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MSoCMAC NEURAL NETWORK LEARNING MODEL IN

STRUCTURAL ENGINEERING

By Shih-Lin Hung1 and J. C. Jan2

ABSTRACT: The present American Institute of Steel Construction specifications use the alignment charts and
approximate formulas conveniently to determine some coefficients in design, such as moment gradient coefficient
Cb for beams of I-shaped section and effective length factor K of columns. In these methods, the coefficients
are unconservative when the boundary conditions are different from the development of specifications. The
governing equations, numerical approaches, on the K and Cb coefficients provide more accurate results. The
approaches, however, are not readily available for structural engineers to use in design. Applying neural network
computing toward structural engineering problems has received increasing interest, with particular emphasis
placed on supervised neural networks. The cerebellar model articulation controller (CMAC), one of the super-
vised neural network learning models, is mostly used in the domain of control. In this work, we use a newly
developed Macro Structure CMAC (MSoCMAC) neural network learning model to aid steel structure design.
The topology of the novel learning model is constructed by a number of time inversion CMACs as a tree
structure. The learning performance of the MSoCMAC is first compared with a stand-alone time inversion
CMAC using one structural engineering example. That comparison indicates not only superior prediction but
also fast learning propriety for the MSoCMAC neural network learning model. In addition, the MSoCMAC
neural network learning model is applied to two steel design problems. It is shown that the MSoCMAC not
only can learn structural design problems within a reasonable central processing unit time but also can estimate
more accurate coefficients than that estimated through alignment charts and approximate formulas in American
Institute of Steel Construction specifications.
INTRODUCTION

Learning is one of the important features of artificial neural
networks. Several neural networks learning algorithms have
been developed and explored in a number of different do-
mains. In the application of structural engineering, most re-
search works were based on the supervised back-propagation
neural network (BPN) (Rumelhart et al. 1986) due to its sim-
plicity. Vanluchene and Sun (1990) presented a research using
the back-propagation learning algorithm in structural design
problems. Several other researches, based on BPN learning
algorithm, have applied neural network computing models in
structural engineering and related engineering problems [Gha-
boussi et al. (1991), Hajela and Berke (1991), Elkordy et al.
(1994), Goh (1995), Kasperkiewicz et al. (1995), Mukherjee
and Desphande (1995), and others].

BPN learning models, however, always take a long time in
learning process. Several approaches for improving the learn-
ing performance of a BPN learning algorithm have been
achieved and reported in recent literature. One approach is to
develop more effective learning algorithms with the objective
of reducing the learning time. For instance, Adeli and Hung
(1994) developed an adaptive conjugate gradient neural net-
work (Ad-CGN) learning algorithm and applied it to structural
engineering. Based on a limited memory BFGS quasi-Newton
second-order method (Nocedal 1990), a more effective adap-
tive L-BFGS learning algorithm was developed by Hung and
Lin (1994). Another approach is to develop a parallel algo-
rithm on multiprocesser computers with the objective of re-
ducing the overall computing time. For instance, Adeli and
Hung (1993) presented a concurrent Ad-CGN learning algo-
rithm to a large-scale pattern recognition problem. Significant
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improvement for the BPN algorithm in computing time was
reported in their work. The third approach is the development
of hybrid neural network learning algorithms. Hung and Adeli
(1994) presented a parallel hybrid genetic/neural network
learning algorithm, integrating a genetic algorithm with the
Ad-CGN learning algorithm, in engineering and pattern rec-
ognition problems. They reported a superior convergence
property of the parallel hybrid neural network learning algo-
rithm as compared with a BPN learning algorithm. Further-
more, Gunaratnam and Gero (1994) discussed the effect of
representation of input/output pairs for training instances on
the learning performance of the BPN learning algorithm in the
problems of structural design.

Unsupervised learning models are the other major neural
network learning techniques and have been applied to several
domains, mostly in the problems of classification. In structural
engineering problems, Adeli and Park (1995) compared the
learning performance of counterpropagation neural networks
(CPN) and BPN. The CPN learning model is a combination
of supervised and unsupervised mapping neural network learn-
ing models. Kasperkiewicz et al. (1995) used a fuzzy neural
network to predict the strength of high performance concrete.
The fuzzy neural network, called fuzzy-ARTMAP, is a map-
ping neural network of combining Kohonen learning and
Grossberg learning algorithms (Hecht-Nielsen 1987). Re-
cently, Hung and Jan (1997) presented an integrated fuzzy
neural network learning model by integrating a novel unsu-
pervised fuzzy neural network reasoning model with a super-
vised learning model in the domain of structural engineering.
The unsupervised fuzzy neural network reasoning model was
developed on the basis of a single-layer laterally connected
neural network with an unsupervised competing algorithm.
The integrated fuzzy neural network learning model demon-
strated its superior learning performance in complicated struc-
tural design problems with a reasonable computational time.

