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Abstract. Suppose G is a connected, k-regular graph such that Spec�G� � Spec�G� where G
is a distance-regular graph of diameter d with parameters a1 � a2 � � � � � adÿ1 � 0 and
ad > 0; i.e., a generalized odd graph, we show that G must be distance-regular with the
same intersection array as that of G in terms of the notion of Ho¨man Polynomials. Fur-
thermore, G is isomorphic to G if G is one of the odd polygon C2d�1, the Odd graph Od�1,
the folded �2d � 1�-cube, the coset graph of binary Golay code �d � 3�, the Ho¨man-
Singleton graph �d � 2�, the Gewirtz graph �d � 2�, the Higman-Sims graph �d � 2�, or
the second subconstituent of the Higman-Sims graph �d � 2�.

1. Introduction

We shall consider only ®nite undirected graphs without loops and multiple edges.
Let G � �V�G�;E�G�� be a connected, k-regular graph and A an adjacency matrix
of G, which is row-indexed, as well as column-indexed by the vertices of G; also let
Ai be the usual matrix product of i copies of A, and Ai�x; y� be the entry of Ai at
row x and column y. Suppose l is an eigenvalue of A, then, since A is symmetric,
l is real, and the multiplicity of l as a root of the characteristic equation
det�lI ÿ A� � 0 is equal to the dimension of the eigenspace corresponding to l.
The spectrum of A is also called the spectrum of the graph G, denoted by

Spec�G� � �km0 ; ym1

1 ; . . . ; ymsÿ1
sÿ1 �

where k�� y0� > y1 > � � � > ysÿ1 are distinct eigenvalues together with their
multiplicities m0 � 1, m1; . . . , and msÿ1 respectively; refer to [3, 5] for more details.

Now assume G is a connected graph with diameter d, let G i�x� � fy jy A V�G�
and d�x; y� � ig, where V�G� is the vertex set of G and d�x; y� is the distance be-
tween vertices x and y. G is called distance-regular if the parameters ci �
jG iÿ1�x�VG1�y�j, ai � jG i�x�VG1�y�j and bi � jG i�1�x�VG1�y�j depend not on
particular vertices x and y we choose, but only on the distance i � d�x; y� between
them. It is clear that c0 � bd � 0, c1 � 1, b0 � jG1�x�j for each x A V�G�, and ai �
b0 ÿ bi ÿ ci. The following array



c0 c1 c2 c3 � � � cdÿ1 cd

a0 a1 a2 a3 � � � adÿ1 ad

b0 b1 b2 b3 � � � bdÿ1 bd

24 35
or fb0; b1; . . . ; bdÿ1; c1; c2; . . . ; cdg is called the intersection array of G . Generalized

odd graphs are distance-regular graphs of diameter d with parameters a1 �
a2 � � � � � adÿ1 � 0, and ad > 0. As shown in Section 2, the odd polygons C2d�1,
the Odd graphs Od�1, the folded �2d � 1�-cubes, the coset graph of binary Golay
code, the coset graph of the truncated binary Golay code, the Ho¨man-Singleton
graph, the Gewirtz graph, the Higman-Sims graph and the second subconstituent
of the Higman-Sims graph are examples of generalized odd graphs, refer to [5] for
further details.

One can see from the spectrum of a graph whether it is regular and connected,
whether it is strongly regular, or whether it is bipartite distance-regular of diame-
ter 3 [5, p. 263], but one can not tell in general its distance-regularity directly. On
the other hand, it is known that a connected, regular graph with diameter d has
at least d � 1 distinct eigenvalues, and that distance-regular graphs of diameter
d have exactly d � 1 distinct eigenvalues. The determination of the distance-
regularity of those connected regular graphs of diameter d with exactly d � 1 dis-
tinct eigenvalues is an interesting subject. The distance-regularity of some graphs
in terms of their spectra have been studied under some additional conditions, for
example: with large girth [6], with diameter 3 and m � 1 [10], with diameter 4 and
prescribed l; k2 [8], and all graphs with spectra of distance-regular graphs with at
most 30 vertices can be found in [11]. Continuing the work in [13], the relationship
between distance-regularity and spectra of connected regular graphs will be further
studied in this paper. Indeed, we prove

Main Theorem If G is a connected regular graph which has the same spectrum as

that of a generalized odd graph G of diameter d, then G is distance-regular with the
same intersection array as that of G . Furthermore, G is isomorphic to G if G is one

of the following: the odd polygon C2d�1, the Odd graph Od�1, the folded �2d � 1�-
cube, the coset graph of the binary Golay code �d � 3�, the Ho¨man-Singleton

graph �d � 2�, the Gewirtz graph �d � 2�, the Higman-Sims graph �d � 2�, or the

second subconstituent of the Higman-Sims graph �d � 2�.
The main theorem answers a½rmatively a question asked by CvetkovicÂ [7,

p. 36] that whether the Odd graphs can be characterized by their spectra among
connected regular graphs. As an easy corollary of a theorem of Tutte [15], we have

Corollary If G is a connected regular graph which has the same deck of 1-vertex-
deleted subgraphs as that of G where G is a generalized odd graph, then G is a

distance-regular graph with the same intersection array as that of G.

