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Abstract. Reliability and efficiency are important criteria in the design of interconnection networks. Recently,
thew-wide diameted,, (G), the (w — 1)-fault diameteD,, (G), and thew-Rabin number,, (G) have been used

to measure network reliability and efficiency. In this paper, we stydys), D,,(G) andr,, (G) using the strong
w-Rabin number} (G) for 1 < w < k(G) andG is a circulant networlG(d"; {1,d, ..., d"-1}), ad-ary cube
network C(d, n), a generalized hypercu®H(my_1, ..., mp), a folded hypercub&H(n) or a WK-recursive
networkWK(d, t).
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1. Introduction

Reliability and efficiency are important criteria in the design of interconnection networks.
Connectivity is widely used to measure network fault-tolerance capacity, while diameter
determines routing efficiency along individual paths. In practice, we are interested in high-
connectivity, small-diameter networks.

By a network we mean a graph or a digraph. Tistance &(x, y) from a vertexx
to another vertey in a networkG is the minimum number of edges of a (di)path from
X to y. Thediameter dG) of a networkG is the maximum distance from one vertex
to another. Theconnectivity KG) of a networkG is the minimum number of vertices
whose removal results in a disconnected or trivial network. According to the Menger’s
theorem, there exi¥ (internally) vertex-disjoint paths from a vertexto another vertex
y in a network of connectivitk. Throughout this paper, “vertex-disjoint” always means
“internally vertex-disjoint.”

For a networkG with connectivityk(G) andw < k(G), the three parametet;, (G),
D, (G) andr, (G) (defined below) arise from the study of parallel routing, fault-tolerant
systems, and randomized routing, respectively (see (Hsu, 1994; Krishnamoorthy anc
Krishnamurthy, 1987; Liaw and Chang, 1998)). Due to widespread use of (and demand for)
reliable, efficient and fault-tolerant networks, these three parameters have been the subjec
of extensive study over the past decade (see (Hsu, 1994)).

The w-wide diameter ¢(G) of a networkG is the minimuml such that for any two
distinct verticesx andy there existw vertex-disjoint (di)paths of length at mdsfrom
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X toy. The notion ofw-wide diameter was introduced by Hsu (1994) to unify the concepts
of diameter and connectivity.

The w — 1)-fault diameteof G is D,,(G) = maX{d(G —9) : |S| < w — 1}. This notion
was defined by Hsu (1994), and the special case in wiich k(G) was first defined by
Krishnamoorthy and Krishnamurthy (1987) who studied the fault-tolerant properties of
graphs and networks.

The w-Rabin number §(G) of a networkG is the minimuml such that for anyw + 1
distinct verticesx, vi, ..., Y, there existw vertex-disjoint (di)paths of length at maist
fromxtoy, Vo, ..., Vu. This concept was first defined by Hsu (1994) and the special case
in which w = k(G) was studied by Rabin (1989) in conjunction with a randomized routing
algorithm.

It is clear that whenw =1, d;(G) = D1(G) =r1(G) =d(G) for any networkG. On
the other hand, these parameters can be very large, as in the case inuwhik(G).

For example, Hsu and Luczak (1994) showed th&G) = 5 for some regular grapls
having connectivity and degrdeandn vertices. The following are basic properties and
relationships amond,, (G), D,,(G), andr,(G).

Proposition 1 (Liaw et al., 1998). The following statements hold for any network G of
connectivity K.

(1) D1(G) < D2(G) < --- < Dk(G).

(2)di(G) < d(G) < -+ < k(G).

()ri(G) <r2(G) < -+ =1 (G).

(4) Dy (G) < dy(G) and D,(G) <r,(G) forl <w <k.

In this paper, we study-wide diametersy-fault diameters and-Rabin numbers for a
class of circulant networksi-ary cube networks, generalized hypercube networks, folded
hypercube networks and WK-recursive networks. The first two networks are digraphs an
the otherthree are graphs. Partial results for these networks were obtained in (Duh and Che
1999). For technical reasons we need a more general concept we call awstiRaigin
number. Thestrongw-Rabin number }(G) of a networkG is the minimuml such that
for anyw + 1 (not necessarily distinct) verticasyi, . . ., y, there existw vertex-disjoint
(di)paths of length at mostfrom x to y1, V», ..., Y,. Clearly, we have

Proposition 2. The following statements hold for any network G of connectivity k.
(D riG) <r3(G) < --- <r1g(G).
(2)d,(G) <r¥(G)andr,(G) <r}(G)forl<w <Kk.

The main purpose of this paper is to determipéG), D,,(G), r,,(G) andr; (G) for the
above-mentioned networks and 1< w < k(G).