A cerebellar model articulation controller (CMAC) neural
network, one of the supervised neural networks learning mod-
els, is mostly used in the domain of control. The merits of a
CMAC neural network are not only its fast convergence in the
learning phase but also its capability of mapping complicated
nonlinear functions (Albus 1975a). However, the performance
of a well-trained CMAC neural network in verification phases
OURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999 / 1
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is extremely dependent upon some predefined working param-
eters, such as the size of association memory and physical
memory used. To improve the performance of CMAC neural
network learning models, Albus (1975b) proposed a time in-
version technique to refine computations in a simple CMAC.
Recently, Lin and Chiang (1997) studied the simple CMAC
convergence properties with mathematical formulations and
concluded that the iterative learning in a simple CMAC neural
network always converges.

In this work, we present a newly developed Macro Structure
CMAC (MSoCMAC) neural network learning model based on
a time inversion CMAC learning algorithm in the domain of
structural engineering. The topology of the novel learning
model is constructed by a number of time inversion CMACs
as a tree structure. The MSoCMAC learning model is first
compared with a stand-alone time inversion CMAC using an
engineering design example, the concrete beam design prob-
lem, from recent literature (Vanluchene and Sun 1990; Gun-
aratnam and Gero 1994). In addition, the MSoCMAC neural
network is applied to two steel structural design problems. The
first example is taken from the literature (Adeli and Park
1995). It is the prediction of the moment-gradient coefficient
Cb for doubly and singly symmetric steel beams. The second
example that is a new problem is the prediction of effective
length factor K of columns in unbraced frames. The two ex-
amples are also used to train a supervised L-BFGS learning
model for the sake of comparison.

SIMPLE AND TIME INVERSION CMAC NEURAL
NETWORKS

Simple CMAC Neural Network

A simple CMAC learning algorithm is primarily imple-
mented with three sequential mappings in four multidimen-
sional spaces: (1) Input state space S; (2) association memory
space A; (3) physical memory space P; and (4) output space
U. The three sequential mappings are S → A, A → P, and P
→ U, respectively. A simple CMAC neural network learning
model with three mappings in four spaces is schematically
depicted in Fig. 1. A set of p training instances is given, and
each instance consists of n patterns in input and m data in
output. The corresponding four spaces are, herein, defined as
follows:

• S is a set of p vectors and each vector contains n com-
ponents.

• A is a pseudotable and is physically assigned storage
space as the elements of the table are indicated. The term
ak, in Fig. 1, is an integer number that denotes the kth
element in A.

• P is a matrix with m 3 r elements. The value r denotes
the size of physical memory P and it is varying in differ-
ent learning problems. The term Pl is the lth row vector
in P.

• The output U is a set of p vectors and each vector contains
m components.

Assume that Si is any given training instance, denoted as a
vector in S, and Uid is the corresponding output vector. The
learning phase in a simple CMAC is performed by means of
three sequential mappings in the following steps. The first
mapping is between input space S and association memory
space A. In this step, the vector Si is mapped to an association
vector Gi in space A by means of a predefined function So
A(Si). The vector Gi contains g components. The entity g is a
predefined integer number, called generalization size (Albus
1975a). In this work, the function SoA(Si) is defined as a func-
tion of Hamming distance (Albus 1975a). A situation, in which
2 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999
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FIG. 1. Simple CMAC Neural Network in Four Spaces with
Three Corresponding Mappings

the Hamming distance between two vectors Si and Sj is less
than g, indicates that parts of their association vectors Gi and
Gj are overlapped. Otherwise, if these two instances markedly
differ from each other, the elements in both association vectors
Gi and Gj are distinct.

Succeeding the first mapping, the next mapping is between
association memory space A and physical memory space P. In
a simple CMAC neural network, the size of space A is gen-
erally much larger than the size of physical memory (hardware
of a computer) P. Hence, this mapping is from a large space
into a small storage space. Herein, the technique of hash-cod-
ing is adopted to perform the mapping. A hash function, Ao
P(Gi), is used to map any vector Gi in A to an active physical
memory vector bi with g components in space P. The entity

is the jth element of vector bi.ibj

The third mapping is between physical memory space P and
output space U. In a simple CMAC neural network, a function
of linear combinations of the physically addressed memory in
P is used in this mapping. Therefore, the output vector is cal-
culated by summarizing the physically addressed memory in
P as

g

iU = P (1)i bO a
a=1

Being the same as other supervised learning models, the
computed output Ui is then compared with the desired output
Uid. If the difference between the computed and desired out-
puts is larger than a predefined threshold, then the physical
memory in (1) is updated asiPba

m(k11) (k)
i iP = P 1 (U 2 U ), a = 1 to g (2)b b id ia a g
g. 1999.13:1-11.
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FIG. 2. Time inversion CMAC Neural Network with Two Con-
nected Simple CMACs

where the superscript (k 1 1) is used to indicate the (k 1 1)th
learning step; and the quantity m = predefined learning ratio.
In this work, m is set as a real number in the interval of [0,
1] instead of 1.0 in Albus’s work. The learning phase is ter-
minated as the predefined stopping criterion is met.

