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Abstract. We extend the study on partition properties from the set partition to the graph partition, especially
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1. Introduction

Many optimization problems can be reduced to choosing a partition of{d,s&t. .., n}

into p parts so as to maximize an objective function. Since the total number of such par-
titions is exponential im, it will be helpful to identify a smaller class of partitions which
contains an optimal one. Such a class is often characterized by a partition property, e.g
consecutiveness, order-consecutiveness, nestedness, full nestedness, and so on. The s
of the four classes characterized by these properties have been shown to be polynomi:
inn.

It is usually easier to verify a partition property locally. For example, for some objec-
tive function, it can be shown that, for any partition, if one rearranges the elements in a
pair of parts in such a way that every element in one part is greater than any element ir
the other part (this is the consecutiveness property), then the objective function does no
decrease. The question is: Can we use this “local” result on consecutiveness to infer thi
existence of a consecutive optimal partition? While the answer is in the affirmative for
this example, our objective is to treat partition properties in a general framework and find
“local” conditions which guarantee the existence of an optimal partition having a desired
property.

A p-partition is a partition consisting gb parts. LetQ be a partition property. For a
given p-partitionsr and ak-subpartitionk (k < p), by “Q-sorting K’is meant to rearrange
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the elements in thie parts ofK such that the resultinkrsubpartition has propert®. Note
that there can be more than one waygesortK.

All the partition properties we study are hereditary: if a partitiohas propertyQ, then
every subpartition ofr has propertyQ. A propertyQ is calledk-consistentf Q holds for
7 wheneverQ holds for allk-subpartitions ofr. Let P be a class of partitions. We say that
P satisfies Q Kocally if for everyw € P and for everyk-subpartitionK of rz, there exists a
partition in P which is obtained fromr by Q-sortingK . We say thaP weakly satisfies Q
k-locally if for everyw € P with at least on&-subpartition not having the proper, there
exists a partition inP obtained fromr by Q-sorting ak-subpartition that does not have
Q. A property Q is calledk-sortableif there exists a partition iflP having Q whenever
P satisfiesQ k-locally. A k-consistent property is calledstrongly ksortableif there
exists a partition irP having Q wheneverP weakly satisfie€ k-locally. Clearly, strong
k-sortability impliesk-sortability. It is also known (Hwang et al., 1996) thatortability
impliesk-consistency.

Note thatk-consistency andk-sortability are defined independently of any objective
function, and are purely combinatorial notiorksSortability is often not easy to prove or
disprove. Since checkirigrconsistency is much easier, one may disprioeartability by
invalidatingk-consistency.

Hwang and Chang (1998) extended the set partition problem to the graph patrtitiol
setting, and viewed the former as a special case of the latter when the graph is a pat
They defined consecutiveness, order-consecutiveness and nestedness for the graph p:
tion and obtained some enumeration results. In this paper, we &tadpsistency and
(strong)k-sortability for the above three partition properties and their variations on block
graphs.

We conclude this section by briefly indicating how the notion of sortability can be used
in an optimal partition problem (the reader is referred to (Hwang et al., 1996) for more
details). Suppose th& is ak-sortable property. Also, suppose that the objective function
f has the following propertyR: for a p-partitions and ak-subpartitionK , there exists a
partitionz’ obtained fromr by Q-sortingK such thatf (z’) > f (7). Then it follows that
the class of optimap-partitions satisfie€) k-locally. By k-sortability of Q, there exists
an optimalp-partition havingQ. In the special case thdt is additive, the property is
equivalent to the existence of an optinkapartition havingQ. So, if Q is k-sortable, the
task of proving the existence of an optim@partition havingQ is reduced to establishing
the existence of an optimitpartition havingQ. The latter is often a relatively simple task
if kis small.

2. Properties of the graph partition

For a given connected graf(V, E), consider the problem of partitioning a sub¥@étof

V into p nonempty parts. For a subsebf V denote by(S) the subgraph induced b.

A hull of Sis a minimal superse® of S such that(S) is connected. In generag may

have more than one hull. In this paper, we will only be concerned with a class of graphs
called block graphs, in which every subset has a unique hull (see Lemma 1 below, also s
(Jamison, 1981)). We will denote the unique hullSify H (S).
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A cutpointof a graph is one whose removal increases the number of components. A
nonseparable grapts connected, nontrivial and has no cutpointsbléckof a graph is a
maximal nonseparable subgraph. If we take the blocks of a gBaph vertices, then the
intersection graph (with an edge for each pair of intersecting blocks) is datéel graph
of G. Itis well known (Harary, 1972) that a grafh is the block graph of some graph if
and only if every block ofG is complete. In particular, trees are connected block graphs.