One of the signi®cant links between spectra and connectedness, regularity of
graphs is the so called Ho¨man Polynomial. For a connected, k-regular graph

G with Spec�G� � �k; ymÿ1
1 ; . . . ; ymsÿ1

sÿ1 �, let q�x� �Qsÿ1
i�1�xÿ yi�, then p�x� �
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jV�G�j
q�k� q�x� is called the Ho¨man Polynomial of G, which is the unique polynomial

of the smallest degree such that p�A� � J, where A is an adjacency matrix of G

and J is the all-one matrix of order jV�G�j. The main theorem is proved in terms
of the common Ho¨oman polynomial of G and G, its coe½cients are studied in

Section 2. Some systems of linear equations associated with Aiq�A� � q�k�
jV�G�j k

iJ

are considered in Section 3. Based on the properties among the coe½cients of q�x�
obtained in Section 2, we show that each of them has a unique solution, which
leads to the distance-regularity of G. Lemma 3.1 concerning the non-singularity of
those coe½cient matrices mentioned above is proved in an algorithmic way. The
argument developed in this paper does not work for bipartite distance-regular
graphs because Lemma 3.1 is no longer true due to the symmetry (with respect to
0) of their spectra.

2. Ho¨man Polynomials of Generalized Odd Graphs

Throughout the rest of this paper, we assume that G is a connected k-regular
graph with Spec�G� � Spec�G� � �ym0

0 ; ym1

1 ; ym2

2 ; . . . ; ymd

d � with y0 � k, and
m0 � 1, where G is a generalized odd graph of diameter d with intersection array

c0 c1 c2 c3 � � � cdÿ1 cd

0 0 0 0 � � � 0 ad

b0 b1 b2 b3 � � � bdÿ1 bd

24 35:
Furthermore, let A be an adjacency matrix of G. The common Ho¨man Polyno-
mial for the graphs G and G in terms of their common spectrum is studied in this
section, which provides a key step to show the distance-regularity of G in the next
section.

Clearly, odd polygons C2d�1 are generalized odd graphs of diameter d with
intersection array f2; 1; . . . ; 1; 1; 1; . . . ; 1g. We now recall some other examples,
families or sporadic, of generalized odd graphs. The Odd graph Od�1 has the d-
subsets of f1; 2; . . . ; 2d � 1g as vertices, and two vertices are adjacent if and only if
their corresponding subsets are disjoint. The small Odd graphs are the triangle
K3�d � 1�, and the Petersen graph �d � 2�. In general, the Odd graphs Od�1 are
distance-regular graphs of diameter d with intersection array

0 1 1 2 2 � � � rÿ 1 rÿ 1 r

0 0 0 0 0 � � � 0 0 r

2r 2rÿ 1 2rÿ 1 2rÿ 2 2rÿ 2 � � � r� 1 r� 1 0

24 35
for the case d � 1 � 2r, and

0 1 1 2 2 � � � r r

0 0 0 0 0 � � � 0 r� 1

2r� 1 2r 2r 2rÿ 1 2rÿ 1 � � � r� 1 0

24 35
for the case d � 1 � 2r� 1.
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The eigenvalues of Od�1 are the integers yi � �ÿ1�i�d � 1ÿ i� with multi-

plicities mi � 2d � 1

i

� �
ÿ 2d � 1

i ÿ 1

� �
respectively for 0U iU d. The Odd graphs

are uniquely determined by their intersection arrays, refer to [14] or [5, p. 260],
among distance-regular graphs.

Folded �2d � 1�-cube is the graph de®ned on the partitions of an �2d � 1�-set
into two subsets, and two partitions being adjacent when their common re®nement
contains a set of size one. Its intersection array is given by

0 1 2 3 � � � d ÿ 1 d

0 0 0 0 � � � 0 d � 1

2d � 1 2d 2d ÿ 1 2d ÿ 2 � � � d � 2 0

24 35;
and its eigenvalues and multiplicities are yj � 2d � 1ÿ 4j with mj � 2d � 1

2j

� �
,

j U d. The folded �2d � 1�-cube is also uniquely determined by its intersection
array [5, p. 264].

In addition to these families, Moore graphs, i:e:, distance-regular graphs with
the intersection array

0 1 1 1 � � � 1 1

0 0 0 0 � � � 0 k ÿ 1

k k ÿ 1 k ÿ 1 k ÿ 1 � � � k ÿ 1 0

24 35
provide another family of generalized odd graphs, refer to [3] for more details. It is
known that the intersection array for a Moore graph with valency k V 3, and girth
gV 5 is feasible if and only if g � 5 and k A f3; 7; 57g. The cases k � 3; 7 are
realized by the Petersen graph and the Ho¨man-Singleton graph respectively. The
existence of a Moore graph with k � 57 remains open, which can not be distance
transitive if it exists. Some other sporadic generalized odd graphs are given in the
following table, whether these graphs are uniquely determined by their intersection
arrays are indicated too.

