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Abstract 

Twisted cube, TQn, is derived by changing some connections of hypercube Q, accord- 
ing to specific rules. Recently, many topological properties of this variation cube are 
studied. In this paper, we prove that its connectivity is n, its wide diameter and fault di- 
ameter are In/2] + 2. Furthermore, we show that 7~, is a pancyclic network that is cy- 
cles of an arbitrary length at least four. © 1999 Elsevier Science Inc. All rights 
reserved. 
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1. Introduction 

Network topology is a crucial factor for interconnection network since it de- 
termines the performance of  the network. Many interconnection network top- 
ologies have been proposed in the literature for the purpose of  connecting 
hundreds or thousands of  processing elements [3,4,6,10]. Network topology 
is always represented by a graph where nodes represent processors and edges 
represent links between processors. Among these topologies, the binary hyper- 
cube, Qn, is one of  the most  popular  topology. However, Qn does not make the 
best use of  its hardware in the following sense: given N = 2 n nodes and nN/2 
links, it is possible to fashion networks with lower  diameters than the 
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hypercube's diameter n. One of such topologies is called twisted cube [7], TQn, 
which is derived by changing the connection of some links of the hypercube ac- 
cording to some specified rules. The diameter of  twisted cube topology is 
[(n + 1)/21, almost a factor of 2 improvement. This is achieved by forfeiting 
some of the hypercube's high degree of symmetry and redundancy. Recently, many 
topological properties of this variation cube are studied in the literature [1,2]. 

In order to evaluate the performance of a network topology, we can consid- 
er the following measures: vertex connectivity, diameter, wide diameter, fault 
diameter, and embedding of  cycles. The vertex connectivity (simply abbrevia- 
ted as connectivity) of  a network G = (V, E), denoted by ~:(G) or ~c, is the min- 
imum number of vertices whose removal leaves the remaining graph 
disconnected or trivial. It follows from Menger's theorem that there always ex- 
ist ~: internally vertex-disjoint (abbreviated as disjoint) paths between any two 
vertices. Disjoint paths between a pair of vertices contribute to multipath com- 
munication between these two vertices and provide alternative routes in the 
case of node or link failures. Thus large connectivity is preferred. 

Wide diameter and fault diameter were proposed in [5,8]. For  any pair of 
vertices, say u and v, we find K disjoint paths such that the longest path length 
of ~ disjoint paths is minimum, denoted by d~(u, v), among all possible choices 
of ~: disjoint paths. The wide diameter is defined as the maximum of  d~(u, v) 
over all u, v c V. Small wide diameter is preferred since it enables fast multi- 
path communication. Fault diameter estimates the impact on diameter when 
faults occur, i.e., removal of vertices from G. For  a pair of vertices u and v, 
we find the maximum of shortest path length between u and v over all possible 
~ c  - 1 faults, denoted by df_l (u, v). The (re - 1)-fault diameter is the maximum 
of d~_ 1 (u, v) for all u, v, E V, i.e., the maximum transmission delay of K - 1 
faults. Small (~: - l)-fault diameter is also desirable to obtain smaller commu- 
nication delay when faults occur. Wide diameter and fault diameter of  a twisted 
cube TQn are studied in this paper. 

An important aspect of TQn is its ability of efficiently simulating computa- 
tions on other networks, which is portability of algorithms from other parallel 
interconnection structures, such as cycle or tree, to TQ,. Such simulations can 
be reduced to graph embedding problem. We also consider the problem of em- 
bedding cycles architectures in twisted cubes. 

Most of  the graph definitions used in this paper are standard (see [9]). Let 
G = (V, E) be a finite, undirected graph. Throughout  this paper, node and ver- 
tex are used interchangeably to represent the element of  V. Edge and link are 
used interchangeably to represent the element of  E. Let Ci denote the length of 
a cycle. The distance between vertices u and v, denoted by de(u, v), is the length 
of the shortest path from u and v. 

The rest of this papers is organized as follows. In Section 2 we discuss some 
basic topological properties of twisted cubes. The connectivity, fault diameter 
and wide diameter for twisted cubes of odd dimension are studied in Section 3. 



C.-P. Chang et al. I InJbrmation Sciences 113 (1999) 1 4 ~ 1 6 7  149 

Embedding of  cycles into twisted cubes is presented in Section 4. Finally, we 
make concluding remarks in Section 5. 

2. Twisted cube topology and its properties 

The n-dimensional hypercube, Q,, consists of  all the binary n-bit strings as its 
vertex set and two vertices u and v are adjacent if and only if u differs from v by 
exactly one bit. Let u = u,-lu, ,-z  . . .  uo and v = V,_lV,-2 . . .  vo be two vertices of  
Q,. (u, v) is an edge in E(Q,)  of dimension i if the ith bit of  u is different from 
that of  v. Twisted cube was first defined by Hilbers et al. [7]. A twisted n-cube, 
denoted by TQ,, is a variant of n-dimensional hypercube Q~. TQ, has the same 
number of  nodes and edges as in Q,. We restrict the following discussion on 
TQ, for the case that n is odd. Let n = 2m + 1, to form the twisted cube, we re- 
move some links from the hypercube and replace them with links that span two 
dimensions in such a manner that the total number of links (nN/2)  is conserved. 
To be precise, let u = u, l Un_2  . . .  Ul U0 be any vertex in 71Q~. We define the parity 
function P,.(u) = ui ® ui-1 ® . . .  ® uo, where G is the exclusive-or operation. If  
P2j-2(u) = 0 for some 1 <~j<~rn, we divert the edge on ( 2 j -  1)th dimension to 
node v such that vejv2j-i = ~2ju2j-1 and 1,,~ = u~ for i ¢ 2j or 2j - 1. Such divert- 
ed edges is called twisted edges. TQ3 and TQ5 are shown in Fig. l(a) and (b). 