A path ischordlessif no two vertices nonconsecutive on the path are adjacent in the
graph.

Lemma 1. For any connected graph &, E) the following are equivalent
(1) G is a block graph.
(2) For any two vertices x and y there exists a unique x-y chordless path.
(3) Every subset S of V has a unique hull.

Proof:

(1) = (2). Suppose, to the contrary, that there exist two distinct chordless pathdq
connecting some verticesandy. By minimizing |p| + |q|, over all such pairsx Yy),
we may assume thgtandq are disjoint. Sox andy are nonadjacent vertices in a block
of G, contradicting assumption (1).

(2) = (3). LetC be a hull ofS. Consider the se$ consisting of all vertices in the unique
chordlessx-y path for allx, y in S. ThenS is a superset 0§ and(S) is connected.
SinceC containsSand(C) is connected, for alk, y in Sthe unique chordless-y path
isin (C), i.e., S is a subset o€. By the definition of a hullC=S.

(3) = (1). If G is not a block graph, then there exists a block containing two nonad-
jacent vertices. Since a block has no cutpoint, there must exist two distinct chordless
paths connecting these two vertices. But each such path is a hull of the two vertices
contradicting assumption (3). O

Consider a connected block gra@iV, E) and a partitionr of V' C V. Let CP denote
the set of all cutpoints oB.

Lemma 2. Suppose that A is a part af. Then
H(A)\ACCP.

Proof: From the proof of Lemma IH (A)) is the union of all chordless paths connecting
pairs of vertices ofA. Lemma 2 then follows from the fact that all internal vertices on the
unique chordless path fromto y are cutpoints. a

For a given connected block gra@(V, E) and a patrtitionr of V' CV, partAis said
to penetratepart B, writtenA— B, if AN H(B) #@. The penetration is calledclusive
written A— B, if AC H(B). Thepenetration graph ¢r) of 7 is a digraph with parts
as nodes and penetrations as links. A partitiois callednested(N) if g() is acyclic;
7 is calledtransitivity-nestedT) if g(xr) is a partial order. Two special casesTofare:
fully nested(F), when the partial order is linear; and consecuti@g, wheng(x) has no
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link. A partition is calledinclusive(l) if A— B implies A< B; and calleddisjoint (D)

if A and B not penetrating each other impliés(A) N H(B) =@. Note that transitivity
could be separated from nestedness to become an independent property, but this prope
is essentially captured blyin the current context. It should also be note¥if=V, then

C always impliesD.

Lemma 3. Inclusive penetration defines a partial order on the parts of a partition.

Proof: Itis easily seen thaf C H(B) impliesH (A) € H(B). Hence inclusive penetra-
tion is transitive. It suffices to prove that inclusive penetration is asymmetric. Suppose tc
the contrary thah C H(B) andB C H(A). ThenH(A)=H(B). Clearly, there exists a
vertexx € A which is not a cutpoint ofH (A)). SinceAN B =, x ¢ B. Hence(H (B)\x)

is still connected and contaiig contradicting the definition ofl (B). O

Corollary 1. | implies T.

The properties can be combined, but some of the combinations are redundant. For exal
ple, inclusiveness, inclusive nestedness and inclusive transitivity-nestedness are the sa
thing and we will only use the first term. Furthermore, the definition of consecutiveness is
not affected by the notion of inclusiveness, so inclusive consecutiveness is not needed. (
the other hand, inclusive full nestednel$s)(is a legitimate property. The notion of disjoint-
ness does not affect the definitionsfofindIF. But we do havalisjoint nestednes®N),
disjoint transitivity-nestedneg®T), disjoint inclusive(DI ) anddisjoint consecutiveness
(DC).

We now define some properties which treat the partition as an ordered partition. A
partition is calledorder-consecutivgO) if the parts can be labele¥dy, ..., V, such
that Vj - Uik=1vi forall j >k, k=1,..., p— 1. Similarly, we defina@nclusive order-
consecutivenesdO), disjoint order-consecutivene¢®O) anddisjoint inclusive order-
consecutiveneg®I0).

Lemma4. Suppose thafl J;., H(V)) is connected. Theln);., H(Vi) =H (U, V).