For x; y A V�G� at distance i, let

jGj�x�VG1�y�j �
ci�x; y� if j � i ÿ 1,

ai�x; y� if j � i,

bi�x; y� if j � i � 1.

8<:
To show the distance-regularity of G is equivalent to show that all ci�x; y�, ai�x; y�
and bi�x; y� are functions of i � d�x; y� only, independent of the choice of x and y

for all i with 0U iU d. This can be achieved by showing that some systems of
linear equations related to the Ho¨man polynomial have unique solutions.

As mentioned before, let A be an adjacency matrix of G which is row-
indexed and column-indexed by vertices of G. Since Aj�1�x; y� � �AjA��x; y� �P
z AG1�y�

Aj�x; z�, and Gj�x�VG1�y� is empty if j 0 i ÿ 1, i or i � 1 whenever

x; y A V�G� at distance i. Lemma 2.1 is obvious, which is included here for later
reference.
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Lemma 2.1. If d�x; y� � i, then

Aj�1�x; y� �
X

z AG1�y�VGiÿ1�x�
Aj�x; z� �

X
z AG1�y�VGi�x�

Aj�x; z� �
X

z AG1�y�VGi�1�x�
Aj�x; z�

In particular,

Ai�x; y� �
X

z AG1�y�VGiÿ1�x�
Aiÿ1�x; z�:

Since Ai�x; y� indicates the number of walks of length i in G joining x and y, it
follows that the number of closed walks in G of length 2i � 1 is Tr�A2i�1� �Pd

j�0 mjy
2i�1
j [16, p. 310]. On the other hand, ai � 0 �iU d ÿ 1� for generalized

odd graphs, they have no odd cycles of length up to 2d ÿ 1, it follows thatPd
j�0 mjy

2i�1
j � 0, and hence A2i�1�x; x� � 0 for all x A V�G�. These observations

are summarized in the following.

Lemma 2.2. 1. A2i�1�x; x� � 0 for iU d ÿ 1,
2. A2i�1ÿj�x; y� � 0 for y A Gj�x� and 1U j U i, and

3. ai�x; y� � 0 for all y A Gi�x� and iU d ÿ 1.

We now turn to the explicit expressions for the coe½cients of the Ho¨man
Polynomial of G and G. Let m�x� � �xÿ y0��xÿ y1��xÿ y2� � � � �xÿ yd� �P

d�1
i�0 mix

i be the minimal polynomial of G , then the coe½cients mi (0U i U d � 1�
can be calculated in a combinatorial way in terms of the fact that m�x� �
det�xI ÿ B� [5, p. 128] where

diameter intersection array examples uniqueness remarks

f3,2;1,1g Petersen graph O3 Yes Moore graph

f7,6;1,1g Ho¨man-Singleton graph Yes Moore graph
[5, p. 391]

d � 2 f57,56;1,1g ?

f10,9;1,2g Gewirtz graph Yes [5, p. 372]

f16,15;1,4g the second subconstituent
of the Higman-Sims graph

Yes [5, p. 394]

f22,21;1,6g the Higman-Sims graph Yes [9, p. 933]

f7,6,6;1,1,2g ? [5, p. 148]

d � 3 f23,22,21;1,2,3g the coset graph of the
binary Golay code

Yes [5, p. 361]

f22,21,20;1,2,6g the coset graph of the trun-
cated binary Golay code

? [5, p. 362]
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0

B �

0 c1

b0 0 c2

b1 0 c3

. . . . . .

. . . . . .

bdÿ2 0 cd

bdÿ1 ad

266666666664

377777777775
�d�1���d�1�0

is the intersection matrix of G.
Recall that if M � �ai; j� is a tridiagonal matrix of order n, then

detM �
X

s

sign�s�a1;s�1�a2;s�2� � � � an;s�n�

where the summation is over all permutations s which are product of disjoint
transformations of the form �i; i � 1�, since ai;s�i� � 0 if js�i� ÿ ijV 2 for some i. In
the expansion of det�xI ÿ B� as a sum of products of entries from various rows
and columns, as remarked above, bici�1 �0U iU d ÿ 1� always appear in pairs,
but bibi�1 �0U i U d ÿ 1� does not. It follows that
det�xI ÿ B�

�
Xbd�12 c
s�0
�ÿ1�s

X
S1

Ys

j�1
bij cij�1

 !
xd�1ÿ2s �

X
S2

Ys

j�1
bij cij�1

 !
xÿ ad� �xdÿ2s

 !