We may formally define the term of twisted cube recursively as follows: A 
twisted 1-cube, TQ~, is a complete graph with two vertices, 0 and 1. Let n be 
an odd integer and n ~> 3. We decompose vertices of  TQ, into four sets 
S°,°,s°, l ,s  1,0 and S 1,1 where S i'j consists of  those vertices u with u,-1 = i and 
Un 2 = j. For  each (i, j)  c {(0, 0), (0, 1), (1,0), (1, 1)}, the induced subgraph 
of S i,j in TQ, is isomorphic to TQ,__2. Edges which connect these four subtwist- 
ed cubes can be described as follows: Any node u , - l u n - 2 . . . u l u o  with 
Pn-3(u) = 0 is connected to Un_lgtn_2Un_3...U 0 and Un_lUn_ZUn_3 . . .U0; and 
Un lUn 2Un-3 . . .U0  and ~,-lun 2u,-3.. .uo, i fP ,  3(u) = 1. 

The following lemma can be easily obtained from the definition of twisted 
cubes. 

Lemma 1. Let  u = Un_lUn_ 2 . . .  UlU0 and v = Vn_lVn_ 2 . . .  VlV 0 be two vertices o f  
TQ,, with ( u , v ) E  E(TQ~). If  U . -  1 = I) n 1, Un 2 = V n - 2 ,  and P , - 3 ( u ) =  P,-3(v), 
then Pn-5(u) = Pn-5(v). 

To discuss the wide diameter and the fault diameter of  the twisted cube, we 
need to review the shortest path routing algorithm [1]. Defining the Oth "double 
bit" of  node address u to be the single bit u0, and the j th  "double bit" to be 
u2ju2j-1. Let u, v be any two vertices of  TQ~. We defined the double Hamming  
distance of u and v, denoted by ha(u, v), to be the number of  different double 
bits between u and v. Obviously, drop(u, v) >1 ha(u, v). 
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Fig. 1.7"Q3 and TQs. 

We can find the shortest path between any two vertices using the algorithm 
proposed in [1]. Let u and v be two vertices of  TQ,. Let z = u. The basic strategy 
of  the algorithm is to recursively find a neighborhood w of  z that reduces 
hd(w, v). To be precise, the strategy is described as follows. 
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1. I f  z = v, then the pa th  is determined.  
2. Assume that  there exist neighbors  w o f  z such tha t  hd(w, v) = hd(z, v) -- 1. 

Let  w' be the such w that  differs f rom z with the largest double  bit. Then  reset 
z to be w'. 

3. Assume that  all the ne ighborhood  w o f z  satisfy hd(w, v) >>. ha(z, v). Let j be 
the smallest index o f  double  bits that  z differs f rom v. Choose  w' to be the 
neighbor  of  z that  differs f rom z in the 2j th bit. Then  reset z to be w ~. 
Since the r ightmost  differing double  bit is selected in step 3, the resulting par-  

ity change guarantees  that  all subsequent  rout ing for  the message will be by 
step 2 until the dest inat ion is reached. Hence,  step 3 is executed at  mos t  once 
for  a given message. With  this rout ing algori thm, we have the following theo- 
rems. 

Theorem 1 [7]. The diameter o f  the twisted cube TQ, is r(n + 1)/21 . 

Theorem 2. hd(u, v) <~ drp, (u, v) <~ hd(u, v) + 1 for any u, v C V(TQ,). 

Lenuna 2. Let  u and v be any two different nodes in the same S iJ o f  TQ, and L be 
any shortest path joining u to v. I f  P,_3(z) = O for all nodes z in L, then the length 
o f  L is at most [(n - 2) /2]  - 1. 

Proof.  Wri te  L as u = u °, u 1, . . . ,  u k = v. Suppose that  there exists some index i 
with 0 ~<i~< k -  1 such that  u i differs f rom u i+1 in exactly one bit, say t, with 
0 ~<t~< n - 3. Then  P,_3(u i) ~ P,_3(ui+l). This is contradic t ion  to the assump-  
tion, i.e., Pn_3(u i) = 0 = Pn_3(u i+l ). Hence each (u i, ui+l) is  either a twisted edge 
or  u i differs f rom u i+1 in the I(n - 2) /21th  double  bit. Since both  u and v are in 
the same S iJ, the length of  L is at  mos t  V(n - 2 ) / 2 ~  and u,-lu~-2 = Vn-lV,-2. 
Suppose that  the length o f  L is [ ( n -  2) /2] .  Since each (ui, u i+l) is a twisted 
edge, we have u0 = v0 = 0 and uzju2j-1 = v2jvzj-l for  1 ~< j ~< In/2] - 2. Based 
on the definition of  double  H a m m i n g  distance, we have 
hd(u, v) = I ( n -  2)/2~ - 1. Applying  the shortest  pa th  rout ing a lgor i thm,  we 
can conclude that  dro,(u, v) = I(n - 2)/21 - 1. We get a contradict ion.  Hence 
the length of  L is at most  [(n - 2) /2]  - 1 and the l emma is proved.  [] 