Time Inversion CMAC Neural Network

A simple CMAC neural network has the property of fast
convergence in learning phase (Albus 1975a). However, the
prediction performance of a well-trained CMAC neural net-
work in verification phases is extremely dependent upon some
predefined working parameters, such as the size of association
memory A and physical memory P used. To improve the per-
formance of CMAC neural network learning models, Albus
(1975b) proposed a time inversion technique to refine com-
putations in a simple CMAC.

For instance, a set of instances, S9(x9, y9, z9, u9, v9, w9), with
six decision variables in input and the corresponding output
U9 are given. An unsolved instance, X(x, y, z, u, v, w), is used
as a verification instance. Then, the problem can be solved by
a time inversion CMAC with two connected simple CMACs
as shown in Fig. 2. The computations of the time inversion
CMAC neural network can be summarized as the following
steps:

• Step 1. S9(x9, y9, z9, u9, v9, w9) and U9 are used to train
the first simple CMAC of the time inversion CMAC ac-
cording to the aforementioned three sequential mappings,
S → A, A → P, and P → U.

• Step 2. The output corresponding to y9, z9, u, v,˜Ũ S(x9,
w) is computed using the first trained simple CMAC using
(1). Herein, the instances y9, z9, u, v, are called˜ ˜[S(x9, w)U]
transition instance.

• Step 3. y9, z9, u, v, w) and are used as training˜ ˜S(x9, U
instances to train the second simple CMAC of the time
inversion CMAC.

• Step 4. Finally, the output U corresponding to X(x, y, z,
u, v, w) is computed through the second simple CMAC.

The aforementioned four steps are denoted as Sequences (1)
and (2) in the first CMAC and Sequences (3) and (4) in the
second CMAC in Fig. 2, respectively.

MSoCMAC NEURAL NETWORK LEARNING MODEL

This work presents a novel MSoCMAC neural network
learning model. The learning algorithm associated with the
JO
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proposed model is based on the concept of dimensional re-
duction. Hence, connecting a number of time inversion
CMACs as a tree structure allows us to construct the topology
of the MSoCMAC. Hereinafter, the learning algorithm of an
MSoCMAC neural network is explicated with a simple ex-
ample with three decision variables x, y, and z. The following
combinations of three decision variables are considered as
training instances:

x = {x , x , x }1 2 3

y = {y , y , y }1 2 3

z = {z , z , z }1 2 3

Thus, this example contains a total of 27 (33) distinct training
instances. A vector X(xu, yu, zu) is the input of any verification
instance.

The problem can be solved using an MSoCMAC neural
network with a three-level tree structure schematically de-
picted in Fig. 3. Each node of the tree denotes a simple CMAC
neural network. The link between any two connected nodes
indicates the data flow. Cumulatively, the tree contains 12
links.

After the topology of the MSoCMAC neural network is de-
rived, the training instances are divided into nine groups and
presented to the leaves. Simultaneously, the verification in-
stance is presented to the root. Each node in the level two and
the leaves is only fed a transition instance during the verifi-
cation phase. Restated, this case contains 12 transition in-
stances. After the output of each transition instance is com-
puted through a corresponding node, the transition instances
are used in the training phase of the node’s parent. In each
node, only one input pattern is considered as a key-mapping
variable. The input pattern is referred to herein as an active
parameter. Notably, the active parameter differs according to
each level. Herein, these parameters are x, y, and z in root,
level two, and leaf, respectively.

The computations, then, of the MSoCMAC neural network
can be implemented in three stages. First, consider the decision
variable z as the active parameter. Nine transition instances
can be generated. Each transition instance is computed by
means of a simple CMAC trained by three of the training
instances. Hence, the original three-dimensional (3D) problem
is reduced to a two-dimensional (2D) problem.

Next, another variable (i.e., y) is considered as the active
parameter in this stage. Three new transition instances can be
generated by means of the aforementioned nine transition in-
stances using three simple CMACs. Each new transition in-
stance is computed by a simple CMAC trained by three tran-
sition instances generated in the first stage. Therefore, in this
work, the 2D problem is altered to a one-dimensional (1D)
problem only.

In the final stage, the output of the verification instance x
can be computed by a simple CMAC (i.e., trained using the
three transition instances generated in the second stage). In-
stead of using 27 training instances to map a verification in-
stance in a 3D domain, the verification instance is mapped
using three transition instances in a 1D space.

Computational performance in an MSoCMAC neural net-
work depends on the number of given training instances. As-
sume that the decision variables x, y, and z have N distinguish-
able values; there are N 3 distinguishable possible training
instances. To resolve this problem, an amount of N 3 associa-
tion memory A spaces is required by using a simple CMAC
neural network at least. However, only 13N (N 1 3N 1 9N )
association memory A spaces are used in an MSoCMAC neu-
ral network. Obviously, the amount of association memory
spaces used for solving the problem is significantly reduced in
the MSoCMAC neural network. Consequently, the corre-
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999 / 3
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FIG. 3. Topology of Three-Level MSoCMAC Neural Network
sponding computational time can be substantially reduced in
a certain order.

