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Abstract. We extend the study on partition properties from the set partition to the graph partition, especially
for the class of connected block graphs which includes trees. We introduce seventeen partition properties and
determine their inter-relations. The notions ofk-consistency andk-sortability were studied in the set partition to
localize the properties, i.e., a global property can be verified through checking local conditions. We carry on these
studies for partitions on connected block graphs. In particular, we completely determine the consistency for all
the seventeen properties.
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1. Introduction

Many optimization problems can be reduced to choosing a partition of a set{1, 2, . . . ,n}
into p parts so as to maximize an objective function. Since the total number of such par-
titions is exponential inn, it will be helpful to identify a smaller class of partitions which
contains an optimal one. Such a class is often characterized by a partition property, e.g.
consecutiveness, order-consecutiveness, nestedness, full nestedness, and so on. The sizes
of the four classes characterized by these properties have been shown to be polynomial
in n.

It is usually easier to verify a partition property locally. For example, for some objec-
tive function, it can be shown that, for any partition, if one rearranges the elements in a
pair of parts in such a way that every element in one part is greater than any element in
the other part (this is the consecutiveness property), then the objective function does not
decrease. The question is: Can we use this “local” result on consecutiveness to infer the
existence of a consecutive optimal partition? While the answer is in the affirmative for
this example, our objective is to treat partition properties in a general framework and find
“local” conditions which guarantee the existence of an optimal partition having a desired
property.

A p-partition is a partition consisting ofp parts. LetQ be a partition property. For a
given p-partitionπ and ak-subpartitionK (k ≤ p), by “Q-sorting K” is meant to rearrange
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the elements in thek parts ofK such that the resultingk-subpartition has propertyQ. Note
that there can be more than one way toQ-sort K .

All the partition properties we study are hereditary: if a partitionπ has propertyQ, then
every subpartition ofπ has propertyQ. A propertyQ is calledk-consistentif Q holds for
π wheneverQ holds for allk-subpartitions ofπ . Let P be a class of partitions. We say that
P satisfies Q k-locally if for everyπ ∈ P and for everyk-subpartitionK of π , there exists a
partition in P which is obtained fromπ by Q-sortingK . We say thatP weakly satisfies Q
k-locally if for everyπ ∈ P with at least onek-subpartition not having the propertyQ, there
exists a partition inP obtained fromπ by Q-sorting ak-subpartition that does not have
Q. A propertyQ is calledk-sortableif there exists a partition inP having Q whenever
P satisfiesQ k-locally. A k-consistent propertyQ is calledstrongly k-sortable if there
exists a partition inP havingQ wheneverP weakly satisfiesQ k-locally. Clearly, strong
k-sortability impliesk-sortability. It is also known (Hwang et al., 1996) thatk-sortability
impliesk-consistency.

Note thatk-consistency andk-sortability are defined independently of any objective
function, and are purely combinatorial notions.k-Sortability is often not easy to prove or
disprove. Since checkingk-consistency is much easier, one may disprovek-sortability by
invalidatingk-consistency.

Hwang and Chang (1998) extended the set partition problem to the graph partition
setting, and viewed the former as a special case of the latter when the graph is a path.
They defined consecutiveness, order-consecutiveness and nestedness for the graph parti-
tion and obtained some enumeration results. In this paper, we studyk-consistency and
(strong)k-sortability for the above three partition properties and their variations on block
graphs.

We conclude this section by briefly indicating how the notion of sortability can be used
in an optimal partition problem (the reader is referred to (Hwang et al., 1996) for more
details). Suppose thatQ is ak-sortable property. Also, suppose that the objective function
f has the following propertyR: for a p-partitionπ and ak-subpartitionK , there exists a
partitionπ ′ obtained fromπ by Q-sortingK such thatf (π ′)≥ f (π ). Then it follows that
the class of optimalp-partitions satisfiesQ k-locally. By k-sortability of Q, there exists
an optimalp-partition havingQ. In the special case thatf is additive, the propertyR is
equivalent to the existence of an optimalk-partition havingQ. So, if Q is k-sortable, the
task of proving the existence of an optimalp-partition havingQ is reduced to establishing
the existence of an optimalk-partition havingQ. The latter is often a relatively simple task
if k is small.