Proof:  SinceH (| J;, Vi) containsH (V;) for everyi € |, it containg_J;., H(V;). On the
other handy is a subset oH (V;), hence J;, Vi is asubset of J;_., H(V;). Furthermore,
(Uie) H(V)) is connected by assumption. It follows that| ., Vi) € Ui, HM). O

Next we extend a characterization result for order-consecutiveness on the path (Hwar
et al., 1996) to the block graph. However, the original proof cannot be easily adapted. /
new approach is required.

Lemma 5. An N p-partition is O if and only if there do not exist four partg, V-, V3,
V,, all distinct except possibly\= V,, such that Y — V3, Vo — V,, V3 — (V1 U V,) and
V4 — (Vl @] Vz)
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Proof:

(i) The “only if” part. Suppose that a@® partition contains four part®y, Vs, V3, V; as
characterized in Lemma 5. Then the ordering of parts must obs¥peeforeVs, Vs,
beforeV,, V3 before eitheV; or V,, hence beforé&/,, andV, before eitheV; or Vs,
hence beford/;. It is easily verified that the conditions are inconsistent.

(i) The “if” part. Lemma 5 is trivially true forp =1 and 2. We prove the general case by
induction onp > 3. Letzr denote arN p-partition of V'. It suffices to prove the exis-
tence of a parf of = such thatA - V’\ A. Since by inductiong\ Ais anO (p — 1)-
partition of V/\ A, it follows from A-» V'\ Athatx is anO p-partition.

Sinceg(x) is acyclic, there exists a minimal pdt(a part having no inlink irg(zr)) in
7. We consider two cases:

Case 1. Bis the only minimal part. By induction, there exists a pArin 7\ B such
that A—- V'\(AU B). Since p> 3, there exist parts other thah and B. Furthermore,
since B is the unique minimal part, all these other parts must be penetrated by some
parts, and one of them, s&; must be penetrated 8. Thus(H (B) U H(V/\(AU B))) is
connected sincel (V'\ (AU B)) containsH (C) which contains a point oB. By Lemma 4,
H(B)UH(V'\(AUB))=H(V'\A). SinceANH(B)=¢ andAnH(V'\(AN B)) =4,
it follows AN H(V'\A) =4, i.e., A~ V'\AandA is the part we look for.

Case 2.There exist two minimal partB; and B,. By induction, there exists a pa,
i €{1, 2}, in 7\B; such thatA; -» V'\(A U B;)). If A, - V'\ A for eitheri, then we are
done. So assum&; — V'\ A for bothi.

A vertexv e (Ai N H(V'\A)) is a cutpoint of(H(V'\ A)) (cf. Lemma 2). Note that
B and V/\(A UB;) are in two different components afH (V'\A))\v, (otherwise
H(V\A)=H(B UV\(A UB))) c H(V'\A))\v, a contradiction). Le€; denote the
component containingy’\ (A; U Bj). SinceC; is connected tas, which is in H(A),
(Ci UH(A)) is a connected graph containing all verticed/i B; but no vertex ofg;. If
Bi -~ A, thenB; is the part we look for (i.eB;j - V'\ B;). Thus we may assun@ — A
for bothi. It is easily verified thatB;, By, A;, A, are distinct except perhaps, = A,.
By the 4-part condition of Lemma 5 - (B, U By) for at least oné. Let it be A;. So
we haveA; - B; U By, and A; » V,\(Al UBy). But(H(BiUB;)UH (V/\(Al UBy))) is
a connected graph sin@& is in bothB; U B, andV’\ (A; U B;). By Lemma 4,

H(B1UB) UH(V'\(A1UB1)=H(V\Ayp.
It follows A; -+ V/\ A; and A, is the part we look for. |

Corollary 2. Lemmab remains valid if N and O are replacedN anda O, respectively
wherea € {D, I, DI}.

Corollary 3. C implies O.

Let B denote the set of properti¢s, C, T, O, N, D, | }.
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Figure L Relations among members Bf.