More detailed notations about the MSoCMAC neural net-
work are characterized in the following. In general, the number
of levels in an MSoCMAC tree structure is set equal to the
number of decision variables in an input. Each training in-
stance is represented as . . . , in an input,S9(s9 , s9 , s9 )1,t 2,t n,tn1 2

where = = 1 to pi}, 1 # i # n. The term pi is as9 {s9 uti,t i,t ii i

predefined constant. Then, the topology of the tree of MSo
CMAC can be defined as follows:

• The hth node in ith level of tree is denoted as iN .h

• The number of nodes in ith level can be set as

1 if i = 1
i21p̄ = (3)i H p if i > 1jP
j=1

• There are pi children (nodes) for node where 1 # iiN ,h

# n 2 1 and 1 # h # p̄l.
• Cumulatively, the tree contains p̄n leaves (nodes) that are

denoted as where 1 # c # p̄n.nN ,c

If a new instance . . . , is given, then theX(s , s , s )1,u 2,u n,u

corresponding output Uu can be obtained using the MSo
CMAC neural network learning model according to the fol-
lowing steps:
NAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999
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• Step 1: Use instance X as a verification instance in 1N1

node. The training instances of are selected from thenNc

given training instance set. Subscript ti (i = 1 to n 2 1)
of . . . , is computed as follows:S9(s9 , s9 , s9 )1,t 2,t n,tn1 2

t = {1, 2, . . . , p }n n

c = cn

for i = 1 to n 2 1

p if c mod p = 0n2i n2i11 n2it = (4a)n2i Hc mod p elsen2i11 n2i

C = (C 2 t )/p 1 1 (4b)n2i n2i11 n2i n2i

• Step 2: Generate transition instances in the tree. The input
in the transition instance of is defined as follows:lNb

S̃ = S*T 1 XU (5a)l l

I 0l21T = (5b)l F G0 0
n3n

0 0
U = (5c)l F G0 In2l11 n3n

where Ij = j 3 j identify matrix; S* = any training instance
of node X = verification instance of MSoCMAC neu-lN ;b

ral network; and = verification instance of node lS̃ N .b

• Step 3: Perform the learning and verification phases of
all simple CMACs from leaves to root. Herein, a binary
g. 1999.13:1-11.
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TABLE 1. Binary Valuable Table with g = 4

Si

(1)
a1

(2)
a2

(3)
a3

(4)
a4

(5)
a5

(6)
a6

(7)
a7

(8)
a8

(9)
a9

(10)
a10

(11)
a11

(12)
a12

(13)

1 1 1 1 1 0 0 0 0 0 0 0 0
2 0 1 1 1 1 0 0 0 0 0 0 0
3 0 0 1 1 1 1 0 0 0 0 0 0
4 0 0 0 1 1 1 1 0 0 0 0 0
5 0 0 0 0 1 1 1 1 0 0 0 0
6 0 0 0 0 0 1 1 1 1 0 0 0
7 0 0 0 0 0 0 1 1 1 1 0 0
8 0 0 0 0 0 0 0 1 1 1 1 0
9 0 0 0 0 0 0 0 0 1 1 1 1

variable table proposed by Albus (1975a) is used in the
mapping S → A of any simple CMAC in the MSoCMAC
neural network learning model. For instances, Table 1 lists
a binary variable table with g = 4. Hence, the function
SoA(S*) used in node is shown as follows:lNb

* * *a* = SoA(S*) = {a ua = s 1 i, i = 1 to g} (6)i i l

where denotes the lth element of S*. The subsequent*sl

mapping of A → P for any simple CMAC in the MSo
CMAC neural network learning model is set as follows:

* * *b* = AoP(a*) = {b ub = a , j = 1 to g} (7)j j j

Herein, the process of training in leaves is called the learn-
ing phase of an MSoCMAC neural network. The other pro-
cesses are then called the verification phase of an MSoCMAC
neural network. Notably, although the learning phase can run
in off-line, the verification phase should be run in on-line.

