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Abstract

Twisted cube, 7Q,, is derived by changing some connections of hypercube Q, accord-
ing to specific rules. Recently, many topological properties of this variation cube are
studied. In this paper, we prove that its connectivity is n, its wide diameter and fault di-
ameter are [n/2] + 2. Furthermore, we show that 7, is a pancyclic network that is cy-
cles of an arbitrary length at least four. © 1999 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Network topology is a crucial factor for interconnection network since it de-
termines the performance of the network. Many interconnection network top-
ologies have been proposed in the literature for the purpose of connecting
hundreds or thousands of processing elements [3,4,6,10]. Network topology
is always represented by a graph where nodes represent processors and edges
represent links between processors. Among these topologies, the binary hyper-
cube, Q,, is one of the most popular topology. However, 9, does not make the
best use of its hardware in the following sense: given N = 2" nodes and nN/2
links, it is possible to fashion networks with lower diameters than the
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hypercube’s diameter n. One of such topologies is called twisted cube [7], TQ,,
which is derived by changing the connection of some links of the hypercube ac-
cording to some specified rules. The diameter of twisted cube topology is
[(n+1)/2], almost a factor of 2 improvement. This is achieved by forfeiting
some of the hypercube’s high degree of symmetry and redundancy. Recently, many
topological properties of this variation cube are studied in the literature [1,2].

In order to evaluate the performance of a network topology, we can consid-
er the following measures: vertex connectivity, diameter, wide diameter, fault
diameter, and embedding of cycles. The vertex connectivity (simply abbrevia-
ted as connectivity) of a network G = (V, E), denoted by x(G) or k, is the min-
imum number of vertices whose removal leaves the remaining graph
disconnected or trivial. It follows from Menger’s theorem that there always ex-
ist k internally vertex-disjoint (abbreviated as disjoint) paths between any two
vertices. Disjoint paths between a pair of vertices contribute to multipath com-
munication between these two vertices and provide alternative routes in the
case of node or link failures. Thus large connectivity is preferred.

Wide diameter and fault diameter were proposed in [5,8]. For any pair of
vertices, say # and v, we find x disjoint paths such that the longest path length
of x disjoint paths is minimum, denoted by d.(u, v), among all possible choices
of x disjoint paths. The wide diameter is defined as the maximum of d, (u,v)
over all u,v € V. Small wide diameter is preferred since it enables fast multi-
path communication. Fault diameter estimates the impact on diameter when
faults occur, i.e., removal of vertices from G. For a pair of vertices u and v,
we find the maximum of shortest path length between u and v over all possible
x — 1 faults, denoted by df_, (u,v). The (x — 1)-fault diameter is the maximum
of df_,(u,v) for all u,v,€ ¥, ie., the maximum transmission delay of x — 1
faults. Small (x — 1)-fault diameter is also desirable to obtain smaller commu-
nication delay when faults occur. Wide diameter and fault diameter of a twisted
cube 7Q, are studied in this paper.

An important aspect of 70, is its ability of efficiently simulating computa-
tions on other networks, which is portability of algorithms from other parallel
interconnection structures, such as cycle or tree, to 7Q,. Such simulations can
be reduced to graph embedding problem. We also consider the problem of em-
bedding cycles architectures in twisted cubes.

Most of the graph definitions used in this paper are standard (see [9]). Let
G = (V,E) be a finite, undirected graph. Throughout this paper, node and ver-
tex are used interchangeably to represent the element of V. Edge and link are
used interchangeably to represent the element of E. Let C; denote the length of
a cycle. The distance between vertices u and v, denoted by dg(u, v), is the length
of the shortest path from u and v.

The rest of this papers is organized as follows. In Section 2 we discuss some
basic topological properties of twisted cubes. The connectivity, fault diameter
and wide diameter for twisted cubes of odd dimension are studied in Section 3.



C.-P. Chang et al. | Information Sciences 113 (1999} 147-167 149

Embedding of cycles into twisted cubes is presented in Section 4. Finally, we
make concluding remarks in Section 5.