2. Circulant networks

For a positive integeN, let Zy be the additive group of residue classes moddloThe
circulant digraph G'N; A) associated witiN and a subseA C Zy — {0} is a digraph with
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a vertex seZy and an edge sgky : X,y € Zy andy — x € A}. Itis clear thatG(N; A)
is a vertex-transitive digraph in which every vertex has an indegree and an outdegree equi
to |A.

This section studiesG(d"; A) for A={1,d,...,d" '} with d>2 and n> 1.
Hamidoune (1984) showed thia¢G(d"; {1, d, ...,d"1})) = n. Itis easy to show that
d(G@d"; {1,d,...,d"1})) = n@d — 1); in fact,d(0, d" — 1) = n(d — 1) in this digraph.

Hsu and Lyuu (1994) and Duh and Chen (1997) have previously shown:

Theorem 3 (Hsu and Lyuu, 1994; Duh and Chen, 1997).1f A = {1,d, d?,..., d"1},
then d,(G@d"; A)) =rp(G@A"; A) =n(d —-1) + 1.

Moreover, Liaw et al. (1998) proved:
Theorem 4 (Liaw et al., 1998). If A ={1,d,d?,...,d"1}, then

. N nd-1), forl<w<n-1,
D, (G"; A) =d,(G@"; A) =
nd-1+1, forw=n.

For any vertexx in G(d"; A), we can writex = x,_1d"* + - - - 4+ x;d + Xo, Where

O0<x;<d-—-1for0<i < n-—1. x is often denoted byXn_1, Xn_2, ..., Xo), where
G (X) =X is called theith coordinateof x. Denote p; (X) = (Xn_1, Xn—2, - .., X1, 1) for
X = (Xn—1, Xn—2, - . ., X1, Xo). G" is short-form notation fo5(d"; A). For0O<i <n—1,

theith unit vectorin G" is the vector with ¢ (¢") =1 andcj(¢") =0for0< j <n-—1,
with j £ i. Similar notions will be used in following sections for different networks.

The vertex seV (G") of G" can be decomposed intf U V"t U ... U V]!, where
V"= {x € V(G : co(x) =i}. Note thatv,"* induces a subdigrap@!'~* of G" that is
isomorphic toG"~* according to the natural mapping:

(Xn—1, Xn—2, - . ., X1, 1) = (Xn—1, Xn—2, . . ., X1).

For instancep; (0) in Gi”*l corresponds to 0 iB"~1, and p; (€}) in G{‘*l corresponds to
g TinG"tforl<k<n-—1

Theorem 5. If A={1,d,d? ...,d" 1}, then

nd —1), forl<w<n-1,
ro(G(d™; A) =r2(G(d"; A) =
nd-21+1, forw=n.

Proof: From Theorem 4 and Propositions 1 (4) and 1 (2), it suffices to prove by induction
onnthatr?(G") < n(d—1)+ 6, wheres=1forw=nand§=0forl<w <n-—1.
Since the network is vertex-transitive, we only need to prove that o0, y*, y?,..., y*,

there existw vertex-disjoint dipaths fronx to y*, y?,..., y* that are of length at most
n(d — 1) 4+ §. The claim is trivial forn=1. Suppose it holds far — 1 and we consider
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the case oh. The desired dipaths are constructed according to the following three cases
Without loss of generality, we may assulye< yz < --- < yg.

Casel yi<yy. Leta = y(‘, for1<i <wandj =a;. Letsbe the largest index such that
y& =y5. By the induction hypothesis, there exist- 1 vertex-disjoint dipathsy, d3, . . .,

g, fromOto Po(Y?), Po(Y), ..., po(y"), respectively, of length at mogt — 1)(d — 1) + 3,
where

G0 > u - = poy) for2<i<uw,

Without loss of generality, we may assume thjgthas a length less than or equal to
the length oft, when po(y?) = Po(YP) and 2<a<b<w. Note thatk), ks, .. kw are
distinct. So there exists at most oeﬁa Po(yl). For the case in wh|cb{(1 po(y ) for
somei > s, exchange the roles of andy® in the following argument. According to
the induction hypothesis, there exist— 1 vertex-disjoint dipathsy, a3, ..., g, _; from

p; (0) to pj(yYH), Pj(YD), ..., Pj(¥®), pj (e{jéﬂ),..., Pj (eL‘I,H), respectively, of length at
most(n — 1)(d — 1) + 8, where

A" PO = pi(eg) > v > > Py forlsiss.