2. Properties of the graph partition

For a given connected graphG(V, E), consider the problem of partitioning a subsetV ′ of
V into p nonempty parts. For a subsetS of V denote by〈S〉 the subgraph induced byS.
A hull of S is a minimal supersetS′ of S such that〈S′〉 is connected. In general,S may
have more than one hull. In this paper, we will only be concerned with a class of graphs,
called block graphs, in which every subset has a unique hull (see Lemma 1 below, also see
(Jamison, 1981)). We will denote the unique hull ofSby H(S).
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A cutpointof a graph is one whose removal increases the number of components. A
nonseparable graphis connected, nontrivial and has no cutpoints. Ablockof a graph is a
maximal nonseparable subgraph. If we take the blocks of a graphG as vertices, then the
intersection graph (with an edge for each pair of intersecting blocks) is calledblock graph
of G. It is well known (Harary, 1972) that a graphG is the block graph of some graph if
and only if every block ofG is complete. In particular, trees are connected block graphs.

A path ischordlessif no two vertices nonconsecutive on the path are adjacent in the
graph.

Lemma 1. For any connected graph G(V, E) the following are equivalent:
(1) G is a block graph.
(2) For any two vertices x and y there exists a unique x-y chordless path.
(3) Every subset S of V has a unique hull.

Proof:
(1)⇒ (2). Suppose, to the contrary, that there exist two distinct chordless pathsp andq

connecting some verticesx andy. By minimizing |p| + |q|, over all such pairs (x, y),
we may assume thatp andq are disjoint. Sox andy are nonadjacent vertices in a block
of G, contradicting assumption (1).

(2)⇒ (3). LetC be a hull ofS. Consider the setS′ consisting of all vertices in the unique
chordlessx-y path for allx, y in S. ThenS′ is a superset ofS and〈S′〉 is connected.
SinceC containsSand〈C〉 is connected, for allx, y in S the unique chordlessx-y path
is in 〈C〉, i.e.,S′ is a subset ofC. By the definition of a hull,C= S′.

(3)⇒ (1). If G is not a block graph, then there exists a block containing two nonad-
jacent vertices. Since a block has no cutpoint, there must exist two distinct chordless
paths connecting these two vertices. But each such path is a hull of the two vertices,
contradicting assumption (3). 2

Consider a connected block graphG(V, E) and a partitionπ of V ′ ⊆V . Let CPdenote
the set of all cutpoints ofG.

Lemma 2. Suppose that A is a part ofπ . Then

H(A)\A⊆CP.

Proof: From the proof of Lemma 1〈H(A)〉 is the union of all chordless paths connecting
pairs of vertices ofA. Lemma 2 then follows from the fact that all internal vertices on the
unique chordless path fromx to y are cutpoints. 2

For a given connected block graphG(V, E) and a partitionπ of V ′ ⊆V , part A is said
to penetratepart B, writtenA→ B, if A∩ H(B) 6= ∅. The penetration is calledinclusive,
written A ↪→ B, if A⊆ H(B). Thepenetration graph g(π) of π is a digraph with parts
as nodes and penetrations as links. A partitionπ is callednested(N) if g(π) is acyclic;
π is calledtransitivity-nested(T) if g(π) is a partial order. Two special cases ofT are:
fully nested(F), when the partial order is linear; and consecutive(C), wheng(π) has no
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link. A partition is calledinclusive(I ) if A→ B implies A ↪→ B; and calleddisjoint (D)
if A and B not penetrating each other impliesH(A)∩ H(B)=∅. Note that transitivity
could be separated from nestedness to become an independent property, but this property
is essentially captured byI in the current context. It should also be noted ifV ′ =V , then
C always impliesD.

Lemma 3. Inclusive penetration defines a partial order on the parts of a partition.

Proof: It is easily seen thatA⊆ H(B) implies H(A) ⊆ H(B). Hence inclusive penetra-
tion is transitive. It suffices to prove that inclusive penetration is asymmetric. Suppose to
the contrary thatA⊆ H(B) and B⊆ H(A). ThenH(A)= H(B). Clearly, there exists a
vertexx ∈ A which is not a cutpoint of〈H(A)〉. SinceA∩ B=∅, x /∈ B. Hence〈H(B)\x〉
is still connected and containsB, contradicting the definition ofH(B). 2

Corollary 1. I implies T .