3. Fault diameter, wide diameter, and connectivity 

We here formal ly  define wide d iameter  and fault  d iameter  o f  an underlying 
ne twork  G = (V, E). Fo r  a vertex u in G, the neighborhood of  u, denoted by 
N(u),  is defined as {v [ (u, v) E E) .  Let  u and v be two distinct vertices in G, 
and let ~(G) = ~. Let C(u, v) denote  the set o f  all at disjoint pa ths  between u 
and  v. Each element i o f  C(u, v) consists o f  • disjoint paths ,  and  the longest 
length a m o n g  these ~ pa ths  is denoted by li(u, v). The n u m b e r  o f  elements in 
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C(u, v) is denoted by IC(u, v)l. w e  define d~(u, v) as the min imum over  all li, 
i.e., d~(u, v) = mini <i~< IC(u,v)l li(u, v). We write dl(u, v) as d(u, v), which means  
the shortest  distance between u and v. D~(G) is called the ~- diameter of  G and 
is given by 

D~(G) = max  {d~(u, v)}. 
u,tEV 

By definition, D~(G) = cx~ if ~ >~ ~ + 1. We usually write DI(G)  as D(G) and 
call D(G) simply the diameter of  G. We are part icular ly interested in D~(G). 
For  a positive integer fi, dry(u, v) is defined as 

d~(u, v) = max  {d(u, v) in G - F I u, v ~ F}.  
IFi t'~ 

The fl-fault diameter, denoted by DJlI(G), is given by 

D~(G) = max  {dr~(u, v)}. 
u,ocV 

I f  fl >1 ~, Df~(G) = ~ by definition. We are in par t icular  interested in Dr~_l (G). 
Obviously,  we have D(G) ~< Dr~_1(G) <~D~.(G). 

It  is known that  ~:(Q,) = n and D,(Q,) = Df_1(Q,)  = n + 1. In this section, 
we will prove  that  D,(TQ,) = Df,_I(TQ,) = In~21 + 2 for  all odd  n. With  this 
result, we can conclude that  the connectivi ty of  TQ, is n. A node  u o f  TQ,, de- 
noted by u = 0il" i, is a b inary string of  length n with the first i O's and the last 
n - i l 's.  We first prove  the following lemma.  

I . emma 3. D~, 1(TQ,) >1 In/2] + 2, where n is an odd integer. 

P r o o f .  Let u = 0" 11, v = 021n-30, and u' = 010" 31. Assume that  the faulty set 
F = N(u) - {u'}. Hence I F I  = n - 1 .  Obviously,  any  pa th  that  joins u to v 
wi thout  t raversing any node in F is a pa th  f rom u through u', then through a 
ne ighborhood  of  d ,  say u" ( ¢  u), and then followed by a pa th  joining u" to v. 
These u" are in the set W = {010" z, 120n-31} U {010 n 4-Jl0Jl  I O<~j<~n - 4}. 
Obviously,  hd(x, v) = In/27 for  any x C W - {010n-2}. By the shortest  pa th  
algori thm, we can check that  dr l(y, v) = In~2] where y = 010 "-2. Hence  the 
distance between any vertex in W to v in TQ~ is exactly In/21. Therefore  
D~ 1(TQn) >~ In~21 + 2. Hence the l emma is proved.  [] 

A pa th  P: u = u°,ul , . . .  ,uk--l,u k = v with k />  3 is called a twisted path if 
P,-3(u i) = P , - 3 ( d )  and P,_l(U i) = P,_1(u a) for  1~< i,j<<.k- 1. Fo r  any node 
u = u, lu,-2...uluo in TQ, and any (i,j) E {(0,0),  (0, 1) , (1,0) ,  (1, 1)}, u i,j de- 
notes the node iju,_3.. ,  uluo. 

L e m m a  4. For any two different vertices u and v in TQ,, there are n disjoint paths, 
LI,L2,. . . ,Ln, joining u to v such that (1) the length o f  each Li is at most 
In~21 + 2, (2) L~ is the shortest path joining u to v, and (3) the length of  Li is at 
most In/21 + 1 if  Li is a twisted path. 
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Proof. The  p r o o f  is b y  i n d u c t i o n .  O b v i o u s l y ,  the l e m m a  is t rue  fo r  n = 1. F o r  
n ~> 3, a s s u m e  t h a t  such  k d i s jo in t  p a t h s  exis t  fo r  a n y  two  d i s t inc t  n o d e s  in TQk 

a n d  a n y  o d d  k < n. N o w ,  we c o n s i d e r  a n y  two  n o d e s  u = u~-lun-2 . . .  uluo a n d  
v = vn-~vn-2 . . ,  vlvo in TQn. W e  discuss  the  f o l l o w i n g  six cases.  

In  cases  1 a n d  2, b o t h  u a n d  v sa t is fy  v~_3 . . . v lvo  = u , , -3 . . ,  uluo. W i t h o u t  
loss  o f  genera l i ty ,  we a s s u m e  t h a t  u is in S °,l . N o t e  t h a t  the  degree  o f  a n y  n o d e  
in the  s u b g r a p h  o f  TQ~ i n d u c e d  by  S °'1 is n - 2 .  Le t  N ( u ) A S  °'l = 

{ W 3 , W 4 , . . . , W n } .  Since w r ~ w s  for  3 < ~ r : / : s < . n ,  we have  w~r,i~w~ J for  
( i , j )  E { (0 ,0 ) ,  (0, 1), (1 ,0) ,  (1, i )} .  