Note thatky, k5, ..., K¢, K, 1, Ko, .., K/, _; are distinct. Then the following dipaths
are vertex-disjoint and of length at mast— 1)(d — 1) + § + & <n(d — 1) + 4.
G :0— € — pi(ef) = - = pi(e)) = v' = - = Py =Y
forl<ic<s;

G :0— e = pu(ef) > = Pa(Ef) = Pa(U) > - = Pa(Y) =Y
fors<i < w;
Gu 10— P1(0) = P2(0) = -+ — Pa,(0) — Pa, (€ ) = Pa,(UY) — -+
— Pa, (YY) =Y
Case2 yi=yi=---=y¥=] > 0. Use the argument in Case 1 to obtairvertex-
disjoint dipaths from 0 to/* — 1, y?,..., y* of length at mosh(d — 1) + §. In fact, the

dipath from 0 toy* — 1 is of length at most(d — 1) + & — 1. Replace this dipath by adding
vertexy! at the end to obtain the desired dipaths.

Case 3 yi=y3=... =y¥=j=0. According to the induction hypothesis, there exist
w — § vertex-disjoint dipaths

qi:O—>e{;—>u‘—>-.-—>yi A=<si<sw-=9)

of length at mostn —1)(d — 1) +1<n(d — 1)+ from 0 toy?, y?, . . ., y»~%, respectively.
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So the case ofv <n — 1 is done. For the case in whiéh=1 (i.e., w =n), consider the
0-y" dipath

Oh:0— pr(0) = p2(0) — -+ — pg_1(0) —» -+ > y" -1 >y,

wherepg_1(0) — --- — y" — 1is a shortest dipath iﬁ‘:gj with length at mostn — 1)
(d —1). Note thaty, is of lengthatmostd — 1) + (n—1)(d — 1) +1=n(d - 1) + 1.
a

3. d-Ary cube networks

A d-ary cube network @1, n) (see (Hsu and Lyuu, 1994)) is a digraphdifvertices, in
which any vertex has the forn(x,_1, Xn—2, ..., Xg) WwhereO< x; <d—1forO<i <n-1,
andx is adjacent t@xn_1, ..., Xj_1, Xj +1, Xj 41, ..., Xo) for0 < j <n—1where additions
are taken moduld. We can define; (x), pi (x) and€ as in Section 2. The vertex set of
C(d, n) can be viewed as a module ov&y. Thenx can also be written as= xn_1€,_; +
4 Xoeg_

It is straightforward to show that the diametC(d, n)) =n(d — 1). Hsu and Lyuu
(1994) showed that,(C(d, n)) =n(d — 1) + 1 ford > 2 andr,(C(d,n))=n(d —1) +1
for d > 3. Note thaiC(2, n) is then-dimensional binary hyperculi@,,, and Rabin (1989)
proved that,(Qn) =n+ 1. The above results, and the fact that each vertex has degree
C(d, n), imply thatk(C(d, n)) =n. In this section we consid#,,(C(d, n)), d,,(C(d, n)),
r,(C(d, n)) andr(Cd, n)) ford > 2and I<w <n.

Theorem 6. Ifd > 2andl<w <n, then

nd - 1), foril<w<n-1,

D,(C(d, n)=d,(C(d,n)) = {
nd-21+1 forw=n.
Proof: We claim that between any two vertices@d, n), there exish vertex-disjoint
dipaths of length at most(d — 1), except that at most, one of them has a length of
n(d — 1) + 1. Since the network is vertex-transitive, it suffices to prove the claim for
vertices 0= (0,0, ...,0) andX = (Xn_1, Xn—2, - . . , X0). Supposex has exactlk nonzero
coordinates, say; >0 for0<i <k — 1 andx; =0 fork <i <n — 1. Construch vertex-
disjoint 0x dipathsqg, qi, ..., 0r_1 as follows. Supposes, ay, ..., a are positive in-
tegers andy, i,,...,i, are (not necessarily distinct) nonnegative integers. Denote by
(g, @€, ..., a ")) the following dipath from 0 tozrj _1qje:

00— ¢ =2 — - — ae

— alan1 +q“2 — ale,“1 +2e«,“2 — ale«,“1 +aze,”2

r—1 r—1 r—1
= ) ae e > ) ae 42— Y ae +ad).

i=1 j=1 j=1
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The desired dipaths are:

Os © ((Xs€D, Xs1€0, 1, ..., X—1€}_1, Xo€), X1€], ..., Xs_1€0 ;)) forO<s<k-—1;
Gs : (((d — D)el, xo€], xa€], ..., X—1€6f_;, 1€0)) fork<s<n-—-1.

Note that each dipaths has a length of at most(d — 1), except for the case in which
x=(d—-1)ej+ d—-1e] +-- -+ (d — 1)e}_, the dipathg,_; has a lengtm(d — 1) + 1.
Therefored,_1(C(d, n)) <n(d — 1) andd,(C(d,n)) <n(d — 1) + 1.

dh_1(C(d, n)) =n(d — 1), along withd(C(d, n)) =n(d — 1) and Proposition 1, lead to
D,(C(,n)=d,(Cd,n)=nd-1Dforl<w=<n-—1.