In simple and time inversion CMAC neural networks, the
size of A is always hundreds or thousands times larger than
the size of P. However, the ratio of the size of A over P equals
1 in an MSoCMAC neural network learning model. Further-
more, the jth row vector of physically memory Pj computed
by (1) for a simple or time inversion CMAC neural network
is a step function of j and listed as follows:

W if 1 # j < x1 1

W if x # j < x2 1 2P =j ? ?H ? ?? ?
W if x # j # ra a21

where Wi represents a scale vector, i = 1 to a. The basis of
computation in (1) is then a linear approach. To strengthen the
precision in computational ability in an MSoCMAC neural
network, a novel quadratic approach is proposed herein. The
jth row vector of physically memory Pj is then augmented as:

j 1
W 1 2 (W 2 W ) 3 g if 1 # j < x1 2 1 1S Dx 21

j 2 x 1i21
P = W 1 2 (W 2 W ) 3 g if x # j < xj i i11 i21 i21 iS Dx 2 x 2i i21

j 2 x 1a21
W 1 2 (W 2 W ) 3 g if x # j # ra a21 a a21S Dr 2 x 2a21

(8)

where g = real number in the interval of [0, 1]. For instance,
a 1D function y(x) with five given points, denoted as solid
circles in Fig. 4, is given. Fig. 4 also displays three mapped
functions with three different values of g based on the five
given points by means of an MSoCMAC neural network.

COMPARISON OF TIME INVERSION CMAC AND
MSoCMAC NEURAL NETWORK

The example of design of concrete beams was first solved
by a back-propagation neural network with five parameters Mu,
JO
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FIG. 4. Learning Results for 1D Example with Different g Val-
ues

b/d, r, fy, and in inputs and one data d in output (Vanluchenef9c
and Sun 1990). Where Mu is the ultimate bending moment; b
and d are the width and depth of a rectangular section, re-
spectively; r is the reinforcement ratio; fy is the yielding stress
of reinforcement; and is the compress strength of concrete.f9c
The relation between input and output can be expressed as
follows:

r fy2M = bd f 9v(1 2 0.59v); v = (9a,b)u c
f 9c

Gunaratnam and Gero (1994) solved the example by using
the technique of dimensionless analysis to improve the per-
formance of a back-propagation neural network. Adeli and
Park (1995) used the same dimensionless data set as training
instances of a CPN. For the sake of comparison of the learning
performances of a time inversion CMAC and an MSoCMAC
neural network learning models, a large example of 7,540
training instances, with the aforementioned five patterns in in-
puts and one data in outputs, was created. The instances were
divided into two sets: 2,940 training instances and 4,620 ver-
ification instances. The verification instances are, then, equally
divided into two groups, Test 1 and Test 2.

The input data corresponding to the five parameters of train-
ing instances are set as follows: Mu is changed from 226 to
474.6 kN?m with increments of 22.6 kN?m; b/d is changed
from 0.5 to 0.8 with increments of 0.05; r is changed from
0.012 to 0.028 with increments of 0.004; fy is changed from
2,800 to 4,200 kg/cm2 with increments of 700 kg/cm2; and

is changed from 210 to 350 kg/cm2 with increments of 70f9c
kg/cm2. For verification instances in Test 1, Mu is changed
from 237.3 to 463.3 kN?m with increments of 22.6 kN ?m,
and the other four variables in input are the same as training
instances. For verification instances in Test 2, Mu is changed
from 237.3 to 463.3 kN?m with increments of 22.6 kN ?m;
b/d is changed from 0.525 to 0.775 with increments of 0.05;
and the other variables in input are the same as training in-
stances. Note that the inputs of instances are linearly trans-
formed from real numbers into integer numbers of interval [1,
90], as the approach of the binary value table was employed.
Consequently, the combinations of the five parameters in in-
puts for training and verification instances are set as follows:

s :Mu
{1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89} (training)
{5, 13, 21, 29, 37, 45, 53, 61, 69, 76, 84} (Test 1 and
Test 2)

s :b/d {1, 14, 27, 40, 53, 66, 79} (training and Test 1)
{7, 20, 33, 46, 59, 72} (Test 2)
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999 / 5
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sr: {1, 21, 41, 61, 81} (training, Test 1, and Test 2)
s :fy

{1, 41, 81} (training, Test 1, and Test 2)
s :9fc

{1, 41, 81} (training, Test 1, and Test 2)

First, the example is solved by a time inversion CMAC
neural network with two connected simple CMACs. Working
parameters were set as follows: The maximum learning itera-
tion is set as 50, generalization size g is set as 50, and the size
of physical memory P is set as 14,700. The instances in Test
1 were used as the transition instances in first connected simple
CMAC. The instances in Test 2 were, then, used as verification
instances in the second connected simple CMAC. It took about
274 s of computing time on a DEC 3000 workstation. The
average percentage errors in prediction of the verification in-
stances are 2.19 to Test 1 and 3.13 to Test 2.

Then, the example was solved using a five-level MSo
CMAC neural network learning model. The active parameters
for Levels 5 to 1 were set as Mu, b/d, r, fy, and respectively.f9,c

The generalization size g was set as 50, 50, 50, 40, and 40 in
Levels 5 to 1, respectively. The term g is set as 0.5 in all five
levels. The outputs of instances in Test 1 were calculated from
nodes in Level 5, and the outputs of instances in Test 2 were
calculated from nodes in Level 2. Accordingly, the average
percentage errors in prediction verification instances are 0.64
for Test 1 and 1.28 for Test 2. It took only 24 s of computing
time on a DEC 3000 workstation. In sum, the comparing re-
sults indicate not only a superprediction performance in veri-
fication instances but also a substantial decrease in computing
time for the MSoCMAC neural network learning model as
compared with a time inversion CMAC neural network.