�
Xbd�12 c
s�0
�ÿ1�s

X
S1 US2

Ys

j�1
bij cij�1

 !
xd�1ÿ2s � ad

Xbd�12 c
s�0
�ÿ1�s�1

X
S2

Ys

j�1
bij cij�1

 !
xdÿ2s

where S1, S2 consist of all s-element subsets S � fi1; i2; . . . ; isg of
f0; 1; 2; . . . ; d ÿ 1g with ij � 2U ij�1 for j � 1; 2; . . . ; sÿ 1 and fd ÿ 1gVS is
empty or not respectively. The above expressions of those coe½cients of m�x� can
be transformed into the following way, which is suitable for later computational
purpose. Clearly md�1 � 1, md � ÿad , mdÿ1 � ÿ�b0c1 � b1c2 � � � � � bdÿ1cd�, and
in general

mdÿ2s

� �ÿ1�s�1ad

Xdÿ2s

i1�0
bi1ci1�1

Xdÿ2s�2

i2�i1�2
bi2ci2�1 � � � bisÿ1cisÿ1�1

Xdÿ2
is�isÿ1�2

bis cis�1

 !
� � �

 ! ! !
for 1U sU bd=2c; and

mdÿ2t�1

� �ÿ1�t
Xdÿ2t�1

i1�0
bi1ci1�1

Xdÿ2t�3

i2�i1�2
bi2ci2�1 � � � bitÿ1citÿ1�1

Xdÿ1
it�itÿ1�2

bit cit�1

 !
� � �

 ! ! !
for 1U tU dd=2e;
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Note that ad �00� occurs in mdÿ2s for 1U sU bd=2c. Furthermore, let

q�x� � m�x�=�xÿ y0�
� qdxd � qdÿ1xdÿ1 � qdÿ2xdÿ2 � � � � � q2x2 � q1x

1 � q0;

then qd � 1, qdÿ1 � cd , qdÿ2 � cdÿ1cd ÿ �b0c1 � � � � � bdÿ2cdÿ1� and its general
expressions are given in the following lemma, which can be checked straight-
forward in terms of the recurrence relations qiÿ1 � mi � kqi where k � y0 � bi � ci

for 1U iU d ÿ 1. Note that cd occurs in qdÿ2sÿ1 for 1U sU dd=2e ÿ 1.

Lemma 2.3. Let q�x� � xd � cdxdÿ1 � Pdÿ2
i�0

qix
i, then

qdÿ2t � �ÿ1�t
 

Pd
dÿ2t�1 �

Xdÿ2t

i1�0
bi1ci1�1

 
Pd

dÿ2t�3

�
Xdÿ2t�2

i2�i1�2
bi2ci2�1 � � � Pd

dÿ1 �
Xdÿ2

it�itÿ1�2
bit cit�1

 !
� � �

 !!!
for 1U tU bd=2c; and

qdÿ2sÿ1 � cd�ÿ1�s
 

Pdÿ1
dÿ2s �

Xdÿ2sÿ1

i1�0
bi1ci1�1

 
Pdÿ1

dÿ2s�2

�
Xdÿ2s�1

i2�i1�2
bi2ci2�1

 
� � �
 

Pdÿ1
dÿ2 �

Xdÿ3
is�isÿ1�2

bis cis�1

!
� � �
!!!

for 1U sU dd=2e ÿ 1:

where

Pl
s � �ÿ1��lÿs�1�=2

cscs�1 � � � clÿ1cl

in case l ÿ s is positive and odd.

The expressions of these coe½cients of the polynomial q�x� will be needed in

the next section. Let v � q�y0�
jV�G�j, then q�A� � vJ where J is the all one matrix of

order jV�G�j [12]. Multiplying Ai on both sides of the equation q�A� � vJ, and
since AJ � y0J, we have Aiq�A� � yi

0vJ, 0U i U d ÿ 1: The information con-
tained in this system of matrix equations can be translated into a set of systems
of linear equations in variables Ai�x; y� and with the coe½cients of q�x� as its
coe½cients. A series of row operations will be performed on these coe½cient ma-
trices, which pave a way to show the distance-regularity of G. For this purpose, we
de®ne Fm;1 � qdÿ2mÿ1=cd , Sm;1 � qdÿ2m and the general terms Fm;i and Sm;i will be
given later in Section 3.

3. Proof of the Main Theorem

Following the same notation used in section 2, we shall show that ci�x; y�, ai�x; y�
and bi�x; y� are functions of i � d�x; y� only, independent of the choice of x and y,
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0U iU d, by showing that each system mentioned above has a unique solution.
Indeed, the distance structure of the given generalized odd graph G provides non-
trivial solutions for these systems. We shall show in this section that each of their
coe½cient matrices is nonsingular, and hence their solutions are unique.

Clearly, ai � ai�x; y� � 0 whenever x, y are at distance i at most d ÿ 1 as
shown in Lemma 2.2. To determine ci�x; y�, bi�x; y� � b0 ÿ ci�x; y� ÿ ai�x; y�
whenever x; y A V�G� at distance i, 0U i U d ÿ 1, we shall show the uniqueness of
Ai�x; y� with d�x; y� � i, 2U iU d ÿ 1 by solving the following systems of linear
equations obtained from q�A� � vJ,

Adÿ1ÿiq�A� � vydÿ1ÿi
0 J

Adÿ2ÿiq�A� � vydÿ2ÿi
0 J

..