Letx' = YP'-2(d — 1)e" andS= (€}, €], ..., €} ,}. Sincedc(d.n (€] 5, x) =n(d — 1),
we havedc g ny-s(0, x') =n(d — 1) +1, and so,D,(C(d, n)) > n(d—1)+1. This, to-
gether with Proposition 1, implieB,(C(d, n)) =d,(C(d, n)) =n(d — 1) + 1. O

Theorem 7. Ifd > 2and1l<w <n, then

nd - 1), forl<w<n-1,

»(C(d, M) =r3(Cd.n)=
re(C(d, n))=rj(C(d, n)) ln(d_l)Jrl, forw=n.

Proof: The proofis the same as that for Theorem 5, exgépt 1 is replaced byo (¥t )
in Case 2 ang" — 1 by pg_1(y") in Case 3.

4. Generalized hypercube networks

Generalized hypercubes (see (Bhuyan and Agrawal, 1984)) are natural generalizations

(binary) hypercubes. Suppos®g, my, ..., m,_; are positive integers greater than or equal
to 2. Thegeneralized hypercube Ghh,_;, ..., Mp) is the graph whose vertices are those
X =(Xn—1, Xn—2, + - -, Xo) With 0 < x;<mj — 1 for 0<i <n — 1, and two vertices are

adjacent if and only if they differ by exactly one coordinate. As in Section 2, we use
the notatiorc; (x), pi (x) ande. We also us&" for the networkGH(mp_4, . .., mg), and
decompose the vertex s€(G") of G" into VJ~* U V"t U ... U V], wherevV" ! =

{x € V(G") : co(x) =i}. EachV\"* theninduces a subgra@]—* of G" that is isomorphic
toG"! = GH(m,_1, ..., my) according to the natural mappin(®n_1, Xn—2, ..., X1, i) —
(Xn—1, Xn—2, . . ., X1).

Itis straightforward to show that the diame®GH(m,_4, ..., mg)) =n. Duh et al.
(1996) showed that the connectivig(GH(Mp_1, ..., Mg)) = D ; ;%(mi — 1=k and
thek-wide diametedc(GH(mM_4, ..., Mp)) =n + 1. In this section we completely deter-
mine D, (GH(Mn_1,...,Mg)), du,(GH(Mp_1,...,Mg)), r,(GH(M,_1,...,Mg)) and
r*(GH(My_1. ..., mp)) for 1< w < Y M-H(m; — 1).

Theorem 8. Ifm; > 2 forO<i <n-—1,then
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D, (GH(Mh_1, ..., mMg)) =d,(GH(M_1, ..., Mg))

n, forl<w=<n-1,

n, for w =n and the existence of at least twg m 3;
n+1, forw=n and the existence of at most ong:m3;
n+1, forn+l<w< YT Hm —1).

Proof: We first claim that between any two vertices@H(m,_4, ..., M), there exist
n—1 (ornifthere exist at least two; > 3) vertex-disjoint paths of length at mastSince
the graph is vertex-transitive, it suffices to prove the claim for vertice@O0, ..., 0)
andx = (Xn_1, Xn—2, - - - , Xp). Suppose& has exacthh nonzero coordinates, say,> 0 for
O<i<h-—1andx =0forh<i <n-—1. Construch — 1 (orn) vertex-disjoint Ox paths
Jo, 91, - -+, On_2 (Ordo, d1, . . ., On_1) as follows.

Letad' denote the vertex for whiot) (ad') =a andcj(a€g') =0 for 0< j <n — 1, with
j # 1. For any vertexy = (Yn—1. Yn—2, - - - , Yo) and positive integea, lety + ad' denote
the verteX(Yn_1, Yn—2, - - -» ¥i+1, &, Yi—1, Yi—2, - - - » Yo). SUPpPOS@y, ay, . .., & are positive
integers andy, ip,..., i, are (not necessarily distinct) nonnegative integers. Denote by
((au€l), €, ..., a€")) the following path from O tozrj :1a,-e,-’]:

r
0— e — ard +ae] - - — Zaje,”j.
=

The desiredh — 1 (orn) paths are:

Os © ((Xs€D, Xs41€0, 1, ..., Xn_16])_1, X&), X1€], ..., Xs_1€0_;)) forO<s<h-—1;
Os © ((Xs€2, X&), X1€7, ..., Xn_160_;, 0€l)) forh<s<n-—1.