APPLICATIONS

Two steel structural design examples were used to assess
the performance of the MSoCMAC neural network learning
model. The two examples are the estimation of moment gra-
dient coefficient in steel beams and the determination of ef-
fective length of columns in unbraced frames, respectively.
The computations for these two examples are complicated in
structural engineering. Moreover, the two examples are gen-
erally solved by conventional numerical computing ap-
proaches.

Moment Gradient Coefficient Cb for Monosymmetric
Steel Beams Subjected to End Moments

In the American Institute of Steel Construction’s Load Re-
sistance Factor Design (LRFD) specifications (Manual 1994),
6 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 199
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the maximum buckling moment Mcr in monosymmetric steel
beam subjected to a gradient distributed moment can be ap-
proximately calculated by the following equations:

2M = C M ; C = 1.75 1 1.05b 1 0.3b # 2.3 (10a,b)cr b um b

where Cb = real number called moment gradient coefficient;
Mum = buckling moment in monosymmetric steel beam sub-
jected to a uniformed moment; and b = M1/M2 = ratio of two
end moments, in which M1 is the smaller end moment.

A more conservative method to calculate Cb is suggested by
Kitipornchai (1985), and it is expressed as

2g b bc x x2¯ ¯ ¯C = 1 1 4r(1 2 r)k 1 k 1 k (11)b ÎF GS Dp h h

where bx/h = 0.9(2r 2 1)[1 2 (Iy /Ix)
2]; =k̄

= beam parameter; r = coefficient monosym-2 2 2p EI h /4GJLyÏ
metric from inverted T-shape (r = 0) to T-shape (r = 1.0)
shown in Fig. 5; and gc = monodimensional elastic critical
buckling moment. The gc can be determined by the Rayleigh-
Ritz method using the nine-term Fourier sine series to express
deflection and rotation shape (Kitipornchai 1985). It is a find-
ing that the lowest positive root problem of a power series of
order 18 in term of gc with b, and r is a coefficient. In thisk̄,
work, the term gc was solved by the Rayleigh-Ritz method
using MALAB 4.0 on a personal computer.

A three-level MSoCMAC neural network is used to predict
the moment gradient coefficient Cb. The parameters in input
are b, and r. The value of Iy /Ix is set as 0.075 in all in-k̄,
stances. The following combinations of the three input param-
eters are considered as training instances:

b: {21.0, 20.8, 20.6, 20.4, 20.2, 0, 0.2, 0.4, 0.6, 0.8, 1.0}
:k̄ {0.5, 1.0, 1.5, 2.0}

r: {0, 0.07, 0.2, 0.4, 0.6, 0.8, 0.93, 1.0}

These combinations are then transformed to integer numbers
as follows:

sb: {1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101}
¯s :k {1, 21, 41, 61}

sr: {1, 8, 21, 41, 61, 81, 94, 101}

The following combinations of the three input parameters are
considered as verification instances:

b: {21.0, 20.8, 20.6, 20.4, 20.2, 0, 0.2, 0.4, 0.6, 0.8, 1.0}
FIG. 5. MSoCMAC Neural Network for Moment Gradient Coefficient Example
9
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k̄: {0.75, 1.25, 1.75}
r: {0.1, 0.3, 0.5, 0.7, 0.9}

These combinations are then transformed as integer numbers
as follows:

sb: {1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101}
¯s :k {11, 31, 51}

sr: {11, 31, 51, 71, 91}

Thus, there are a total of 517 instances created and divided
into two sets: 352 training instances and 165 verification in-
stances. The active parameters for Levels 3 to 1 in the three-
level MSoCMAC neural network were r, and b, respec-k̄,
tively. Working parameters were set as follows: g was set as
1.0, 0.5, and 0 in Levels 3 to 1, respectively, and the gener-
alization size g was set as 100, 60, and 20, respectively.

The computing results are shown in Figs. 6(a–c), respec-
tively. The average percentage error for 165 verification in-
stances is 0.56. The two largest percentage errors in verifica-
tion instances are 4.94 (as = 0.75, r = 0.9, and b = 1.0) andk̄
4.92 (as = 1.75, r = 0.1, and b = 0.4). Notably, the resultsk̄
are within the acceptable limits in an engineering design com-
putation. Note that the MSoCMAC neural network learning
model has excellent prediction performance, with the average
error of 0.22%, as 0.1 < r < 0.9. Notwithstanding, the com-
puting results for high monosymmetric I-beams (r $ 0.9 or r
# 0.1) with b > 0 and = 0.75 or = 1.75, are poor as¯ ¯k k
comparing with other verification instances. However, the is-
sue can be improved as the number of training instances in-
creased.