.

A2q�A� � vy2
0J

A1q�A� � vy1
0J

A0q�A� � vy0
0J

���

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
at entries �x; y� for vertices x and y at distance i, 2U iU d ÿ 1.

As before, y0 is also denoted by k. Indeed, for vertices x, y at distance i,
2U iU d ÿ 1, clearly Ai�x; y� � 0 if i < d�x; y� or if i � d�x; y�U 2d ÿ 1 is odd by
Lemma 2.2, the others Al�x; y� can be regarded as variables. More precisely, for
vertices x and y at distance 2, A�x; y� �A3�x; y� �A5�x; y� � � � � �A2dÿ3�x; y� � 0,
the above system can be reduced into

qdÿ1 qdÿ3 qdÿ5 � � � q5 q3 q1 0 0 0 � � � 0 0

1 qdÿ2 qdÿ4 � � � q6 q4 q2 q0 0 0 � � � 0 0

0 qdÿ1 qdÿ3 � � � q7 q5 q3 q1 0 0 � � � 0 0

0 1 qdÿ2 � � � q8 q6 q4 q2 q0 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 0 qdÿ1 qdÿ3 qdÿ5 qdÿ7 qdÿ9 � � � q3 q1

0 0 0 � � � 0 1 qdÿ2 qdÿ4 qdÿ6 qdÿ8 � � � q4 q2

26666666666664

37777777777775

�

A2dÿ4�x; y�
A2dÿ6�x; y�
A2dÿ8�x; y�
A2dÿ10�x; y�

..

.

A4�x; y�
A2�x; y�

26666666666664

37777777777775
� v

kdÿ3

kdÿ4

kdÿ5

kdÿ6

..

.

k1

k0

2666666666664

3777777777775
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whenever d is even; or

qdÿ1 qdÿ3 qdÿ5 � � � q6 q4 q2 q0 0 0 � � � 0 0

1 qdÿ2 qdÿ4 � � � q7 q5 q3 q1 0 0 � � � 0 0

0 qdÿ1 qdÿ3 � � � q8 q6 q4 q2 q0 0 � � � 0 0

0 1 qdÿ2 � � � q9 q7 q5 q3 q1 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 0 qdÿ1 qdÿ3 qdÿ5 qdÿ7 qdÿ9 � � � q2 q0

0 0 0 � � � 0 1 qdÿ2 qdÿ4 qdÿ6 qdÿ8 � � � q3 q1

0 0 0 � � � 0 0 qdÿ1 qdÿ3 qdÿ5 qdÿ7 � � � q4 q2

266666666666666666664

377777777777777777775

�

A2dÿ4�x; y�
A2dÿ6�x; y�
A2dÿ8�x; y�
A2dÿ10�x; y�

..

.

A6�x; y�
A4�x; y�
A2�x; y�

26666666666666666664

37777777777777777775

� v

kdÿ3

kdÿ4

kdÿ5

kdÿ6

..

.

k2

k1

k0

26666666666666666664

37777777777777777775

whenever d is odd.
Similarly for vertices x, y at distance 3, substituting A�x; y� � A2�x; y� �

A4�x; y� � A6�x; y� � � � � � A2dÿ4�x; y� � 0, the above system can also be reduced
into

qdÿ1 qdÿ3 qdÿ5 � � � q5 q3 q1 0 0 0 � � � 0

1 qdÿ2 qdÿ4 � � � q6 q4 q2 q0 0 0 � � � 0

0 qdÿ1 qdÿ3 � � � q7 q5 q3 q1 0 0 � � � 0

0 1 qdÿ2 � � � q8 q6 q4 q2 q0 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0 qdÿ1 qdÿ3 qdÿ5 qdÿ7 qdÿ9 � � � q3

266666666664

377777777775
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�

A2dÿ5�x; y�
A2dÿ7�x; y�
A2dÿ9�x; y�
A2dÿ11�x; y�

..

.

A3�x; y�

26666666664

37777777775
� v

kdÿ4

kdÿ5

kdÿ6

kdÿ7

..

.

k0

26666666664

37777777775
whenever d is even; or

qdÿ1 qdÿ3 qdÿ5 � � � q6 q4 q2 q0 0 0 � � � 0

1 qdÿ2 qdÿ4 � � � q7 q5 q3 q1 0 0 � � � 0

0 qdÿ1 qdÿ3 � � � q8 q6 q4 q2 q0 0 � � � 0

0 1 qdÿ2 � � � q9 q7 q5 q3 q1 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0 qdÿ1 qdÿ3 qdÿ5 qdÿ7 qdÿ9 � � � q2

0 0 0 � � � 0 1 qdÿ2 qdÿ4 qdÿ6 qdÿ8 � � � q3

26666666666666664

37777777777777775

�

A2dÿ5�x; y�
A2dÿ7�x; y�
A2dÿ9�x; y�
A2dÿ11�x; y�

..