Note that eaclys has a length of at most, except thaty, has a length ofi + 1 for the
case in whichh=n — 1. If h = n — 1 and there exist at least twn; > 3, implying
thatm; > 3 for some O<i <h — 1, say,mg > 3, then there exists € x; <mg — 1, with
X4 # Xo. We use the O path ((x{€, x1€], X265, . .., Xn_1€0_;, X0€])) asgn_1, Which has
a length ofn. Therefored,(GH(m,_1, ..., Mp)) <nif there exist at least twm; > 3 and
dn—1(GH(Mp_1, ..., Mp)) <n.

Ontheotherhand,let=(1,1,..., )andS={ef, €, ..., €_;}. Thendgnm, ,,...my)-s
(0,x") =n+1,andsoPn1(GH(mM,_1, ..., mg)) > n+1. Forthe case in which there exists
atmostonen; > 3, saym; =2forallj > 1,letx'=(1,...,1,0)andS={e], €5, ..., €_,}.
Thendghm,_,....my-s(0, X) =n+ 1, and soD,(GH(Mp_1, ..., Mp)) >n+ 1.

The above results, along withtGH(mMp_1, ..., Mg)) =n < n+ 1=d¢(GH(M,_4, ...,
Mp)), and Proposition 1, lead to
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D, (GH(Mp_1, ..., Mg)) =d,(GH(M_1, ..., Mg))

n, forl<w=<n-1;

n, for w =n and the existence of at least twg > 3;
n+ 1, forw=nand the existence of at most omg > 3;
n4+1, forn+l<w <Y -Hm —1).

O

Lemma 9. Ifm; > 2 for 0<i <n — 1, then (GH(M,_1, ..., mp)) <n + 1, where
k=Y "tm —1).

Proof: Since the network is vertex-transitive, it suffices to prove by induction trat
for verticesx=0= (0,0, ...,0), y!, ¥, ..., ¥ there exisk vertex-disjoint paths from
toyl, y2,..., y® that are of length at most+ 1. The claim is trivial fom = 1. Suppose it
holds forn — 1 and we consider the caserof Without loss of generality, we may assume
thatys < y2 < --- < y§. Lety)=—1 ands be the maximum index such thg} < for
—1<i <n-1. Note thats =s_; is equivalent to there being no such thatyy =i.

Case 1 0 = s.1<SH<S1<---<Sp-1=K. Note thatsy<k—(mp—1)= ”11
(mj —1). According to the induct|on hypothesis, there exgtvertex-disjoint paths
Oy Gos - - - » Ogy IN Gg‘l from 0 toy?, y2, ..., y®, respectively, of length at most where
q:p©0 > ti=(0,....0t,0,....0,i) > ul - ... >yl 1)
withi =0,t) > 0and 1<r <n—1for1<j <s. Note that alt?, t2, ..., t% are distinct.

Onceq;’s are constructed for & j <s5_;, we construcqu 'sfors_;<j<s as follows.
Consider the verticeg! fors_; < j <s andpi(t)) for 1< j <s_; with j # anys,. The
total number of such vertices is less than or equiHamg —1—i) +i = ) ; ;1l(mi -1
According to the induction hypothesis, there exist vertex-disjoint pat@iﬁ from p; (0)

to these vertices. For the case in which sophe- somep; (t1), we may assume the path
from p; (0) to yJ is at least as long as the path frqgu(0) to p; (t}). Now identify the path
from p; (0) to y/ asq; (s-1 < j <s), which also has the same form in (1). Note that there
exists at most onpy(t!) =t For the cas@y(t!) =t for somej # s, exchange the roles
of yl andy$ in the following argument. Continue this process un mg — 1. Then we
have a Oy! pathg; of length at mosh for 1 < j <k such that alt! (with j # anys,) are
distinct. The desired paths of length at most 1 are:

q:0— pO—>th-u - ...y forj=s;

q:0— poth) - pth=tl v - ... >yl fors;<j<s.

Case2 s_;=s forsomei. For each such, chooseyJ such thaly0 = ”l and replace
yl with p; (y}). This results in the new sequenge ¥2, .. ., y¥ that satlsﬂes the conditions
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in Case 1. Construa as in Case 1, except for thoge replaced byp; (y!), use 0—
pi (0) — --- — pi(y) — yfor q;, where the deletion of O anglfrom g is just a shortest

Po(0)-pi (y) path inGf'*. O
Lemma 10. If m; > 2for 0<i <n — 1, then r{(GH(M,_1, ..., Mp)) <n when there
exist at least two m> 3and r;_,(GH(My_1, ..., Mp)) <n.

Proof: Since the network is vertex-transitive, it suffices to prove by induction tirat

for verticesx =0= (0,0, ..., 0), y!, y?,..., y¥, there existav vertex-disjoint paths fom

x to y, y?, ..., y* that are of length at most, wherew = n, when there exists at least
two m; > 3 andw =n— 1, otherwise. The claim is trivial fon=1. Suppose it is true

for n—1, and consider the case of Without loss of generality, we may assume that
My <My < --- <myp_1, Which implies thatG'j‘*1 has also at least tw; > 3 whenG"

does. The desired paths are constructed according to the following three cases. Withot
loss of generality, we may assume tyat< y2 < --- < y¥.