The properties can be combined, but some of the combinations are redundant. For exam-
ple, inclusiveness, inclusive nestedness and inclusive transitivity-nestedness are the same
thing and we will only use the first term. Furthermore, the definition of consecutiveness is
not affected by the notion of inclusiveness, so inclusive consecutiveness is not needed. On
the other hand, inclusive full nestedness (IF ) is a legitimate property. The notion of disjoint-
ness does not affect the definitions ofF andIF. But we do havedisjoint nestedness(DN),
disjoint transitivity-nestedness(DT), disjoint inclusive(DI ) anddisjoint consecutiveness
(DC).

We now define some properties which treat the partition as an ordered partition. A
partition is calledorder-consecutive(O) if the parts can be labeledV1, . . . ,Vp such
that Vj 9

⋃k
i=1 Vi for all j > k, k= 1, . . . , p − 1. Similarly, we defineinclusive order-

consecutiveness(IO), disjoint order-consecutiveness(DO) anddisjoint inclusive order-
consecutiveness(DIO).

Lemma 4. Suppose that〈⋃i∈I H(Vi )〉 is connected. Then
⋃

i∈I H(Vi )= H(
⋃

i∈I Vi ).

Proof: SinceH(
⋃

i∈I Vi ) containsH(Vi ) for everyi ∈ I , it contains
⋃

i∈I H(Vi ). On the
other hand,Vi is a subset ofH(Vi ), hence

⋃
i∈I Vi is a subset of

⋃
i∈I H(Vi ). Furthermore,

〈⋃i∈I H(Vi )〉 is connected by assumption. It follows thatH(
⋃

i∈I Vi )⊆
⋃

i∈I H(Vi ). 2

Next we extend a characterization result for order-consecutiveness on the path (Hwang
et al., 1996) to the block graph. However, the original proof cannot be easily adapted. A
new approach is required.

Lemma 5. An N p-partition is O if and only if there do not exist four parts V1,V2,V3,

V4, all distinct except possibly V3=V4, such that V1→V3,V2→V4,V3→ (V1∪V2) and
V4→ (V1∪V2).
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Proof:
(i) The “only if ” part. Suppose that anO partition contains four partsV1,V2,V3,V4 as

characterized in Lemma 5. Then the ordering of parts must observe:V1 beforeV3,V2

beforeV4,V3 before eitherV1 or V2, hence beforeV2, andV4 before eitherV1 or V2,
hence beforeV1. It is easily verified that the conditions are inconsistent.

(ii) The “if ” part. Lemma 5 is trivially true forp= 1 and 2. We prove the general case by
induction onp≥ 3. Letπ denote anN p-partition ofV ′. It suffices to prove the exis-
tence of a partA of π such thatA9V ′\A. Since by induction,π\A is anO (p− 1)-
partition ofV ′\A, it follows from A9V ′\A thatπ is anO p-partition.

Sinceg(π) is acyclic, there exists a minimal partB (a part having no inlink ing(π)) in
π . We consider two cases:

Case 1. Bis the only minimal part. By induction, there exists a partA in π\B such
that A9V ′\(A∪ B). Since p≥ 3, there exist parts other thanA and B. Furthermore,
since B is the unique minimal part, all these other parts must be penetrated by some
parts, and one of them, sayC, must be penetrated byB. Thus〈H(B)∪ H(V ′\(A∪ B))〉 is
connected sinceH(V ′\(A∪ B)) containsH(C)which contains a point ofB. By Lemma 4,
H(B)∪ H(V ′\(A∪ B))= H(V ′\A). SinceA∩ H(B)=∅ and A∩ H(V ′\(A∩ B))=∅,
it follows A∩ H(V ′\A)=∅, i.e., A9V ′\A andA is the part we look for.

Case 2.There exist two minimal partsB1 andB2. By induction, there exists a partAi ,
i ∈ {1, 2}, in π\Bi such thatAi 9V ′\(Ai ∪ Bi ). If Ai 9V ′\Ai for either i , then we are
done. So assumeAi →V ′\Ai for both i .