Theorem 1. The relations among membersBf are characterized in Figurd (x =y
means x implies)y

Proof: F=T,C=I,F=D,T= N andO = N are obvious.| = T was given by
Corollary 1 andC = O by Corollary 3. We prove the relatioh = O. Letx be anF
partition with partsvs, . .., Vpsuchthay; — V; fori < j. Suppose to the contrary that the
4-part condition in Lemma 5 is violated, i.e., there exist distingt k, | (except possibly
k=I) such thaV; — V, V; = W, Vk = Vi UV andV, — V, UV;. Theni < kandj <.
Without loss of generality, assurke< |. Theni < 1. SoV| penetrates neith&f norV;; or
equivalentlyM N (H (Vi) UH (V) =@. But(H(V;) U H(V))) is aconnected graph; hence
H(V)UH(V;)=H(V, UV)) by Lemma 4. It followsvi N H(V; UV;) =, contradicting
the assumptioV, — V; U V;.

Nextwe prove the nonimplication part. It sufficestopréve- 1, D=+ N,O=T,C =% D

andl = O. Figure 2 shows these examples. m]
B 'Y A OC' lIB A
B
B
A e—e4 g 4 b B Ao—»—oA A
A
C
B e B A o L) A
FAT D#AN 04T C#D 140

Figure 2 Examples of nonimplications.
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DIb

Ib

Figure 3 The associated relations.

The relations shown in Figure 3 hold for angB \{I, D}. Combining Figures 1 and 3,
we obtain the relations on the 17 properties. It is easily verified that all valid implications
are included in Figure 4.

Y,
\J N 16 / S o)
pDI==(I) DO =>l£
[F=r =D SN \'v
() D

(Q) indicates that @) has appeared elsewhere in the figure

Figure 4 Relations among members of extend&d

3. Consistency

Clearly, k-consistency implie&’-consistency for ank’ > k. We now give some results
on the minimum consistency index of a propef®y which is defined as ifk: Q is
k-consistent, the infimum of the empty set being.

Theorem 2.
(i) The minimum consistency index forD, DI, C, DC, and IF is2.
(i) The minimum consistency index forDT and F is3.
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(iif) The minimum consistency index for, 0D, DIO and DTO is4.
(iv) The minimum consistency index for DN, O and DO isco.

Proof:

(i) The results forl, D, DI, C andDC follow directly from their definitions. Suppose
that IF holds for any 2-subpartition of a partitiom. Theng(wr) contains no 2-
cycle. ForlF the links ing(x) are of the— type. Suppose there exists a cycle
Vi Vo ... — V< V;in g(x) for k > 3. Since— is transitive, the cycle im-
pliesV; — Vi — Vi, contradicting the assumption of no 2-cycle. Therefgfe,) is
a partial order. Also the partial order is linear since every pair of nodes has a link anc
no cycle exists.

(ii) The partitioninfigure 5is notany &f, DT andF. But deleting any part, the remaining
2-partition isT andDT and F (in a trivial way). Hence these properties are not 2-
consistent. We now show that they are 3-consistent. Suppose to the contrapyrthat
contains a cycle/; > Vo — - -« — Vg — V; for k>4. By assumption penetration
must be transitive on any three parts. Thgs—~> V, — V3 implies V1 — V3. Using
the same arguement, eventually we obtdjin> Vi_1 — Vk — V1, contradicting the
assumption that penetration is acyclic on three parts.

(i) 1t was shown (Hwang et al., to appear) thé, TO, DIO andDTO have the minimum
consistency index 4 for the path. Hence their minimum consistency indices are at lea:
4 for the connected block graph. Letbe a partition where every 4-subpartitih
of 7 is10. ThenK is | and satisfies the 4-part condition of Lemma 5. Cleatly,
also satisfies the 4-part condition. Sinces 4-consistent (indeed, 2-consistent)is
I. Sincel = N, by Corollary 2,7 is 10. The arguments fofO, DIO andDTO are
analogous.

(iv) We now show thaiN, DN, O andDO are notk-consistent for ank > 1. Consider
the example in Figure 5. Any two parts have the specified properties, but not all three
parts. This example can be easily generalizedta2 by replacing the triangle in the

A

Figure 5 A counterexample against 2-consistency.



BLOCK GRAPHS 437

middle with a complete graph &f+ 1 vertices, resulting in a connected block graph
of 2(k + 1) vertices. m]

4. Sortability

It appears thak-sortability does not imply, nor is implied b’ -sortability for k' > k.
However, we are still interested in the minimunsince the smallek is, the easier it is to
check thek-local condition. For strong sortability we have the following result.

Theorem 3. Let Q be an hereditary property. Suppose that for every connected block
graph G (with vertex-set Y, we can construct another connected block gr&bhwnh
vertex-seV) containing G so that if K is a k-subpartition of G satisfyingt@en KU (V\V)

is a (k + 1)-subpartition also satisfying Q. Then for the class of connected block graphs
Q is strongly k-sortable implies that Q is strongly k-sortable farkk.