Casel yi < yy. Leta = y{, for 1<i <w andj =a;. Lets be the largest index such
thatys = y5. According to the induction hypothesis, there exist 1 vertex-disjoint paths
b, G, - - -, 0, from O to po(y?), Po(Y?), ..., Po(y®), respectively, of length at most— 1,
where

g0 uef > - — Po(y) for2<i<w.

Without loss of generality, we may assume thathas a length less than or equal to the
length ofq;, when po(y?) = po(y®) and 2<a < b<w. Note thaluze{jé, u3e{<‘é, ey uwe{(‘;p
are distinct. So there exists at most ong, = po(y?). For the case in which; eL‘ = po(y)
forsome > s, exchange the roles gf andy® in the following argument. According to the
induction hypothesis, there exist— 1 vertex-disjoint pathsy, d;, ..., q._, from p;(0)

to pj(yh, pj(Y?), ..., pj(¥®), p; (US+1eE;+1)' - +» Pj(Uy-28 ), respectively, of length at
mostn — 1, where

o’ : pj (0 — pj(vie}) > - — pi(y) foris<is<s.

Note t_hatvlq'}l,, LV vSng,_u_Sflelzﬂ, u5+2e{<‘;+2, el uw,le{gi,“_1 are distinct. Then the
following w paths are vertex-disjoint and of length at most

G :0— vl — pj(vief) » - = pj(y)=y forl<iss;
g :0— uey; — pai(uie{(:/)—) s pa(Y) =y fors+1l<i<w-—1;
Qu 00— Pa,(0) = Pa, (UuER ) = --- = Pa, (Y) =Y.

Case2 yi=Yyo= --=y¥=j > 0. Use the argument in Case 1 to obtaintheertex-
disjoint paths from 0 tqo(y?), y2, ..., y* of length at mosh. In fact, the path from 0 to
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Po(yl) is of length at mosh — 1. Replace this path by adding vertgkat the end to get
the desired paths.

Case3 yj=y2=---=y¥=]j=0. SinceGj tisisomorphictdz"~?, the claim follows
from Lemma 9 and Proposition 1. U

Lemmas 9 and 10 and Propositions 1 and 2 lead to the following theorem.
Theorem 11. If m; > 2 forO<i <n—1,then

ry(GHMp_1, ..., Mg)) =ri (GH(My_1, ..., Mp))

n, forl<w<n-1;
n, for w =n and the existence of at least two m 3;
n+1, forw=n and the existence of at most ongm3;

n+1 forn+l<w< Zi”j)(mi - 1.
5. Folded hypercube networks

A folded hypercube network RH) (see (El-Amawy and Latifi, 1991)) is a graph whose
vertices are binary sequences- (Xp_1, Xn—2, - . ., Xo) With x;, =0 or 1 for O<i <n —1,

and two vertices are adjacent if and only if they differ by exactly one coordinate or by
all coordinates. Folded hypercubes are enhancements of hypercubes. They are basic:
binary hypercubes augmented by extonplement edgeghose two end vertices differ by

all coordinates. El-Amawy and Latifi (1991) showed that the diam#tEH(n)) = f%};

Duh et al. (1995) thad, 1 (FH(n)) = [%1 + 1. The above result and the fact that each vertex
has degrea+ 1 in FH(n) imply k(FH(n)) =n+ 1. In this section we considé&,, (FH(n)),

d,, (FH(N)), r, (FH(N)) andr (FH(n)) forn > 2 and 1I<w <n + 1.

Theorem 12. Ifn > 2,then

D, (FH(n)) =d, (FH(n)) = {
31+1, forf3l<w<n+1

Proof:  Wefirst claim that for any two vertices FH(n), there exisf 5] — 1 vertex-disjoint
paths of length atmo$t 1. Since the graph is vertex-transitive, it suffices to prove the claim
forvertices0=(0, 0, ..., 0)andx = (Xn_1, Xn_2, . . . , X0). Suppos& has exactlk nonzero
coordinates, say =1 for0<i <k —1andx; =0fork<i<n-1. Construcif%} -1
vertex-disjoint Ox pathsqo, @y, ..., dr1-2 as follows. Lete) =(1,1,...,1). Suppose
i1,i2,...,ir are (notnecessarily distinct) nonnegative integers. Denatebyel, . . ., €))

the path from O tozrj _1 e,”J , Where additions are performed modulo 2,

r
O—>q’1—>q’l+q2—>---—>2g'}.

j=1
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The desired 571 — 1 paths are:

G : (€0, €0yq. ... 80 1 €06, .... el ;) forO<s<k—landk < [}];

s : (e, b €], ....ef_;.€l)) fork<s=<[3]—2

O - (€ i &prenr oo R g €y y)) forO<s<n—kandk > [31;
Os - ((e. & €. &g &)) forn—k+1<s=<[5]—2andk > [3].