Case 1 : V , - l V , - 2  ¢ u , - l u , - 2  a n d  P,,_~(u) = P~ 3(v) = 1. 
Subcase  1.1." V~_lV,_2 = u ~ - 1 ~ - 2 .  In this  case,  u = u °,1 a n d  v = v °,°. L e t L l  be  

the p a t h  u =  u°, l ,v  °,° = v ,  a n d  L2 be  the  p a t h  u = u ° ' l , u H , u l ' ° , v ° ' ° =  v. I f  
P~-3(wi) l for3<<, i<~n ,  t h e n s e t L i a s u  u °,l ol oo oo = = , w i' , w i ' , v , = v. O b v i o u s l y ,  
the l eng th  o f  L~ is 3. I f  P , - z ( w i ) = 0  for  3<~i<~n, t hen  set Li as 
u u °,1 ol  lo  w0,O, vO,0 = ,w~' , w i ' ,  = v. O b v i o u s l y ,  the  l eng th  o f  Lg is 4. Since 
P, ,_,(w~") ¢ P,_l(W~ ,°) or  P ,_ l (Wl  '°) : f  Pn_l(W~'°), L, is n o t  a tw i s t ed  pa th .  
Thus ,  we have  n d i s jo in t  p a t h s  j o i n i n g  u to  v sa t i s fy ing  (1)-(3) .  See F ig .  2(a) 
fo r  i l l u s t r a t ion .  

Subcase 1.2." V, - lV, -2  = un-lu~-2. In  this  case,  u = u °,1 a n d  v = v 1,°. Le tL1  be 
the  u = u°,l ,u°,° ,vl ,°  = v, a n d  L2 be the u = u° , l , u l , l , v  1,° = v. I f  P,-3(wi)  = 1 

fo r  3~<i~< n, t hen  set Li as u = u °,1, wli ''1 , w °'°, wl '°, v ' , ° =  v. Thus ,  Li is n o t  a 
twis ted  p a t h  a n d  the l eng th  o f  L~ is 4, I f P , _ 3 ( w j )  = 0 fo r  3<~j<<,n, t hen  set 

U01 0,1 . 1,0 .1 L j a s u =  , , w j  ,wj  , u , ° = v .  Thus ,  the l eng th  o f  Lj is 3. O b v i o u s l y ,  L j i s a  
twis ted  p a t h  a n d  its l eng th  is a t  m o s t  In/21 + 1 .We get  n d i s jo in t  p a t h s  j o i n i n g  
u to  v sa t i s fy ing  (1)- (3) .  See F ig .  2(b) for  i l l u s t r a t ion .  

Subcase  1.3: l)n_ll)n_ 2 = fln_lU n 2- In  this  case,  u = u °'1 a n d  v = v Lj . Le t  L1 be 
the  u = u °,1, v 1,1 = v, a n d  L2 be  the  u = u °'1, u °,°, u 1,°, v 1,1 = v. F o r  each  p a t h  L~ 
wi th  3 ~< i ~< n, set Li to  be  u = U 0'1 ,wi,O 1, ~1,i,,1 1, /)1,1 = U. Thus ,  the  l eng th  o f  L~ is 3. 

I t  is o b s e r v e d  t h a t  n o n e  o f  L~ fo r  1 ~< i ,-~ n is a tw i s t ed  pa th .  W e  f ind n d i s jo in t  
p a t h s  j o i n i n g  u to  v sa t i s fy ing  (1)-(3) .  See Fig .  2(c) for  i l l u s t r a t ion .  

Case 2." l)n_lVn_ 2 7 ~ Un- lUn-2  a n d  Pn_3(u) = P~-3(v) = O. 

Subcase  2.1: Vn_lUn_ 2 = Un_l~ln_2. In  this  case,  u = u °'l a n d  v = v °'°. Set LI as 
u = u° , l ,u l ' ° , v  °,° = v, a n d  set Lz as  u ::= u ° ' l , u L l , v  °'° = v. I f  P,_3(w~) = 1 for  
3 ~< i ~< n, t hen  set Li as u = u °'1 ,, w °A, w~) '°, v °,° = v. Thus ,  the  l eng th  o f  Li is 3. 
I f  P,-3(wi)  = 0  for  3 <,i <,n, then  set Li as u = u  °,l w ° ' l , w  ,o wO,O vo,o v. 

Thus ,  the  l eng th  o f  Li is 4. W e  have  c o n s t r u c t e d  n d i s jo in t  (u, v ) -pa th s  sa t i s fy ing  
(1)-(3) .  See Fig .  3(a) fo r  i l l u s t r a t ion .  

Subcase 2.2." v,_lv~_2 = ~ , - 1 ~ , - 2 .  In  th is  case,  u = u °,1 a n d  v = v 1,°. Set LI as 
u = u ° , l ,v  L° = v, a n d  set L2 as u = u ° , l ,u  1,1,u °,°,v L° = v. I f  P~-3(wi) = 1 fo r  
3 ~< i~< n, t hen  set L i a s  u u0,1,  01 0.0 w),O t~l,0 = w~' , w~ , • = v. Thus ,  the  l eng th  o f  L i 

is 4. I fP~-3(wi)  = 0 for  3 ~< i ~< n, t hen  set Li as u = u °,1 , w~ 'l , w] '°, v 1'° = v. Thus ,  
the  l eng th  o f  L~ is 3. W e  have  f o u n d  n d i s jo in t  (u, v ) -pa th s  sa t i s fy ing  (1)-(3) .  See 
F ig .  3(b) fo r  i l l u s t r a t ion .  
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Subcase2 .3 . "  v,  lvn-2 = ~in lUn-2 • In this case, u = u °3 and v = v 1,1. Let L I  be 
the path u = u ° ' l ,v  l'l = v, and L2 be the path u = u ° ' l , u  l,°,u °,°,v H = v. For  

uO,1 W 0,1 W1,1 vl.I  e a c h  Li with 3 ~< i~< n, let Li be the path u = , ' , i , = v. Thus, the 
length of  Li is 3. We have obtained n disjoint (u, v)-paths satisfying (1)-(3). 
See Fig. 3(c) for illustration. 