A vertex ν ∈ (Ai ∩ H(V ′\Ai )) is a cutpoint of〈H(V ′\Ai )〉 (cf. Lemma 2). Note that
Bi and V ′\(Ai ∪ Bi ) are in two different components of〈H(V ′\Ai )〉\ν, (otherwise
H(V ′\Ai )= H(Bi ∪ (V ′\(Ai ∪ Bi )))⊂ H(V ′\A)i )\ν, a contradiction). LetCi denote the
component containingV ′\(Ai ∪ Bi ). SinceCi is connected toν, which is in H(A),
〈Ci ∪ H(Ai )〉 is a connected graph containing all vertices inV ′\Bi but no vertex ofBi . If
Bi 9 Ai , thenBi is the part we look for (i.e.Bi 9V ′\Bi ). Thus we may assumeBi → Ai

for both i . It is easily verified thatB1, B2, A1, A2 are distinct except perhapsA1= A2.
By the 4-part condition of Lemma 5,Ai 9 (B1∪ B2) for at least onei . Let it be A1. So
we haveA19 B1∪ B2 and A19V ′\(A1∪ B1). But 〈H(B1∪ B2)∪ H(V ′\(A1∪ B1))〉 is
a connected graph sinceB2 is in bothB1∪ B2 andV ′\(A1∪ B1). By Lemma 4,

H(B1∪ B2)∪ H(V ′\(A1∪ B1))= H(V ′\A1).

It follows A19V ′\A1 andA1 is the part we look for. 2

Corollary 2. Lemma5 remains valid if N and O are replacedαN andαO, respectively,
whereα ∈ {D, I ,DI}.

Corollary 3. C implies O.

LetB denote the set of properties{F,C, T,O, N, D, I }.
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Figure 1. Relations among members ofB .

Theorem 1. The relations among members ofB are characterized in Figure1 (x⇒ y
means x implies y).

Proof: F⇒ T,C⇒ I , F⇒ D, T⇒ N and O⇒ N are obvious. I ⇒ T was given by
Corollary 1 andC⇒O by Corollary 3. We prove the relationF⇒O. Let π be anF
partition with partsV1, . . . ,Vp such thatVi →Vj for i < j . Suppose to the contrary that the
4-part condition in Lemma 5 is violated, i.e., there exist distincti, j, k, l (except possibly
k= l ) such thatVi →Vk,Vj →Vl , Vk→Vi ∪Vj andVl→Vi ∪Vj . Theni < k and j < l .
Without loss of generality, assumek ≤ l . Theni < l . SoVl penetrates neitherVi norVj ; or
equivalently,Vl ∩ (H(Vi )∪ H(Vj ))=∅. But〈H(Vi )∪ H(Vj )〉 is a connected graph; hence
H(Vi )∪ H(Vj )= H(Vi ∪Vj ) by Lemma 4. It followsVl ∩ H(Vi ∪Vj )=∅, contradicting
the assumptionVl→Vi ∪Vj .

Nextweprove thenonimplicationpart. It suffices toproveF; I , D; N, O; T,C; D
and I ;O. Figure 2 shows these examples. 2

Figure 2. Examples of nonimplications.
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Figure 3. The associated relations.

The relations shown in Figure 3 hold for anyb∈B\{I , D}. Combining Figures 1 and 3,
we obtain the relations on the 17 properties. It is easily verified that all valid implications
are included in Figure 4.

Figure 4. Relations among members of extendedB .

3. Consistency

Clearly, k-consistency impliesk′-consistency for anyk′> k. We now give some results
on the minimum consistency index of a propertyQ, which is defined as inf{k : Q is
k-consistent}, the infimum of the empty set being∞.

Theorem 2.
(i) The minimum consistency index for I, D,DI,C,DC, and IF is2.
(ii) The minimum consistency index for T,DT and F is3.
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(iii) The minimum consistency index for IO,TO,DIO and DTO is4.
(iv) The minimum consistency index for N,DN,O and DO is∞.