.

A5�x; y�
A3�x; y�

26666666666666664

37777777777777775
� v

kdÿ4

kdÿ5

kdÿ6

kdÿ7

..

.

k1

k0

2666666666666664

3777777777777775
whenever d is odd.

Note that these coe½cients matrices for the case i � 2 were arranged so that
rows 2r� 1; 2r� 2 can be obtained from previous two rows by moving one entry
to right for 1U rU bd=2c ÿ 2, except the ®nal row in case of odd d. Note also that
the latter two matrices are obtained from the former ones by deleting the last row
and the last column respectively. We claim in Lemma 3.1 that the coe½cient ma-
trices in both cases can be transformed into upper triangular matrices with entries
1 along their main diagonals, it follows that A2�x; y� � c2�x; y� is a constant, say
c2, whenever x; y A V�G� at distance 2, and A3�x; y� is also a constant whenever
x; y A V�G� at distance 3. Those processes can be performed successively for all
2U iU d ÿ 1.

Let Ed;0 be the coe½cient matrix given in the case i � 2, and Ed;iÿ2 be the
submatrix obtained from Ed;0 by deleting the last i ÿ 2 rows as well as the last
i ÿ 2 columns. The system �� � at entry �x; y� at distance i can be reduced into a
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system of linear equations

Ed;iÿ2

A2dÿ2ÿi�x; y�
A2dÿ4ÿi�x; y�
A2dÿ6ÿi�x; y�

..

.

Ai�4�x; y�
Ai�2�x; y�
Ai�x; y�

2666666666664

3777777777775
� v

kdÿ1ÿi

kdÿ2ÿi

kdÿ3ÿi

..

.

k2

k1

k0

2666666666664

3777777777775
:

Note that Ed;iÿ2 is a square matrix of order d ÿ i. Clearly, these systems have
nontrivial solutions through the distance-regularity of the given generalized odd
graph G. The uniqueness of Ai�x; y� with x, y A V�G� at distance i follows from
the non-singularity of Ed;iÿ2 for 2U iU d ÿ 1 as given in Lemma 3.1, which will
be proved later.

Lemma 3.1. The matrices Ed;iÿ2 for 2U i U d ÿ 1 are non-singular.

Corollary 3.2. Ai�x; y� is a constant for x; y A V�G� at distance i, 2U i U d ÿ 1.
Moreover, Ad�x; y� � v whenever x, y A V�G� at distance d.

For vertices x; y and z in V�G� with d�x; y� � i and d�z; x� � i ÿ 1, both
Ai�x; y� and Aiÿ1�x; z� are constants respectively as shown in Corollary 3.2. By
Lemma 2.1,

Ai�x; y� �
X

w AG1�y�VGiÿ1�x�
Aiÿ1�x;w� � ci�x; y�Aiÿ1�x; z�;

independent of the choice of z, it follows that both ci�x; y� and bi�x; y� � b0 ÿ
ci�x; y� ÿ ai�x; y� are constants. For vertices x; y A V�G� at distance d, Ad�x; y� � v

is equal to cd�x; y� multiplied by an absolute constant, hence cd�x; y� is a constant
too, say cd .

Lemma 3.3. ci�x; y�, bi�x; y� are constants, say ci, bi, respectively whenever x,
y A V�G� at distance iU d ÿ 1. Moreover, cd�x; y� and hence ad�x; y� are constants,
say cd , ad respectively, whenever d�x; y� � d.

Up to this point, combining Lemmas 2.2 and 3.3 we may conclude that G is a
distance-regular graph of diameter d with the same intersection array as that of G ,
this proves the ®rst half of the Main Theorem. Those graphs mentioned in the
Main Theorem are all generalized odd graphs which are uniquely determined by
their intersection arrays as indicated in Section 2. Hence the second half of the
Main Theorem follows immediately.

In the rest of this paper, we shall prove Lemma 3.1 in an algorithmic way.
Since cd is a common factor of all entries on the odd rows of Ed;0 as shown in
Lemma 2.3, let M1 be the matrix obtained from Ed;0 by factoring out cd from all
entries along the odd rows, and others remain unchanged. Based on the expres-
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sions of the coe½cients of the polynomial q�x� given in Lemma 2.3, in order to
deal with these matrices in a convenient way, let

Fm;i

� �ÿ1�m
 

Pdÿ2i�1
dÿ2iÿ�2mÿ2� �

Xdÿ2iÿ�2mÿ1�

i1�0
bi1ci1�1

 
Pdÿ2i�1

dÿ2iÿ�2mÿ4� �
Xdÿ2iÿ�2mÿ3�

i2�i1�2
bi2ci2�1

�
 
� � �
 

Pdÿ2i�1
dÿ2iÿ2 �

Xdÿ2iÿ3

imÿ1�imÿ2�2
bimÿ1cimÿ1�1

 
Pdÿ2i�1

dÿ2i �
Xdÿ2iÿ1

im�imÿ1�2
bim cim�1

!!
� � �
!!!