In cases 3-6, we consider u,,_ 3u, 4 . . .  uo ¢ vn- 3vn-4 . . . vo. Since SO.1 induces 
o,1 L °'l be a TQn 2, by induction there are n - 2 disjoint paths. Let L~ 'l, L2 , .  • •, ~-2 

n -  2 disjoint paths joining u °'1 to I~0,J such that  (1) the length of  each path 
is at most  [ ( n -  2)/21 + 2, (2) L °'1 is the shortest path joining u °'1 to v °'1 in 
S °'l, and (3) the length ofL~ '1 is at most  [(n - 2) /2]  + 1 ifL~ 'l is a twisted path. 

Hence, the length L(i )'1 is at least 2 if i > 1. Write L °'1 as 
U = U 0'1 0.1 0,1 : V0,1, i,o Ui.l . ,  ui,k, where k, is the length o f  L °1 Let L iJ be the corre- 

sponding path o f  L~ 1 in S ~'j joining u i,j to v i,i. Wi thout  loss o f  generality, we 
assume that  u is in SO,I. 

Case  3." u ,  lun-2 = v,  ~v,-2.  In this case, u = u °'1 and v = v °'1. We simply let 
Li = L~ 'j for 1 ~< i ~< n - 2. We have obtained n - 2 disjoint (u, v)-paths satisfy- 
ing (1)-(3). To construct  the remaining two disjoint (u, v)-paths L~_l and L,, we 
consider the following three subcases. LO,O 

S u b c a s e  3.1." Pn-3(u) = Pn-3(v) = 1. Let L~-i be the path u = u °,1, u°'°--,v °,°, 
Lll 

v °'1 = v, and L~ be the path  u = u °'j. u 1' ~ v  ' , v ° = v. Since the length o f  L °'° 
and L 1,1 are at most  [ ( n - 2 ) / 2  l ,  the length o f  L,,-1 and Ln are at most  
[(n - 2) /2]  + 2. Note  that I(n - 2)/21 + 2 = In~21 + 1. See Fig. 4(a) for illus- 
tration. 

S u b c a s e  3.2." P n - 3 ( u ) =  P~-3(v)=  0. Let L~ I be the path u = u ° , l , u L ° ~  

V 1'0, V 0'1 = U, and let L~ be the path u u °,1 L~ v0,1 = , u H ~ v l ,  1, = v. Similarly, the 
length o f  L L° is at most  [(n - 2)/2-]. Therfore,  the length o f  L,_I and L, are 
at most  [(n - 2) /2]  + 2. See Fig. 4(b) for illustration. 

S u b c a s e  3.3." Pn-3(u) ¢ P, 3(v). Wi thout  loss o f  generality, we assume that 
P,-3(u) = 0  and P~ 3(v) = 1 .  Let Ln-i be the path U = U 0 ' I , u l ' 0 ,  U0,0L~ 

L1,a 
v °'°, v °'l = v, and Ln be the path u --- u 0,1 , u 1,1 ~zn t ) l ' l ,  u 0 ' l  = U. See Fig. 4(c) for il- 
lustration. Thus we have obtained n disjoint (u, v)-paths satisfying (1)-(3). 

Case 4 : v n - l v , - 2  = u,  l~ ,  z. In this case, u = u °,l and v = v °,°. For  those 
p (u °'] 

paths L~" with any node ui°'y.~,, satisfying ,-3~ , j ) =  1, where 
U0,I 0,1 0,0 0,0 0,0 ~ /). 

1 < i ~ n  - 2, 1 <~j < ki,  s e t  Li  a s  u --= Ui,o, i ,1,  ' '  ", ui , j  ,u i , j  , u i , j + l , . . .  ,Ui,k, 
Since P,_ l (u~)  1) ¢ P~-l  oo (u~, i ), L~ is not  a twisted path and its length is at most  
In/2] + 2 .  Others paths L °,~ where 1 <  t < < , n - 2  with Pn_3(u~) 1) = 0  for all 

- 01 01 J0 0,0 0,0 00 v. SinceP~ l(u],) ° ) ¢  1 ~<j < kt, set rt  as u = U~'o,Uz' 1 , u t l , u t ,  1 , u t , 2 , . . . , u t , k ,  = 
Pn 1 0.0 (ut,) ) and by Lemma 2, Lt' is not  a twisted p a t h ' a n d  its length is at most  
In~2] + 2. We have constructed n -- 3 disjoint (u, v)-paths satisfying (1)-(3). 
To construct  the remaining three disjoint (u, v)-paths LI ,L,-1  and L,, we con- 
sider the following three subcases. 
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S u b c a s e  4 . 1 :  P n _ 3 ( u )  - -  P n - 3 ( v )  ~- 1. Let  L1 be  u --  u°,ltfi~v °'1, v °'° = v,  L n - I  be 
0 1 L°'° u = u ' , u°,°---~v°, ° = v, and Ln be  u = u °A, u 1'1, u l , ° ~ v J ,  ° ,  v °,° = v. See  Fig.  5(a) 

for  i l lustrat ion.  