Proof:
(i) The results forI , D,DI,C andDC follow directly from their definitions. Suppose

that IF holds for any 2-subpartition of a partitionπ . Then g(π) contains no 2-
cycle. For IF the links in g(π) are of the↪→ type. Suppose there exists a cycle
V1 ↪→V2 ↪→ · · · ↪→Vk ↪→V1 in g(π) for k≥ 3. Since↪→ is transitive, the cycle im-
pliesV1 ↪→Vk ↪→V1, contradicting the assumption of no 2-cycle. Therefore,g(π) is
a partial order. Also the partial order is linear since every pair of nodes has a link and
no cycle exists.

(ii) The partition in figure 5 is not any ofT,DTandF . But deleting any part, the remaining
2-partition isT andDT and F (in a trivial way). Hence these properties are not 2-
consistent. We now show that they are 3-consistent. Suppose to the contrary thatg(π)
contains a cycleV1→V2→ · · · →Vk→V1 for k≥ 4. By assumption penetration
must be transitive on any three parts. ThusV1→V2→V3 implies V1→V3. Using
the same arguement, eventually we obtainV1→Vk−1→Vk→V1, contradicting the
assumption that penetration is acyclic on three parts.

(iii) It was shown (Hwang et al., to appear) thatIO, TO, DIO andDTOhave the minimum
consistency index 4 for the path. Hence their minimum consistency indices are at least
4 for the connected block graph. Letπ be a partition where every 4-subpartitionK
of π is IO. Then K is I and satisfies the 4-part condition of Lemma 5. Clearly,π

also satisfies the 4-part condition. SinceI is 4-consistent (indeed, 2-consistent),π is
I . SinceI ⇒ N, by Corollary 2,π is IO. The arguments forTO, DIO andDTO are
analogous.

(iv) We now show thatN, DN, O andDO are notk-consistent for anyk> 1. Consider
the example in Figure 5. Any two parts have the specified properties, but not all three
parts. This example can be easily generalized tok> 2 by replacing the triangle in the

Figure 5. A counterexample against 2-consistency.
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middle with a complete graph ofk+ 1 vertices, resulting in a connected block graph
of 2(k+ 1) vertices. 2

4. Sortability

It appears thatk-sortability does not imply, nor is implied by,k′-sortability for k′> k.
However, we are still interested in the minimumk since the smallerk is, the easier it is to
check thek-local condition. For strong sortability we have the following result.

Theorem 3. Let Q be an hereditary property. Suppose that for every connected block
graph G (with vertex-set V), we can construct another connected block graphG̃ (with
vertex-set̃V) containing G so that if K is a k-subpartition of G satisfying Q, then K∪ (Ṽ\V)
is a (k + 1)-subpartition also satisfying Q. Then for the class of connected block graphs,

Q is strongly k′-sortable implies that Q is strongly k-sortable for k′> k.

Proof: It suffices to prove that ifQ is not stronglyk-sortable, then it is not strongly
(k+ 1)-sortable. Suppose thatQ is not stronglyk-sortable. Then there exists a connected
block graphG and a classP of partitions ofV ′ ⊆V which weakly satisfiesQ k-locally, but
does not satisfyQ. Consider the connected block graphG̃ as specified in Theorem 3 and
let P̃ be the class of partitions ofV ′ ∪ (Ṽ\V) by addingṼ\V as a part to every partition
in P. It is easily verified thatP̃ weakly satisfiesQ (k + 1)-locally. But P̃ cannot satisfy
Q for if π̃ were a partition inP̃ satisfyingQ, then sinceQ is hereditary,π̃\(Ṽ\V) would
be a partition inP satisfying Q, a contradiction. ThereforeQ is not strongly(k + 1)-
sortable. 2

Corollary 4. Strong k′-sortability implies strong k-sortability for all properties studied
in this paper whenever k′> k.

Proof: For the propertiesF andIF, let G̃ be obtained fromG by adding a new edge (plus
a new vertex) to every vertex ofG. For all other properties, let̃G be obtained fromG by
adding a new edge (plus a new vertex) to an arbitrary vertex ofG. 2

Logically one should study the maximumk for which Q is stronglyk-sortable. As a
practical matter, it suffices to know ifQ is strongly 2-sortable since it is easier to check the
2-local condition in most applications. It should be noted that Theorem 3 and Corollary 4
are stated in reference to the class of connected block graphs. For a subclass of connected
block graphs, these results may or may not hold.

Theorem 4. DC is strongly 2-sortable.