Effective Length Factor K of Columns in Unbraced
Frames

The inelastic buckling strength of an element subjected to
axial loading can be calculated by the following equation:

2p Et
F = (12)cr 2(KL/r)

where Et = tangent modulus of elasticity at critical strength; r
is the radius of gyration; and KL is the effective length of
columns. In LRFD specifications (Manual 1994), the value of
K can be evaluated by an alignment chart. Recently, Duan and
Chen (1989), as well as Kishi et al. (1997) found that the
effective length of columns determined using the alignment
chart would be too conservative or not safe with different
boundary conditions.

Herein, a subassemblage model of an unbraced frame based
on the alignment chart approach is established. The model is
composed of Column c2 with two ends A and B, two restrained
columns (c1 and c3), and four restrained beams. Column c1
and two of the beams are rigidly connected to the end A.
Meanwhile, Column c3 and the two other beams are rigidly
connected to the end B. Herein, the far ends of c1 and c3 are
rigidly or fixed connected. The general governing equations
for the K factor of Column c2 can be derived as (Kishi et al.
1997)

a a a11 12 13

det a a a = 0 (13a)21 22 23U U
a a a31 32 33

and the entries aij, i = 1 to 3 and j = 1 to 3 are defined as
26 sij

a = s 1 2 G ; a = G s (13b,c)11 ii Ac1 12 Ac2 ij
G9 sA ii

sij
a = 2(s 1 s ) 1 2 G (13d )13 ii ij Ac1S Dsii
J
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26 sij
a = G s ; a = s 1 2 G (13e, f )21 Bc2 ij 22 ii Bc3

G9 sB ii

sij
a = 2(s 1 s ) 1 2 G (13g)23 ii ij Bc3S Dsii

2a = a = s 1 s ; a = (p/K ) 2 2(s 1 s ) (13h,i )31 32 ii ij 33 ii ij

where

(EI/L) (EI/L)c cO O
A B

G9 = ; G9 = (14a,b)A B

a (EI/L) a (EI/L)uf b uf bO O
A B

(EI/L) (EI/L)ci ci
G = ; G = (15a,b)Aci Bci

(EI/L) (EI/L)c cO O
A B

2
p p p p

sin 2 cosS DK K K K
s = (16a)ii

p p p
2 2 2 cos 2 sin

K K K
2

p p p
2 sinS DK K K

s = (16b)ij
p p p

2 2 2 cos 2 sin
K K K

In the previous equations, subscripts A and B in G9 indicate
the columns and beams connected at the Ath and Bth nodal
points, respectively. Subscripts b and c denote beam and col-
umn, respectively. Subscript ci (i = 1 or 2 or 3) indicates col-
umn number.

In this example, two boundary conditions are examined.
They are both far ends of c1 and c3 fixed (K1) and rigid con-
nected (K2). Table 2 lists the values of GAci and GBci. There are
two input parameters and two output data (K1, K2) in(G9 , G9)A B

each instance. The following combinations of two input pa-
rameters are considered as training instances:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}G9 , G9:A B

The parameters are then linearly transferred to integers in the
interval of [1, 91] as follows:

{1, 11, 21, 31, 41, 51, 61, 71, 81, 91}s , s :9 G9GA B

The following combinations of two input parameters are con-
sidered as verification instances:

{1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5}G9 , G9:A B

The corresponding combinations of the two parameters in
transformed integer numbers are then set as follows:

{6, 16, 26, 36, 46, 56, 66, 76, 86}s , s :9 G9GA B

Thus there are a total of 181 instances created using MALAB
4.0 on a personal computer and divided as 100 training in-
stances and 81 verification instances. Note that the K-factor is
set as 10 when the value of computed K exceeds 10 in this
work. A two-level MSoCMAC neural network was used to
solve this example. The active parameters are in leaf andG9A

in root. The generalization size g was set as 50 in leaf andG9B
root, respectively, and the term g was set as 0.6 in Levels 2
and 1. The learning results are shown in Figs. 7(a and b).

The average percentage errors in K1 and K2 are 0.67 and
OURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999 / 7
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FIG. 6. Prediction of Moment Gradient Coefficient by MSoCMAC Neural Network for: (a) = 0.75; (b) = 1.25; (c) = 1.75¯ ¯ ¯k k k
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TABLE 2. Values of GAci and GBci

Far End Condition of Column c1

Pinned
(1)

Fixed
(2)

Rigid
(3)

Far End Condition of Column c3

Pinned
(4)

Fixed
(5)

Rigid
(6)

GAc1 = 0GAc1 = 0GAc1 GBc2 GBc2 = 1GBc2

GAc2 GAc2 = 1GAc2 GBc3 = 0GBc3 = 0GBc3

0.37, respectively. Kishi et al. (1997) reported that the errors
of K-factor determined using the LRFD specification (Manual
1994) alignment chart were 22.6 to 256.6% for fixed-fixed
boundary, 21.2 to 217.6% for fixed-rigid boundary, and 8.2
to 14.4% for pinned-pinned boundary. Herein, the learning re-
sults confirm that the MSoCMAC neural network learning
model has excellent prediction performance for K-factors of
JO
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columns in unbraced frames. In addition, the prediction results
are within the acceptable limits in an engineering design com-
putation.