Note that eaclgs has a length of at most 1. Thereforedrgw_l(FH(n)) < T3

d[ 1—1(FH()) < [ 1, along Withd(FH(n))_( 1 (see (EI-Amawy and Latifi, 1991))
and Proposmon 1, Ieads o, (FH(n)=d, (FH(n)) = f Tforl<w < { 71— 1.

Letx = Z, ]o e andS—{q 0<i<[31-2. Thendem) s(0, x)—( 1+1,and
so, Dray(FH(n)) > 31+ 1. This, along W|thdn+1(FH(n)) <[51+1(see (Duh etal.,
1995)) and Proposition 1, leadsy, (FH(n)) =d, (FH(n)) = [51+1for[§]1 <w <n+1.

O

Corollary 13. If n > 2,then

31, forl<w <[5]-1,

Fx(FH(M)) = 1o (FH(N) = { ?
31+1, forf31<w<n+1

Determining the exact values gf (FH(n)) andr,,(FH(n)) remains an open question.

6. WAK-Recursive networks

WK-Recursive networks W t) were proposed by Vecchia and Sanges (1988) as a general
class of recursively scalable network topologies for message-passing architectures. Th

vertex set ofWK(d, t) is {(Xt,...,X1):0<x < d—1forl<i<t}, and a vertexx =
Xty v e s X1) is adjacent to the following two types of vertices:

(1) K, ..., %2, X1), wherex; # x; and 0<x; <d —1,

(2) X, .- X1, X1, ()71 when X # Xi_1=X_p=--- =1, where (x)' ! re-

presents — 1 consecutive;’s

Anopen edg&hose one end vertex is unspecified isincidenko. . ., x1) if X, =X;_1 =
.. =X;. Foreach I i <t, avertexx = (X, ..., X1) is called an-frontier if x= (X, ...,
Xi+1, (X)"). So,WK(d, 1) is ad-complete graph augumented tyopen edges, each at a
vertex; andwK(d, t) witht > 2 is composed ofl WK(d,t — 1)'s that are connected by
edges of type (2).

Chen and Duh (1994) showed tha¢WK(d, t)) =2' — 1, k(WK(d, t))=d —1, dg_1
(WK(d, t))=3-2'-1 -1, and the distance between any twotdfontiers is 2 —1. In
this section we considé,, (WK(d, t)), d,,(WK(d, t)), r, (WK(d, t)) andr} (WK(d, t)) for
t>landl<w<d-1.
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For convenience, léB' = WK(d, t) andG!~* be the subgraph a' induced byV,'~* =
{x e V(GY : x,=i}for0<i <d — 1. Note that eacﬁ;i“l is isomorphic toVK(d, t — 1)
according to the natural mapping: X;_1, ..., X1) = (X_1, ..., X1).

Lemma 14. Supposel<w <d — 1. If x1,x2,...,x" are w (not necessarily distinpt
vertices and 37 y2, ..., y” are w distinct t-frontiers then there existv vertex-disjoint
paths g from X to y' (for 1 <i <w) each of length at mo&¥ — 1.

Proof: We prove the lemma by induction dn The proof is trivial fort=1. As-
sume the lemma holds fdr— 1 and we consider the case bf Let X' = (xti, L xil)
andy' = ((y)") for 1<i < w. Without loss of generality, we may assume that there exists
O0<w<w such thaty! =x! for 1<i <w andy} # x! forw+1<i<wand1<j<w.
Definey' = (x!, (y})!™1) for 1 <i < w. According to the induction hypothesis, for any fixed
0<j <d-—1andthose' andy' with x! = j, there exist vertex-disjoint patt@s from x'

to §' of length at most2* — 1in G{ .

For thosd such thaty' =y', i.e., 1<i <w, we use&j for ¢, which is of length at most
2' — 1. For thosd such thaty'  y', i.e.,w + 1<i <w, letq/ be a shortest path from
o, (xHtH toy' in th ! Note thatg has a length of at most 2 — 1 and the end vertex
of G is adjacent to the starting vertexgff Therefore, the concatenationgfandg; yields
anx'-y' path of length at most'2- 1 in G'. Also, all the paths; are vertex-disjoint. O

Lemmal5. Supposé <w <d. Foranyw (notnecessarily distingvertices x= (x;, ...,
X1), Y1, ..., y*~1, there exist d— w t-frontiers y*, ..., y9~1in G!, that are different from
(%)Y, x, y*, ..., y*~1 and there exist d- 1 vertex-disjoint paths;gfrom x to y (for
1 < i <d — 1) such that each;chas a length of at mo&- 2'-* — 1 (resp, 2 — 1) when
l<i<w-1(esp,w=<i=<d-1).