Proof: For a partitionπ and a partA, let size(A)= |H(A)| − 1 and let size(π) denote
the sum of size(A) over all A in π . Let P be a class of partitions such thatP weakly
satisfiesDC 2-locally. Choose aπ ∈ P. If π is not DC, find aπ ′ ∈ P obtained fromπ
by DC-sorting a 2-subpartition. Ifπ ′ is still not DC, then find anotherπ ′′ ∈ P obtained
from π ′ by DC-sorting a 2-subpartition. We show that at each sorting step, size(π) is
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decreasing. Hence this sorting process must end, which implies that at the end we obtain a
DC partition.

Let A andB be two parts which are not aDC 2-subpartition and areDC-sorted intoA′

andB′. SinceH(A)∩ H(B) 6= ∅, 〈H(A)∪ H(B)〉 is a connected graph containingA∪ B.
By Lemma 4,H(A∪ B)= H(A)∪ H(B). Hence

size(A∪ B) = |H(A)∪ H(B)| − 1.

Therefore,

size(A)+ size(B) = |H(A)| − 1+ |H(B)| − 1

≥ |H(A)∪ H(B)| + 1− 2

= size(A∪ B).

On the other hand,H(A′) andH(B′) are disjoint subsets ofH(A′ ∪ B′)= H(A∪ B). Thus

size(A′)+ size(B′) = |H(A′)| − 1+ |H(B′)| − 1

≤ |H(A∪ B)| − 2

= size(A∪ B)− 1

< size(A)+ size(B). 2

Suppose thatG(V, E) is a connected block graph andP is a class of partitions ofV ′ ⊆V .

Lemma 6. If P satisfies C2-locally, then there exists aπ ∈ P and a part A∈π such that
A and V′\A do not penetrate each other.

Proof: We prove the lemma by induction on the size ofV . Recall thatCP is the set of
cutpoints ofG. DefineCP′ =CP∩V ′.
Case 1. CP′ = ∅. By Lemma 2, for every part A of a partitionπ ∈ P,

H(A)∩ (V ′\A)⊆CP′ = ∅

and

H(V ′\A)∩ A⊆CP′ = ∅.

Case 2. CP′ 6= ∅. Choose any vertexν ∈V not a cutpoint and also choose a vertexu∈CP′

farthest away fromν. Then every component of〈V\u〉 other than the one containing
ν contains no point inCP′ (or u would not be the farthest point inCP′). Let U be
the vertex-set of such a component. Without loss of generality, we will always label
the part containingu (of a partitionπ ) as V1=V1(π). Let π̃ ={Ṽ1, . . . , Ṽp} be a parti-
tion in P such thatU intersects a minimum number of parts other thanṼ1. (Note that
u∈ Ṽ1.)
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Suppose thatU contains vertices in somẽVi 6= Ṽ1. By the 2-local condition, there exists
a partitionπ ′ ∈ P which can be obtained from̃π by C-sorting Ṽ1 and Ṽi into V ′1 andV ′i
(π ′ = π̃ is allowed). Sincẽπ minimizes the number of parts (other thanṼ1) that intersect
U,V ′i ∩U 6= ∅. NecessarilyV ′i ⊂U (or V ′1 would penetrateV ′i ). By Lemma 2,

H(V ′i )∩ (V ′\V ′i )⊆U ∩CP′ = ∅

and

H(V ′\V ′i )∩V ′i ⊆U ∩CP′ = ∅,

i.e., Lemma 6 is proved by takingV ′i as partA (of π ′).
Therefore it suffices to consider the case thatU ∩V ′ ⊆ Ṽ1. DefineG∗ = 〈V\U 〉 (which