E I 

(a) pn-3(u)fPn-3(v)=l 

w LI 

Li t 

w u , t,0 

Fig.  5. R e l a t i v e  p o s i t i o n s  o f  t he  s o u r c e  n o d e  a n d  t he  d e s t i n a t i o n  n o d e  w i t h  u in S °'1 a n d  v in S °'° f o r  

c a s e  4. 
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I" L,~ 

(,¢ II ,O 

II I t ,  

(c) P~3(u)=P~ v)==° 

+ 

(d) .Pn-3fu) =P~3(v> 
Fig, 5, (Continued) 
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S u b c a s e  4.2." Pn-3(u) = Pn 3(v) = 0. I f  the length ofL~ A is 1, or  Pn-3(ul j )  = 0 
0,1 

for  all 1 ~<j < kl, set L1 as u = u ° ' l ~ v  °'l, v 1,1, v °,° = v, set L~ 1 as u = u °'1, 
LlO 

u l ' ° ~ v  l'°, v °'° = v, and  set Ln as u = u °'1, u jA, u ° ' ° ~ ,  v °'° = v. I f  the length o f  
0 , 1  0 1  . • 0 1  L 1 is greater  or  equal  to 2 with any  node  ul',) sat isfying P , , - 3 ( u ( , / ) =  1, 

Ol oA o,l uO,O o,o o,o 
l < ~ j < k l ,  set LI as u = U l l o , u l A , . . . , U l j ,  1,j,Uld.+l,...,/)l,k, =L~, Ln-I  as 

L j o LIA 
u = u °'1, u ' ° ~ v l ' ° ,  v °'° = v, and  L,  as u = u °'l , u 1'1 ~ v  1,1 ,, v °,° = v. See Fig. 5(b) 

and  (c) for  i l lustrat ion.  

S u b e a s e  4.3." P,-3(u)  :~ P,-3(v) .  W i t h o u t  loss o f  general i ty,  we assume tha t  
01 

P, 3(u) = 0  and  P , - 3 ( v )  = 1. Let  LI be the pa th  u = uO' l~vO' l ,V  °'° = v, L ,  1 
LlO 

be the pa th  u = u ° , l , u l , ° ~ v l ' ° , v  ° ' ° : = v ,  and  L~ be the pa th  u = u  °'1, u 1,1, 
LOO 

u ° , ° ~  v °,° = v. See Fig. 5(d) for  i l lustrat ion.  Hence  we have  cons t ruc t ed  n dis- 
jo in t  (u, v)-paths  sat isfying (1)-(3). 

Case  5." V~_lV,_2 = u n - l u , - 2 .  In this case, u = u °'l and  v = v l,°. F o r  those  
pa ths  L~ 'l with any  n o d e  u°'li,j sat isfying P~_3(u°J) = 0, where  

1 < i < , n - 2 , 1 < ~ j < k i ,  let L~ be the pa th  u = u  °'1 U 0'1 U0,1 U!,0 1.0 
i,O~ i,l ~' " '~  i,j ~ ~I ~ U i j + I  

1.0 . . . ,  ui),, = v. Obvious ly ,  the length o f  Lg is at  m o s t  [n/21 + 2. I f  Li is a twisted 

path,  L °'1 is a twisted p a t h  in S °,1. By induct ion ,  the length  o f  L7 '1 is at  m o s t  
I(n - 2)/21 + 1. This implies tha t  the length o f  L~ is at mos t  ~n/2] + 1 if L~ is 
a twisted path.  Others  pa ths  L °'l with P,,_3(u°.')) = 1 for  all 1 ~<j < kt, set Lt 

01 01 00  10 10 10 . v 0 1  • • 
as u = u t 'o, ut,'l , ut,'l , ut '1, us,~, • • •, ut,~, = v. It  as easy to see tha t  Lx' is a twmted 

pa th  in S ~j,1 with P~ ;(u~J) = 1 for  all 1 ~<j < kt. Therefore ,  the length o f  L, is at  
mos t  In~21 + 2 and  Lt is no t  a twisted path.  We  have  f o u n d  n - 3 disjoint  (u, v)- 
pa ths  sat isfying (1)-(3). T o  cons t ruc t  the remain ing  three disjoint  (u, v)-paths  
L1,  L~ 1 and  L,,  we cons ider  the fo l lowing three subcases.  

S u b c a s e  5.1." P,-3(u)  = P~_3(v) = 1. I f  the length ofL~ 1 is 1, or  Pn-3(ul,j) = 1 
0,1 

for  all 1 ~<j < kl, set L1 as u = u ° l ~ v  °,l, v LI, v 1,° = v, Ln- l  as u = u °,1, 
Lo,o I o 

u ° , ° ~ v  °,°, v l,° = v, and  L~ as u = u °,l , u 1,1 , u l , ° ~ v  l,° = v. I f  the length o f  L 0'1 

is greater  or  equal  to 2 with any  node  u~'~ sat isfying P,_3(u~',.l.)=O, 
1 ~<j  < kl, let LI be Ol o l  o,1 l,o l,o l.o the pa th  u = U~'o,Ul ' l , . . .  , U l , j  , U l , j  , b l l , j + l  , . . . , U l l k l  ~ -  1), 

00 ' 

L,_l  be the pa th  u = u ° A , u ° ' ° ~ , v ° , ° , v  l'° v, and  L,  be the pa th  
L H 

u = u °'1 , u 11 ~ v  1'1 , v 1'° = v. See Fig. 6(a) and  (b) for  i l lustrat ion.  0,1 

S u b c a s e  5.2." P,  3 ( u ) = P ,  3 ( v ) =  0. Let  L1 be the p a t h  u = u°ALT-~v °A, 
LI.O 