Comparison of L-BFGS and MSoCMAC Neural
Networks

Herein, the two examples were then solved using L-BFGS
supervised neural networks. Table 3 summarizes the compar-
isons of L-BFGS and MSoCMAC neural networks. In the ex-
ample of moment gradient coefficient, a network with three
input nodes, one hidden layer with seven nodes, and one out-
put node, identified as L-BFGS(3-7-1), was used. The average
percentage error is 2.83 for verification instances. It took
;1,275-s computing time for the L-BFGS neural network.
However, the average system error in MSoCMAC is 0.56%
TABLE 3. Comparison of BP-Based and MSoCMAC Neural Networks

Examples
(1)

Number of
training

instances
(2)

BP-Based (L-BFGS)

Topology
(3)

Average error
(%)
(4)

Computing time
(s)
(5)

MSoCMAC

Number of
branch

(6)

Average error
(%)
(7)

Computing time
(s)
(8)

Cb [Eq. (11)] 352 L-BFGS(3-7-1) 2.83 1,275 Ra-11-5 0.56 21
K-factor (rigid) 100 L-BFGS(2-5-1) 0.52 48 Ra-10 0.37 3
K-factor (fixed) 100 L-BFGS(2-5-3-1) 0.89 102 — 0.67 —

Note: BP = back-propagation.
aR = root.

FIG. 7. Prediction of K-Factor of Columns by MSoCMAC Neural Network: (a) Fixed; (b) Rigid
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999 / 9
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for verification instances. It took only 21-s computing time for
the MSoCMAC neural network. Notably, the problem is taken
from the literature (Adeli and Park 1995). The training and
verification instances, however, are entirely distinct to their
work. Hence, no computational comparison is made between
the MSoCMAC and CPN neural networks.

In the example of estimate K-factor, a network with two
input nodes, one hidden layer with five nodes, and one output
node (2-5-1) was used in the cases of rigid-rigid boundary. In
addition, a network with two input nodes, two hidden layers
with five and three nodes, and one output node (2-5-3-1) was
used in the cases of fixed-fixed boundary. The average
percentage errors for verification instances with two different
boundaries are 0.52 and 0.89, respectively. It took about 48
and 102 s, respectively, for L-BFGS neural networks in two
boundary conditions. However, the average percentage errors
were 0.37 and 0.67 for verification instances, respectively,
and the computing time in MSoCMAC neural network is only
3 s.

CONCLUSIONS

This work presents a novel supervised neural network learn-
ing mode, MSoCMAC learning model, by connecting a large
number of time inversion CMAC as a topology of tree struc-
ture. The MSoCMAC neural network learning model proposed
herein applied to engineering design problems. Two structural
engineering problems are addressed to assess the learning per-
formance of the MSoCMAC neural network learning model.
Based on the results in this work, we can conclude the follow-
ing:

1. The MSoCMAC neural network learning model can be
used to solve structural engineering problems that are
generally solved by numerical computing approaches
within a reasonable central processing unit time. These
numerical approaches, however, are not readily available
for structural engineers to use. Moreover, the computing
results in the MSoCMAC neural network learning model
are more precise than that estimated through approximate
charts in LRFD specifications.

2. The prediction performance of the MSoCMAC neural
network learning model is superior to that of L-BFGS
supervised neural networks for verification instances.
Moreover, more additional learning cycles are often re-
quired to train the neural network when a new instance
is added into the training sets for L-BFGS supervised
learning models. However, the issue of additional learn-
ing cycles for training is circumvented in the MSoCMAC
neural network learning model. Only the associated
physical memory corresponding to the new training in-
stance needs to be updated.

3. For a time inversion CMAC neural network, the sizes of
A and P must be large enough for performing good
prediction in verification phase. The size of A is
always hundreds or thousands times larger than the size
of P. However, in the MSoCMAC neural network
learning model, the size of A is significantly reduced
and the ratio of the size of A over P is equal to 1. As a
result, the MSoCMAC neural network learning model
can converge quickly to an accepted solution in a few
iterations.

4. A time inversion CMAC neural network uses a linear
interpolation approximation to calculate the adjustments
for updating the physical memory. Hence, for a nonlinear
problem, the performance of verification is poor in a time
inversion CMAC neural network. A novel approach for
calculating the adjustment in updating physical memory
10 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 19
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is presented in this work. Instead of the linear interpo-
lation approximation, a quadratic interpolation approxi-
mation (trapezium schema) is utilized in the MSoCMAC
neural network learning model. Significant improvement
in the learning performance for verification instances is
achieved in the MSoCMAC neural network learning
model.
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