and

Sm;i

� �ÿ1�m
 

Pdÿ2i�2
dÿ2iÿ�2mÿ3� �

Xdÿ2iÿ�2mÿ2�

i1�0
bi1ci1�1

 
Pdÿ2i�2

dÿ2iÿ�2mÿ5� �
Xdÿ2iÿ�2mÿ4�

i2�i1�2
bi2ci2�1

�
 
� � �
 

Pdÿ2i�2
dÿ2iÿ1 �

Xdÿ2iÿ2

imÿ1�imÿ2�2
bimÿ1cimÿ1�1

 
Pdÿ2i�2

dÿ2i�1 �
Xdÿ2i

im�imÿ1�2
bim cim�1

!!
� � �
!!!

and let S0; j � F0; j � 1 for convenience. Note that cdFm;1 � qdÿ2mÿ1 and Sm;1 �
qdÿ2m. Hence, the matrix M1 can be expressed as

M1 �

M1;1

M1;2

M1;3

M1;4

..

.

1 F1;1 F2;1 F3;1 � � � Fdÿ3;1
1 S1;1 S2;1 S3;1 � � � Sdÿ3;1
0 1 F1;1 F2;1 � � � Fdÿ4;1
0 1 S1;1 S2;1 � � � Sdÿ4;1

..

. ..
. ..

. ..
. ..

. ..
.

26666664

37777775
�dÿ2���dÿ2�:

Before we transform matrices related M1 into triangular matrices by applying
some row-operations over them, the following lemmas are given for computa-
tional purpose, which can be proved straightfoward, note again that the condi-
tions b0 � ci � bi, �iU d ÿ 1�, and ad 0 0 play critical roles in Lemma 3.4 and in
the following arguments.

Lemma 3.4. 1. Sm;1 ÿ Fm;1 � �ÿcdÿ1ad�Smÿ1;2 for 1UmU d ÿ 3, and

2. Fm;1 ÿ Sm;2 � �ÿcdÿ2bdÿ1�Fmÿ1;2 for 1UmU d ÿ 4.

Lemma 3.5. Let 2U j U d�d ÿ 3�=2e,
1. Sm; j ÿ Fm; j � �ÿcdÿ2j�1bdÿ2j�2�Smÿ1; j�1 for 1UmU �d ÿ 2j ÿ 1�, and

2. Fm; j ÿ Sm; j�1 � �ÿcdÿ2jbdÿ2j�1�Fmÿ1; j�1 for 1UmU �d ÿ 2j ÿ 2�.
It is worth mentioning here that cdÿ1ad , cdÿ2j�1bdÿ2j�2, cdÿ2jbdÿ2j�1 are com-

mon factors of Sm;1 ÿ Fm;1, Sm; j ÿ Fm; j, and Fm; j ÿ Sm; j�1 respectively. The pur-
pose of the following steps is to transform M1 into an upper triangular matrix in
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terms of row operations. In particular, M1 is already the trivial matrix �1� if d � 3,
and steps 1, 2 are enough to reduce M1 into an upper triangular matrix in case
d � 4; 5.

Step 1. to get M2 from M1 with rows M1;1;M1;2; . . . ;M1;dÿ2:

1. since cdÿ1ad is a common factor for each entry of the row ÿM1;1 �M1;2 by
Lemma 3.4, replace

M1;1

M1;2

1 F1;1 F2;1 F3;1 . . . Fdÿ3;1
1 S1;1 S2;1 S3;1 . . . Sdÿ3;1

� �
by

M2;1

M2;2

1 F1;1 F2;1 F3;1 . . . Fdÿ3;1
0 1 S1;2 S2;2 . . . Sdÿ4;2

� �
;

where M2;1 �M1;1, and M2;2 � �ÿ1=cdÿ1ad��ÿM1;1 �M1;2�;
2. performing similarly for pairs of rows M1;2iÿ1 and M1;2i, which are obtained

from rows M1;2iÿ3 and M1;2iÿ2 by shifting right one entry for i � 2; 3; . . . ;
d�d ÿ 3�=2e;

3. if d is odd, then the ®nal row M1;dÿ2 remains unchanged, say M2;dÿ2;
4. let M2 be the resulting matrix with rows M2;1;M2;2; . . . ;M2;dÿ2.

