t = 1. As-
sume the lemma holds fort − 1 and we consider the case oft . Let xi = (xi

t , . . . , x
i
1)

andyi = ((yi
t )

t ) for 1≤ i ≤w. Without loss of generality, we may assume that there exists
0≤w≤w such thatyi

t = xi
t for 1≤ i ≤w andyi

t 6= x j
t for w + 1≤ i ≤w and 1≤ j ≤w.

Defineȳi = (xi
t , (y

i
t )

t−1) for 1≤ i ≤w. According to the induction hypothesis, for any fixed
0≤ j ≤ d − 1 and thosexi and ȳi with xi

t = j , there exist vertex-disjoint paths̄qi from xi

to ȳi of length at most 2t−1− 1 in Gt−1
j .

For thosei such thatȳi = yi , i.e., 1≤ i ≤w, we useq̄i for qi , which is of length at most
2t − 1. For thosei such thatȳi 6= yi , i.e.,w + 1≤ i ≤w, let q′i be a shortest path from
(yi

t , (x
i
t )

t−1) to yi in Gt−1
yi

t
. Note thatq′i has a length of at most 2t−1− 1 and the end vertex

of q̄i is adjacent to the starting vertex ofq′i . Therefore, the concatenation ofq̄i andq′i yields
anxi -yi path of length at most 2t − 1 in Gt . Also, all the pathsqi are vertex-disjoint. 2

Lemma 15. Suppose1≤w≤ d. For anyw (not necessarily distinct) vertices x= (xt , . . . ,

x1), y1, . . . , yw−1, there exist d−w t-frontiers yw, . . . , yd−1 in Gt , that are different from
((xt )

t ), x, y1, . . . , yw−1, and there exist d− 1 vertex-disjoint paths qi from x to yi ( for
1 ≤ i ≤ d − 1) such that each qi has a length of at most3 · 2t−1 − 1 (resp., 2t − 1) when
1≤ i ≤w − 1 (resp., w≤ i ≤ d − 1).

Proof: We prove the lemma by induction ont . The proof is trivial fort = 1. Suppose
the lemma holds fort − 1 and we consider the case oft . Without loss of generality, we
may assume thatyi

t = xt for 1≤ i ≤w − 1 andyi
t 6= xt for w≤ i ≤w − 1. Let ȳi = yi for

1≤ i ≤w − 1. According to the induction hypothesis, there existd − w (t − 1)-frontiers
ȳw, ȳw+1, . . . , ȳd−1 in Gt−1

xt
, that are different from((xt )

t ), x, ȳ1, . . . , ȳw−1, andd − 1
vertex-disjoint paths̄qi from x to ȳi for 1 ≤ i ≤ d − 1, such that each̄qi has a length of
at most 3· 2t−2 − 1 (resp., 2t−1 − 1) for 1≤ i ≤w − 1 (resp.,w≤ i ≤ d − 1). Without
loss of generality, we may assumeȳi = (xt , (ai )t−1), where 0≤ai ≤ d − 1 andai 6= xt ,
for w≤ i ≤ d − 1 and there existsw − 1≤ s≤w − 1, such thatai = yi

t for w≤ i ≤ s, and
ai 6= y j

t for s+1≤ i ≤ d−1 andw≤ j ≤w−1. Defineŷi = (ai , (xt )
t−1) forw≤ i ≤ sand

ŷi = (yi
t , (a

i )t−1) for s+1≤ i ≤w−1. So, ifyi ∈Vt−1
j for somei and j , withw≤ i ≤w−1

and 0≤ j ≤ d − 1, then ŷi ∈Vt−1
j and ŷi is a (t − 1)-frontier of Gt−1

j . According to
Lemma 14, for allyi and ŷi in Vt−1

j with j 6= xt , there exist pathŝqi from ŷi to yi of
length at most 2t−1− 1 in Gt−1

j .
For thosei such thatyi

t = xt , i.e., 1≤ i ≤ w − 1, we useq̄i for qi , which is of length at
most 3· 2t−2 − 1. For thosei such thatyi

t =ai , i.e.,w≤ i ≤ s, since the end vertex of̄qi

is adjacent to the starting vertex ofq̂i , the concatenation of̄qi andq̂i yields anx-yi path
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qi of length at most(2t−1 − 1)+ 1+ (2t−1 − 1)= 2t − 1≤ 3 · 2t−1 − 1. For thosei such
that xt 6= yi

t 6= ai , i.e., s+ 1≤ i ≤w − 1, let q′i be a shortest path from(ai , (xt )
t−1) to

(ai , (yi
t )

t−1) in Gt−1
ai . Note thatq′i has a length of at most 2t−1 − 1; the end vertex of̄qi

is adjacent to the starting vertex ofq′i ; and the end vertex ofq′i is adjacent to the starting
vertex ofq̂i . Therefore, the concatenation ofq̄i , q′i andq̂i yields anx-yi pathqi of length
at most(2t−1− 1)+ 1+ (2t−1− 1)+ 1+ (2t−1− 1)= 3 · 2t−1− 1. Finally, for thosei for
whichw≤ i ≤ d − 1, we construct the paths fromx to d − w t-frontiers in the following
way. Let q′i be a shortest path from(ai , (xt )

t−1) to ((ai )t ) in Gt−1
ai . Note thatq′i has a

length of at most 2t−1 − 1 and the end vertex of̄qi is adjacent to the starting vertex of
q′i . Therefore, the concatenation ofq̄i andq′i yields anx-((ai )t ) pathqi of length at most
(2t−1− 1)+ 1+ (2t−1− 1)= 2t − 1. Also, all the pathsqi are vertex-disjoint. 2

Corollary 16. If d ≥ 2 and t≥ 1, then r∗d−1(WK(d, t))≤ 3 · 2t−1− 1.

Theorem 17.

Dw(WK(d, t)) = dw(WK(d, t))= rw(WK(d, t)= r ∗w(WK(d, t))

=
{

2t − 1, for w= 1,

3 · 2t−1− 1, for 2≤w≤ d − 1.

Proof: The case ofw= 1 follows fromd(WK(d, t))= 2t − 1 (see (Chen and Duh, 1994)).
Now assume 2≤w≤ d− 1. Let x= ((1)t ) and S={(1, (0)t − 1)}. Note that any two

subgraphsGt−1
i andGt − 1

j of Gt are connected only by the edge{(i, ( j )t − 1), ( j, (i )t − 1)},
whose end vertices are(t − 1)-frontiers of the subgraph they are in. Then any 0-x pathq
in WK(d, t)− Smust pass some(0, (i )t−1) with 2≤ i ≤ d− 1, and then in turn, must pass
(i, (0)t − 1), (i, (1)t − 1) and(1, (i )t − 1), which are(t − 1)-frontiers inGn− 1

i . Note that Chen
and Duh (1994) proved that the distance between any twot-frontiers is 2t − 1 in Gt . Thus,
the length ofq is at least(2t − 1− 1) + 1+ (2t − 1− 1) + 1+ (2t − 1− 1)= 3 · 2t − 1− 1.
So, D2(WK(d, t)) ≥ 3 · 2t−1− 1. This, along with Propositions 1 and 2 and Corollary
16, leads toDw(WK(d, t))= dw(WK(d, t))= rw(WK(d, t)= r ∗w(WK(d, t))= 3 · 2t−1− 1
for 2≤w≤ d− 1. 2
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