remains a connected block graph),V∗ =V\U,V ′∗ =V ′\U and

P∗ = {π∗ = π(V ′∗) : π ∈ P,U ∩V ′ ⊆V1 = V1(π)},

whereπ(V ′∗) denotes the restriction ofπ to V ′∗. Note thatP∗ is nonempty sincẽπ(V ′∗)∈
P∗. We claim that eitherP∗ satisfiesC 2-locally or there exist aπ ∈ P and anA∈π such
that A andV ′\A do not penetrate each other. Letπ(V ′∗)={V∗1 , . . . ,V∗p } ∈ P∗. Consider
i 6= j . If neither i nor j is 1, thenV∗i =Vi and V∗j =Vj . By the 2-local condition on
P, there exists aπ ′ ∈ P which can be obtained fromπ by C-sorting Vi and Vj . Hence
π ′(V ′∗)∈ P∗ andπ ′(V ′∗) can be obtained fromπ(V ′∗) by C-sortingV∗i andV∗j . If i = 1,
thenV∗1 =V1\U andV∗j =Vj . By the 2-local condition onP, there exists aπ ′ ∈ P which
can be obtained fromπ by C-sorting V1 and Vj such thatV ′1 and V ′j do not penetrate
each other. Sinceu∈V ′1, eitherV ′j ⊆U or V ′j ∩U =∅. If V ′j ⊆U , thenV ′j andV ′\Vj do
not penetrate each other (see the argument in the preceding paragraph). IfV ′j ∩U =∅,
then U ∩V ′ ⊆V ′1. Henceπ ′(V ′∗)∈ P∗ and π ′(V ′∗) can be obtained fromπ(V ′∗) by
C-sortingV∗1 andV∗j into V ′1\U andV ′j which do not penetrate each other. This proves the
claim.

So we may assume thatP∗ satisfiesC 2-locally. Since|V∗|< |V |, Lemma 6 holds for
G∗ andV ′∗ by induction. Therefore, there exists aπ(V ′∗)∈ P∗ and a partA∈π(V ′∗) such
that A and V ′∗\A do not penetrate each other. We can writeA=V∗i for somei . Note
that V∗i =Vi for i 6= 1. It is not difficult to see thatVi and V ′\Vi do not penetrate each
other. 2

Theorem 5. C is 2-sortable.

Proof: We prove Theorem 4 by induction on|V ′|. Suppose thatP satisfiesC 2-locally.
By Lemma 6 the setPA={π ∈ P : A ∈ π, A9V ′\A,V ′\A9 A} is not empty for some
A. Define P∗A={π∗ =π(V ′\A) : π ∈ PA}. Then P∗A satisfiesC 2-locally. By induction
there exists aC partitionπ ′ (in P∗A) of V ′\A. Thenπ =π ′ ∪ A is aC partition in P. 2

Unlike consecutiveness, we have only negative results on the sortability of nestedness.
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We show thatI is not strongly 2-sortable by giving a treeT and a classP of partitions
which weakly satisfiesI 2-locally, but does not contain aI partition. LetP consist of the
following four partitions (a vertex is labeled by the part it belongs):

Figure 6. A class of 4 partitions.

In Figure 6(a),A andC are notI , but figure 6(b) gives a partition obtained byI -sorting
A andC. Similarly, partition 6(c) (6(d), 6(a)) is obtained from partition 6(b) (6(c), 6(d)) by
I -sortingB andC (A andC, A andB). So P weakly satisfiesI 2-locally, but none of the
partitions inP is I . This is also an example againstDI being strongly 2-sortable.

Note that figure 6 does not give an example against 2-sortability. Partition 6(b) has two
non-I pairs,(A, B) and(B,C). But P does not contain a partition obtainable from partition
6(b) by I -sortingA andB. Hence,P does not satisfyI 2-locally.

It has been shown (Hwang et al., 1996) thatIF(F) is not 2-sortable for the path. Hence, it
is not 2-sortable for the connected block graph in general. Furthermore, sincek-sortability
impliesk-consistency,DO,O,DN andN are notk-sortable for anyk> 1.

5. Conclusion

We summarize what is known about consistency and sortability for the connected block
graph in Table 1. The entries give the minimumk for which the property in the column is
k-consistent ork-sortable, and answer yes (Y) or no (N) to strong 2-sortability.

Table 1. A summary on the connected block graph.

IF DC DIO C F DI IO DT I DO T DN O N D TO DTO

Consistency 2 2 4 2 3 2 4 3 2 ∞ 3 ∞ ∞ ∞ 2 4 4

Sortability >2 2 >3 2 >2 >3 >2 ∞ >2 ∞ ∞ ∞ >3 >3

Strong 2-sort N Y N N N N N N N N N N N N N
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