Proof: It suffices to prove that iQ is not stronglyk-sortable, then it is not strongly
(k + 1)-sortable. Suppose th&t is not stronglyk-sortable. Then there exists a connected
block graphG and a clas® of partitions ofV’ C V which weakly satisfie® k-locally, but
does not satisfyQ. Consider the connected block graphas specified in Theorem 3 and
let P be the class of partitions &' U (V\V) by addingV\V as a part to every partition
in P. Itis easily verified thab weakly satisfieqQ (k + 1)-locally. But P cannot satisfy

Q for if 7 were a partition inP satisfyingQ, then sinceQ is hereditary;7\ (V\V) would

be a partition inP satisfying Q, a contradiction. Therefor® is not strongly(k + 1)-
sortable. O

Corollary 4. Strong K-sortability implies strong k-sortability for all properties studied
in this paper whenever k- k.

Proof: For the propertie§ andIF, letG be obtained fronG by adding a new edge (plus
a new vertex) to every vertex @. For all other properties, &b be obtained fronG by
adding a new edge (plus a new vertex) to an arbitrary vertéx. of a

Logically one should study the maximuknfor which Q is stronglyk-sortable. As a
practical matter, it suffices to know @ is strongly 2-sortable since it is easier to check the
2-local condition in most applications. It should be noted that Theorem 3 and Corollary 4
are stated in reference to the class of connected block graphs. For a subclass of connect
block graphs, these results may or may not hold.

Theorem 4. DC is strongly 2-sortable.

Proof: For a partitionr and a partA, let siz6€ A)=|H(A)| — 1 and let sizér) denote
the sum of siz€A) over all A in 7. Let P be a class of partitions such thBat weakly
satisfiesDC 2-locally. Choose ar € P. If 7 is notDC, find ax’ € P obtained fromnr
by DC-sorting a 2-subpartition. i’ is still not DC, then find anothet” € P obtained
from =’ by DC-sorting a 2-subpartition. We show that at each sorting step(rside
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decreasing. Hence this sorting process must end, which implies that at the end we obtair
DC patrtition.

Let A andB be two parts which are notRC 2-subpartition and arBC-sorted intoA’
andB’. SinceH(A)NH(B) #4d, (H(A) UH(B)) is a connected graph containirgJ B.
By Lemma 4,H(AUB)=H(A)UH(B). Hence

siz AUB) = |[H(A)UH(B)| — 1.
Therefore,

size(A) + sizeB) = |[H(A)| — 1+ |H(B)| — 1
> |H(AAUHB)|+1-2
= sizg(AU B).

On the other handil (A’) andH (B’) are disjoint subsets ¢ (A’ U B’) = H(AU B). Thus

sizgA) +sizgB) = |H(A)| -1+ |H(B)| -1
<|H(AUB)| -2
=sizd AUB) -1
< sizeA) + sizeB). O

Suppose thas (V, E) is a connected block graph afds a class of partitions 6f’ C V.

Lemma 6. If P satisfies @-locally, then there exists & € P and a part Ac = such that
A and V\ A do not penetrate each other.

Proof: We prove the lemma by induction on the size\af Recall thatCP is the set of
cutpoints ofG. DefineCP' =CPN V',
Case 1 CP =¢. By Lemma 2, for every part A of a partitione P,

H(ANNV\A CCP =0
and
H(V\A) NACCP =¢.

Case 2. CP#(). Choose any vertex e V not a cutpoint and also choose a vertex CP
farthest away fromv. Then every component dfV\u) other than the one containing

v contains no point inCP' (or u would not be the farthest point i€P). Let U be

the vertex-set of such a component. Without loss of generality, we will always label
the part containingi (of a partitionr) asVy = Vi(r). Let 7 = {V4, ...,\7p} be a parti-
tion in P such thatU intersects a minimum number of parts other than (Note that

ue Vj_)
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Suppose thatl contains vertices in somé # Vi. By the 2-local condition, there exists
a partitionz’ € P which can be obtained fror by C-sortingV; andV; into V; andV;/
(n' =7 is allowed). Sincer minimizes the number of parts (other they) that intersect
U,V NU #0@. Necessarilyyy C U (or V] would penetraté/’). By Lemma 2,