2. Twisted cube topology and its properties

The n-dimensional hypercube, Q,, consists of all the binary »-bit strings as its
vertex set and two vertices v and » are adjacent if and only if u differs from v by
exactly one bit. Let u = u,_1u,-2 ... up and v = v,_10,-2 .. . 0o be two vertices of
O,. (u,v) is an edge in E(Q,) of dimension i if the ith bit of u is different from
that of v. Twisted cube was first defined by Hilbers et al. [7]. A twisted n-cube,
denoted by TQ,, is a variant of n-dimensional hypercube Q,. 70, has the same
number of nodes and edges as in Q,. We restrict the following discussion on
70, for the case that » is odd. Let n = 2m + 1, to form the twisted cube, we re-
move some links from the hypercube and replace them with links that span two
dimensions in such a manner that the total number of links (#N/2) is conserved.
To be precise, let u = u, u,-7 ... w1ty be any vertex in 7Q,. We define the parity
function P(u) = w; ®u;) @ - ® uy, where & is the exclusive-or operation. If
Py;_»(u) = 0 for some 1 < j<m, we divert the edge on (2j — 1)th dimension to
node v such that vy;vy;_| = #iiiy;—; and v; = u; for i # 2j or 2j — 1. Such divert-
ed edges is called twisted edges. TQs and TQs are shown in Fig. 1(a) and (b).

We may formally define the term of twisted cube recursively as follows: A
twisted 1-cube, 70, is a complete graph with two vertices, 0 and 1. Let »n be
an odd integer and » > 3. We decompose vertices of 70, into four sets
500 501 1.0 and S where S™/ consists of those vertices « with u,_; = i and
u,—2 = j. For each (i,j) € {(0,0),(0,1),(1,0),(1,1)}, the induced subgraph
of $% in TQ, is isomorphic to 70, . Edges which connect these four subtwist-
ed cubes can be described as follows: Any node u, ju, 5...wus with
P,—3(u) =0 is connected to up_1Up_2up—3...uy and @, up_sty—3... 4 and
Up_Hp_2ly_3 ...t and @i, Uy otty 3. .. 1g, if P_3(t) = 1.

The following lemma can be easily obtained from the definition of twisted
cubes.

Lemma 1. Let u = up_ty—3 ... u1tp and v = v,_ 0,2 ... 010g be two vertices of
TQ, with (u,v) € E(TQy). If upy = vy, ty_2 = vp_2, and Py_3(u) = P,3(v),
then P,_s(u) = P,_s(v).

To discuss the wide diameter and the fault diameter of the twisted cube, we
need to review the shortest path routing algorithm [1]. Defining the Oth “double
bit” of node address u to be the single bit uy, and the jth “double bit” to be
uyuz;—1. Let u, v be any two vertices of 70,. We defined the double Hamming
distance of u and v, denoted by hg(u,v), to be the number of different double
bits between « and v. Obviously, drp, (#,v) = hq(u,v).
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Fig. 1. TQ; and TQs.

We can find the shortest path between any two vertices using the algorithm
proposed in [1]. Let u and v be two vertices of 70,. Let z = u. The basic strategy
of the algorithm is to recursively find a neighborhood w of z that reduces
ha(w,v). To be precise, the strategy is described as follows.
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[

. If z = v, then the path is determined.

2. Assume that there exist neighbors w of z such that hg(w,v) = ha(z,v) — 1.
Let w be the such w that differs from z with the largest double bit. Then reset
zto bew.

3. Assume that all the neighborhood w of z satisfy A4(w, v) = ha(z,v). Let j be
the smallest index of double bits that z differs from ». Choose w' to be the
neighbor of z that differs from z in the 2jth bit. Then reset z to be w/.
Since the rightmost differing double bit is selected in step 3, the resulting par-

ity change guarantees that all subsequent routing for the message will be by

step 2 until the destination is reached. Hence, step 3 is executed at most once
for a given message. With this routing algorithm, we have the following theo-
rems.

Theorem 1 [7). The diameter of the twisted cube TQ, is [(n+ 1)/2].
Theorem 2. hq(u,v) <dp, (u,v) <hq(u,v) + 1 for any u, v € V(TQ,).

Lemma 2. Let u and v be any two different nodes in the same S/ of TQ, and L be
any shortest path joining u to v. If P,_3(z) = 0 for all nodes z in L, then the length
of Lis at most [(n—2)/2] - 1.