UI'0=U, Ln I be the pa th  U=b/01,/gI'0z-+/pI'0=U, an d  L,  be the pa th  
LOO 

u = u °A , u 1A,~ u ° , ° ~ v  °'°, v ~'° = v. I f  L,  is a twisted path ,  then L °,° is a shor tes t  

pa th  jo in ing  u °,° to v °,° sat isfying P, 3(z) = 0 for  all nodes  z in L °,°. I t  fol lows 

f r o m  L e m m a  2 tha t  the length o f  L °°  is at  mos t  I ( n -  2)/21 - 1. Hence,  the 
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L_, 

i' 

(a) Pn-3(u)=Pn_3(v)=l 

161 

(b) P~-3(u)=Pn-3(v) =l 

Fig. 6. Relative positions of the source node and lhe destination node with u in S °,l and v in S I,° for 

case 5. 
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~I uijl 

(e) Pv-3(u)=&--3~)=° 

Li. I Lt 

\ .  ,'.0 ) \i~-._ )',.J., / 

(d) Pn-3(u)*t'n-3(v) 

Fig. 6. (Continued) 



C-P. Chang et al. I Information Sciences 113 (1999) 147-167 163 

length of  Ln is at mos t  ([(n - 2) /2]  - 1) + 3 = rn/2] + 1 ifLn is a twisted path.-  

See Fig. 6(c) for  illustration. 
Subcase 5.3." P,-a(u)  ~ Pn-3(v). Wi thou t  loss o f  generality, we assume that  

L l 0  
Pn-3(u) = 0  and  P,-3(v) = 1. Let  Ll be the pa th  u = u° , l , u l , °~v  1,° = v, L,-1 

0A LL t 
be the pa th  u = u ° A ~ v  °'l, v °,°, v l ' ° =  v, and L, be the pa th  u = u° ' l ,u H---, 

v I , l , v l ' ° =  v. See Fig. 6(d) for  illustration. Thus  we have found n disjoint 
(u, v)-paths satisfying (1)-(3). 

Case 6." vn-iv ,-2 = ~,-lUn-2. In this case, u = u °,1 and v = v H.  Note  that  the 
U0,1, U0,1 u l ,  1 u l ,  1 l e n g t h o f L ~  'l is at  least two for  l < i < ~ n - 2 .  S e t L i a s u =  i,0 i,1, i,~, i,2, 

1,1 0,1 . . . ,  ui,k, = v for  1 < i<<,n - 2 .  Since P,_l(Ui, l )  ~ P,_l(U],]l), Li is not  a twisted 

pa th  and its length is at  mos t  In/2] + 2. We have constructed n - 3 disjoint 

(u ,v)-paths  satisfying (1)-(3). To  construct  the remaining three disjoint 

(u, v)-paths L I , L , - I  and L,,  we consider the following three subcases. 
0.1 

Subcase 6.1." P,-3(u)  = P,-3(v)  = 1. Let Ll be u = U0'1L~--~V0'I, V 1'1 = V, L,-1 be 
LI 1 LI.0 

u = uO't,ul'I25,V 1'1 = V, and L~ be u = u°'l,u°,°,ul,°~--~vl,°,vkl = v. Since 

Pn_l(U °'°) CP._l (ul 'O) ,  L. is not  a twisted pa th  and its length is at mos t  

0,1 [n/2] + 2.See Fig. 7(a) for  i l l u s t r a t i o n .  U0'IL~u0'I, V 1'1 
Subcase 6.2." P,-3(u)  = Pn-3(v) = 0. Let L1 be u = = v, L,_l be 

L t I L 1 o 
u = u °'1 , u 1'1 ~ v  1'1 = v, and L, be u = u °,1 , u l , ° ~ v  1,°, v °,°, v 1,1 = v. See Fig. 7(b) 
for  illustration. 

Subcase 6.3." P~-3(u) ¢ P,-3(v).  Wi thou t  loss of  generality, we assume 
0,1 

P,-3(u)  = 0  and P~ -3 (v )=  1. Let  L1 be u =  u°,lc?-~v°,l,v~,l = v ,  L,-1 be 
L 1 I L I 0 

u = u ° ' l , u l ' l ~ v  L1 = v, and L, be u = u °,1, u l , ° ~ v  l,°, v 1,1 = v. See Fig. 7(c) for  

illustration. Hence  we have constructed n disjoint (u, v)-paths satisfying (1)-  

(3). [] 

The following corol lary follows f rom L e m m a  4 and that  the degree o f  each 
vertex in TQ, is n. 

Corollary 1. Assume n is an odd integer. The connectivity o f  TQ~, K( TQn), is n, 
and D~(TQ,) <~ [n/2~ + 2. Hence, TQ, is maximal  connection. 

The following theorem follows f rom Lemmas  3 and  4. 

f Theorem 3. D,_1(TQ, ) = D, (TQ, )  = In~21 + 2 i f  n is odd. 

4. Embedding of cycles 

A cycle s tructure is often used as a connect ion structure for  local area net- 
work,  for  example  Token  Rings, and  can also be used as a cont ro l /da ta  flow 
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structure for distributed computa t ions  in arbitrary networks. In this section, 
we will show that TQn contains a cycle C~ o f  length i for all 4 ~< i ~< 2 n. 

Theorem 4. Let  n be an odd Mteger and n >~ 3. For all i with 4 <<. i <~ 2 n, there 
exists a cycle C i =  (u ° , u l , . . . u  i 1 u o) o f  length i, where u ° = 0 n, 
ui-1 = 0.-~120 t 2 and t is an odd integer with 3 <~ t <. n such that 2 t-2 < i ~< 2 t. 

Proof. We prove this lemma by induction, In TQ3, we have the following cycles: 

Ca = (000, 100,010,110, 000), 

C5 = (000,001, O11,010, 110,000), 

C6 7__ (000, 100,010, 011, 111, 110,000), 

C7 = (000, 100, 101,001,011,111,110,000) ,  

Cs = (000,001,011,010,  100, 101,111,110,000).  