HNV)NNV\V)SUNCP =0
and
H(V\V))NV/CUNCP =g,

i.e., Lemma 6 is proved by taking’ as partA (of z').
Therefore it suffices to consider the case that V' C V,. DefineG* = (V\U) (which
remains a connected block grap¥); =V\U, V*=V"\U and

P*={r*=n(V*) :m e P,UNV' CV; = Vi(m)},

wherer (V'*) denotes the restriction af to V*. Note thatP* is nonempty sinc& (V'*) €
P*. We claim that eitheP* satisfiesC 2-locally or there exist & € P and anA ez such
that A andV"\ A do not penetrate each other. letvV"™) ={Vf, ..., V;} € P*. Consider
i #j. If neitheri nor j is 1, thenVj*=V; and V*=V;,. By the 2-local condition on
P, there exists a’e P which can be obtained from by C-sortingV; andV;. Hence
7'(V™*) e P* andx’(V™*) can be obtained from (V’*) by C-sorting V;* ande*. Ifi=1,
thenVy =V1\U andV; = V;. By the 2-local condition orP, there exists a’ € P which
can be obtained fronr by C-sortingV; andV;j such thatv; andV{ do not penetrate
each other. Sinca e V], eitheer’ cU or VJ-’ NU =4d. If VJ-’ cu, thenV]-’ andV’\V; do
not penetrate each other (see the argument in the preceding paragraqh)\ Uf=g,
thenUNV’'CV,. Hencex'(V*)e P* andx'(V"*) can be obtained frome (V™) by
C-sortingV;" andV;* into V/\U andV; which do not penetrate each other. This proves the
claim.

So we may assume th&* satisfiesC 2-locally. Since|V*| < |V|, Lemma 6 holds for
G* andV’™ by induction. Therefore, there exista&V'*) € P* and a partA € 7 (V') such
that A and V"*\ A do not penetrate each other. We can wite- V;* for somei. Note
that Vi* =V, for i 1. It is not difficult to see tha¥; andV’\V, do not penetrate each
other. O

Theorem 5. C is 2-sortable.

Proof: We prove Theorem 4 by induction ¢W’|. Suppose thaP satisfiesC 2-locally.
By Lemma6thesePpn={r P : Aecn, A»V'\A, V\A—- A} is not empty for some
A. DefineP; ={n*=n(V'\A) : m € Pa}. ThenP} satisfiesC 2-locally. By induction
there exists & partitions’ (in Py) of V'\A. Thenz =x'U Ais aC partitoninP. O

Unlike consecutiveness, we have only negative results on the sortability of nestedness.
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We show that is not strongly 2-sortable by giving a tr@eand a clas$® of partitions
which weakly satisfie$ 2-locally, but does not containlapartition. LetP consist of the
following four partitions (a vertex is labeled by the part it belongs):

A B B AC A B B CUC ACBBC AADBBC

1T I T T

A AC ACC ACC AAC
(a) (6) () (d)

Figure 6 A class of 4 partitions.

In Figure 6(a),A andC are notl, but figure 6(b) gives a partition obtained bysorting
AandC. Similarly, partition 6(c) (6(d), 6(a)) is obtained from partition 6(b) (6(c), 6(d)) by
| -sortingB andC (A andC, A andB). So P weakly satisfied 2-locally, but none of the
partitions inP is | . This is also an example agairi3t being strongly 2-sortable.

Note that figure 6 does not give an example against 2-sortability. Partition 6(b) has twt
non-l pairs,(A, B) and(B, C). But P does not contain a partition obtainable from partition
6(b) by | -sorting A andB. Hence,P does not satisfy 2-locally.

It has been shown (Hwang et al., 1996) thatF) is not 2-sortable for the path. Hence, it
is not 2-sortable for the connected block graph in general. Furthermore ksgaréability
impliesk-consistencyDO, O, DN andN are notk-sortable for ank > 1.

5. Conclusion
We summarize what is known about consistency and sortability for the connected blocl

graph in Table 1. The entries give the minimlrfor which the property in the column is
k-consistent ok-sortable, and answer yes (Y) or no (N) to strong 2-sortability.

Table 1 A summary on the connected block graph.

IF bC DIO C F DI IO DT | DO T DN O N D TO DTO
Consistency 2 2 4 2 3 2 4 3 2 3 00 o oo 2 4 4
Sortability >2 2 >3 2 =2 >3 >2 00 =2 00 00 00 >3 >3
Strong 2-sort N Y N N N N N N N N N N N N N
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