Proof: We prove the lemma by induction dn The proof is trivial fort =1. Suppose
the lemma holds fot — 1 and we consider the casetof Without loss of generality, we
may assume that =x for 1<i <w — 1 andy} # x forw<i <w — 1. Lety' =y for
1<i <w — 1. According to the induction hypothesis, there exist w (t — 1)-frontiers
yu, yo o 9 tin GLL, that are different from((x)"), X, Y2, ..., P71, andd — 1
vertex-disjoint pathgj from x toy; for 1 < i <d — 1, such that eachj has a length of
atmost 3 22 — 1 (resp., & — 1) for 1<i <w — 1 (resp.,w <i <d — 1). Without
loss of generality, we may assurge= (x;, (@ )!"1), where O<a' <d — 1 anda' # X,
forw <i <d — 1 and there exist® — 1<s<w — 1, such thatl =y forw <i <s, and
a' # ytJ fors+1<i <d—landw < j <w-—1. Definey' =@, (x)" 1) forw<i <sand
¥ =y}, @) l)fors+1<| <w-1. So, |fy th 1forsome andj, withw <i <w—1
and 0<j=<d — 1, theny' eV/ " andy' is a (t — 1)-frontier of G{*. According to
Lemma 14, for ally’ and§' in Vt Lwith j # x, there exist pathq, from y' toy' of
length at most2® — 1 in Gi ™

For thosd such thalyt _xt, i.e., 1<i <w — 1, we usgj for g, which is of length at
most 3- 21-2 — 1. For thosé such thaty! =a', i.e.,w <i <s, since the end vertex @
is adjacent to the starting vertex §f, the concatenation @ and¢; yields anx-y' path
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g of length at most2=* — 1) + 14+ (2"t — 1) =2 —1<3.2""1 — 1. For those such
thatx, # y! # a', i.e,s+1<i <w — 1, letq/ be a shortest path froa', (x)'?) to
@, (yht=h in G *. Note thatg/ has a length of at most2 — 1; the end vertex ofj

is adjacent to the starting vertex gff, and the end vertex af/ is adjacent to the starting
vertex of¢;. Therefore, the concatenation@f ¢ andg yields anx-y' pathg; of length
atmost(2t — 1) + 14+ 21— 1)+ 14+ (21 —1)=3.2"1 — 1. Finally, for thoseé for
whichw <i <d — 1, we construct the paths fromto d — w t-frontiers in the following
way. Letg/ be a shortest path frora', (x)t1) to (@)Y in G;Tl. Note thatg has a
length of at most 2% — 1 and the end vertex df is adjacent to the starting vertex of
q. Therefore, the concatenation@fandq yields anx-((a')!) pathg; of length at most
@1+ 1+ @1 -1)=2" — 1. Also, all the paths; are vertex-disjoint. O

Corollary 16. Ifd > 2andt> 1,thenr;_;(WK(d,t)) <3-2""1 - 1.

Theorem 17.

D, (WK(d, 1))

d, (WK, 1)) =r,,(WK(d, t) =r; (WK, 1))
2t —1, forw=1,
3.2-1_1  for2<w<d-1

Proof: The case ofv = 1 follows fromd(WK(d, t)) = 2 — 1 (see (Chen and Duh, 1994)).
Now assume 2w <d —1. Letx=((1)") andS={(1, (0)'~1)}. Note that any two
subgraphs5{~* andG',~* of G' are connected only by the edgé, (j)' =), (j. (i)' =)},
whose end vertices aKé — 1)-frontiers of the subgraph they are in. Then any pathq
in WK(d, t) — Smust pass som@, (i)!~1) with 2<i <d — 1, and then in turn, must pass
(i, (0'Y), G, (DY and(l, ()1, which aret — 1)-frontiers inG' . Note that Chen
and Duh (1994) proved that the distance between any #nantiers is 2 — 1 in G'. Thus,
the length ofg is at least2 "' -~ 1) + 1+ 2" -+ 1+ 2 "1-1)=3-20"1-1.
So, Da(WK(d, t)) > 3.2'-1—1. This, along with Propositions 1 and 2 and Corollary
16, leads toD,, (WK(d, t)) = d,, (WK(d, t)) =r,,(WK(d, t) =r* (WK(d, t)) =3 - 21 —1
for2<w=<d-1. a
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