Step 2. to get M3 from M2 with rows M2;1;M2;2; . . . ;M2;dÿ2:

1. let M3;1 �M2;1 which remain unchanged;
2. starting from the second row of M2, since cdÿ2bdÿ1 is a common factor of the

row ÿM2;2 �M2;3 by Lemma 3.4, replace

M2;2

M2;3

0 1 S1;2 S2;2 . . . Sdÿ4;2
0 1 F1;1 F2;1 . . . Fdÿ4;1

� �
by

M3;2

M3;3

0 1 S1;2 S1;2 . . . Sdÿ4;2
0 0 1 F1;2 . . . Fdÿ5;2

� �
;

where M3;2 �M2;2, and M3;3 � �ÿ1=cdÿ2bdÿ1��ÿM2;2 �M2;3�;
3. performing similarly for pairs of rows M2;2i and M2;2i�1 where i � 2; 3; . . . ;
b�d ÿ 3�=2c;

4. if d is even, then the ®nal row M2;dÿ2 remains unchanged, say M3;dÿ2;
5. let M3 be the resulting matrix with rows M3;1;M3;2; . . . ;M3;�dÿ2�.

The above two steps can be done in pairs recursively as follows for 2U j U
d ÿ 3

2

� �
, but step d ÿ 2 is skipped in case d is even.

Step 2j-1. to get M2j from M2jÿ1 with rows M2jÿ1;1;M2jÿ1;2; . . . ;M2jÿ1;dÿ2:

1. let M2j;i �M2jÿ1;i, for 1U iU 2j ÿ 2, which remain unchanged;
2. starting from the �2j ÿ 1�-th row, since cdÿ2j�1bdÿ2j�2 is a common factor for

each entry of the row ÿM2jÿ1;2jÿ1 �M2jÿ1;2j by Lemma 3.5, replace
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M2jÿ1;2jÿ1

M2jÿ1;2j

0 . . . 0 1 F1; j F2; j F3; j . . . Fdÿ2jÿ1; j

0 . . . 0 1 S1; j S2; j S3; j . . . Sdÿ2jÿ1; j

� �
by

M2j;2jÿ1

M2j;2j

0 . . . 0 1 F1; j F2; j F3; j . . . Fdÿ2jÿ1; j

0 . . . 0 0 1 S1; j�1 S2; j�1 . . . Sdÿ2jÿ2; j�1

� �
;

where

M2j;2jÿ1 �M2jÿ1;2jÿ1 and

M2j;2j � �ÿ1=cdÿ2j�1bdÿ2j�2��ÿM2jÿ1;2jÿ1 �M2jÿ1;2j�:
Note that the ®rst 2j ÿ 2 columns consists of entries 0 only;

3. performing similarly for pairs of rows M2jÿ1;2iÿ1, and M2jÿ1;2i for j � 1U iU
d�d ÿ 3�=2e;

4. if d is odd then the ®nal row M2jÿ1;dÿ2 remains unchanged, say M2j;dÿ2;
5. let M2j be the resulting matrix with rows M2j;1;M2j;2; . . . ;M2j;dÿ2.

Step 2j. to get M2j�1 from M2j with rows M2j;1;M2j;2; . . . ;M2j;dÿ2:

1. let M2j�1;i �M2j;i for 1U iU 2j ÿ 1 remain unchanged;
2. starting from the 2j-th row, since cdÿ2jbdÿ2j�1 is a common factor for each entry

of the row ÿM2j;2j �M2j;2j�1 by Lemma 3.5, replace

M2j;2j

M2j;2j�1

0 . . . 0 1 S1; j�1 S2; j�1 S3; j�1 . . . Sdÿ2jÿ2; j�1
0 . . . 0 1 F1; j F2; j F3; j . . . Fdÿ2jÿ2; j

� �
by

M2j�1;2j

M2j�1;2j�1

0 . . . 0 1 S1; j�1 S2; j�1 S3; j�1 . . . Sdÿ2jÿ2; j�1
0 . . . 0 0 1 F1; j�1 F2; j�1 . . . Fdÿ2jÿ3; j�1

� �
where

M2j�1;2j �M2j;2j and

M2j�1;2j�1 � �ÿ1=cdÿ2jbdÿ2j�1��ÿM2j;2j �M2j;2j�1�:
Note that the ®rst 2j ÿ 1 columns consist of entries 0 only;

3. performing similarly for pairs of rows M2j;2i, and M2j;2i�1 for j � 1U iU
b�d ÿ 3�=2c;

4. if d is even, then the ®nal row M2j;dÿ2 remains unchanged, say M2j�1;dÿ2;
5. let M2j�1 be the resulting matrix with rows M2j�1;1;M2j�1;2; . . . ;M2j�1;dÿ2.

After steps 1; 2; . . . ; d ÿ 3, an upper triangular matrix with 1 along its main
diagonal is obtained, hence detM1, detEd;0, and detEd;i are all non-zero. This
completes the proof of Lemma 3.1 and hence the main theorem.

Remark. The above argument does not work for bipartite distance-regular graphs
of diameter d V 4. Since ad � 0, Sm;1 � Fm;1 for all mU d ÿ 3 by Lemma 3.4, it
follows that M1, and hence Ed;0, Ed;i for all iU d ÿ 3 are all singular.
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