With these five cycles, it is easy to see that the lemma is true for n = 3. Assume 
that the Lemma is true for any odd k with 3 ~< k < n. 

For  4 ~< i ~< 2 ~-2, by induct ion there exists a cycle Ci = (u °, u l , . . ,  u i-1 , u °) of  
length i in TQn-2 where u ° = 0 n-2, u'- 1 = o n - t - z l z o t - 2  and t is an odd integer 
with 3 ~< t ~< n - 2 such that  2 t 2 < i ~< 2 t. Since S °,° induces TQn 2, TQn contains 
a cycle Ci o f  length i for all 4 ~< i ~< 2 n 2 in S °,° where u ° = 0 n, u i-1 = 0n-tl20 t-2 
and t is an odd integer with 3 ~< t ~< n such that  2 t-2 < i ~< 2 t. We first consider 
2 " - 2 <  i~<2 n-l. Then there exist two integers a,b such that  a + b  = i and 
2 n-3 ~<a,b~< 2 n 2 By induction, in TQn 2 there exist two cycles 
Ca = (U0 , . . . ,  U a 1, b/0) and Ch = (v ° . . . . .  v b-l, v °) with u ° = v ° = 0 n-2 and 
u a-1 = v b-1 = 120n-4 Let C °,° = (x° , . . . ,  x ~--1, x o) denote the corresponding cy- 
cle o f  Ca in S °,° and C~ '1 = (yO,... ,y~ -i ,yO) denote the corresponding cycle o f  
Cb in S TM. Obviously, x ° = 0 n, x ~ 1 = 02120n--4 ' yO = 120 n 2 and yb-i = 140n-4. 

We d e f i n e z J = x J i f 0 ~ < j ~ < a -  1 a n d z J = y ( i - J  1) i f a ~ < j ~ < i - l .  It is easy to 
see that ( z ° , z l , . . .  ,z  i - j , z  °) forms a cycle o f  length i such that  z ° = 0" and 
Z/-1 = 120 n-2. 

N o w  we consider 2 n-l < i ~< 2 n. Then there exist four integers a, b, c, d such 
that a + b + c + d = i and 2 n 3 ~< a, b, c, d ~< 2 n-2. By induction, in TQn-2 there 
exist four cycles Ca = (,no . . . .  ,pa 1,pO), C~ = (qO,... ,qb-l,qO), Cc = ( r ° , . . . ,  
f - l , r ° ) ,  and C a = ( s ° , . . . , s a - l , s  °) with p O = q 0 = r  o = s  o = 0 n - 2  and 

0,0 __ . . . ~ua- I  uO ~ 1.0 pa 1 = q b - I  = # - 1  = s d - I  = 120n-4. L e t  C~ 1- (u°' Cb = 

(v° , . . . ,  v b l ,v°) ,  C~ '1= ( x ° , . . . , x  c l .x°) and C~ '1= (y0, . . . ,yd '- l ,y '0)  denote 
the corresponding cycles of  Ca, Cb, C~., Ca in S °,°, S 1,°, S °A and S 1,1, respectively. 
Obviously,  u ° = 0 n, u ~ i = 02120n-4,  vo = 10n- l ,  vb-1 = 10120n-4,  X 0 = 010n-2 ,  

X C - l =  0130 n 4, y 0 =  120n-2 a n d  y a l =  140 n 4. W e  d e f i n e  zJ = d if 0~<j 

< . a - l ,  z J = v  (~+b-j-l) if a < ~ j < ~ a + b - l ,  z J = x  o-~-b) if a + b < ~ j ~  
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a + b + c -  1 and zJ = y ( i - j - 1 )  i f  a ~-b +c<~j<~ i -  1. It is easy to see that 
( z ° , z l , . . . , z  i ~,z °) forms a cycle of  length i such that z ° =  0" and z a-I = 
120 n-2. [] 

Based on the above proof  idea, we can easily construct a cycle of arbitrary 
length. We here illustrate two examples of constructing Cll and C21 in TQs. To 
construct Cll in TQs, we find two cycles of length 6 and 5 in TQ3, where C6 and 
C5 are given by 

(76= (000,100,010,011,111,110,000), 

C5 = (000,001,011,010,110,000), 

then C~6 '° and C~ '1 are 

C~6 '° = (00000,00100,00010,00011,00111,00110,00000), 

C~ 'l = (11000,11001,11011,11010,11110,11000), 

respectively. We can use C~6 ''° and C~ 'j to construct a Cll as follows: 

Clj = (00000,00100,00010,00011,00111,00110,11110,11010,11011, 

11001,11000,00000). 

Similarly, we can construct a C21 as follows: 

C2~ = (00000,00100,00010,00011,00111,00110,10110,10010,10011, 

lO001,10000,OlO00,OlOOl,OlOll,Ol010,OlllO, 11110,11010, 

l lOl l ,  llOOl,llO00,O0000). 

5. Concluding remarks 

This paper studies wide diameter, fault diameter and embedding cycles 
problems in twisted cubes. We have shown that the twisted cube is to improve 
the performance of  the hypercube. It is known that Df_I(Q,) = 
D~.(Q,) = n + I. In this paper, we have proven that wide diameter and fault di- 
ameter of the twisted cube are about the half of  the corresponding parameters 
of the hypercube. Furthermore, we also proved that the twisted cube is a pan- 
cyclic network. Hence, the twisted cube is an attractive topology for intercon- 
nection networks. 
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