Proof. Write L as u = u°,u', ..., u* = v. Suppose that there exists some index i
with 0 <i <k — 1 such that « differs from #™*! in exactly one bit, say ¢, with
0<t<n—3. Then P,_3(u') # P,_3(u'*"). This is contradiction to the assump-
tion, i.e., P,_3(¢') = 0 = P,_3(u'*"). Hence each (', u"!) is either a twisted edge
or i differs from #"*! in the [(n — 2)/2]th double bit. Since both « and v are in
the same S/, the length of L is at most [(n —2)/2] and u,_14,—2 = Uy V2.
Suppose that the length of L is [(n — 2)/2]. Since each (u',u'*!) is a twisted
edge, we have uy = vg = 0 and wupjuz;| = Dy;02;- for 1 <5< [n/2] — 2. Based
on the definition of double Hamming distance, we have
ha(u,v) = [(n —2)/2] — 1. Applying the shortest path routing algorithm, we
can conclude that drp, (u,v) = [(n — 2)/2] — 1. We get a contradiction. Hence
the length of L is at most [(n — 2)/2] — 1 and the lemma is proved. O

3. Fault diameter, wide diameter, and connectivity

We here formally define wide diameter and fault diameter of an underlying
network G = (V,E). For a vertex u in G, the neighborhood of u, denoted by
N(u), is defined as {v | (4,v) € E}. Let u and v be two distinct vertices in G,
and let k(G) = k. Let C(u,v) denote the set of all « disjoint paths between u
and v. Each element i of C(u,v) consists of « disjoint paths, and the longest
length among these « paths is denoted by /;(u,v). The number of elements in
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C(u,v) is denoted by |C(u, v)|. We define d,(«,v) as the minimum over all /;,
i.e., dy(u,v) = ming ;< |cue) L, v). We write dy(u, v) as d(u, v), which means
the shortest distance between u and v. D,(G) is called the a- diameter of G and
is given by
D,(G) = max {d,(u,v)}.
u,pe

By definition, D,(G) = oo if « = x + 1. We usually write D,(G) as D(G) and
call D(G) simply the diameter of G. We are particularly interested in D, (G).
For a positive integer f3, d,ff(u, v) is defined as

d/g(u,v) = max {d(u,0)In G~ F | u,v &€ F}.
=

The p-fault diameter, denoted by D) (G), is given by
Diy(G) = max {dy(u, v)}.

If B > k, D4(G) = oo by definition. We are in particular interested in D'._(G).
Obviously, we have D(G) < D' _,(G) < D,(G).

It is known that x(Q,) = n and D,(Q,) = Dt _,(Q,) = n + 1. In this section,
we will prove that D,(TQ,) = Df_|(TQ,) = [n/2] + 2 for all odd ». With this
result, we can conclude that the connectivity of 70, is n. A node u of 7Q,, de-
noted by u = 0’17, is a binary string of length n with the first i 0’s and the last
n—i 1’s. We first prove the following lemma.

Lemma 3. D/,H(TQ,,) = [n/2] + 2, where n is an odd integer.

Proof. Let u = 01, v = 0217730, and «' = 010"31. Assume that the faulty set
F =N(u) —{«'}. Hence |F| =n— 1. Obviously, any path that joins u to v
without traversing any node in F is a path from » through «/, then through a
neighborhood of «/, say «” (5 ), and then followed by a path joining «” to v.
These «” are in the set W = {01072, 120"31} U {010"*/10/1 | 0< j < n — 4}.
Obviously, h4(x,v) = [n/2] for any x € W — {010"2}. By the shortest path
algorithm, we can check that &/ | (v,v) = [n/2] where y = 010”2, Hence the
distance between any vertex in W to v in TQ, is exactly [n/2]. Therefore
D! \(TQ,) = [n/2] + 2. Hence the lemma is proved. O

A path P u =4 u!, ... u*' u* =0 with k > 3 is called a twisted path if
P, 3(u') = P,_3(#/) and P,_i(#') = P,_1(#) for 1 <i,j<k— 1. For any node
U= Up Up-2...u1ug in TQ, and any (i, ) € {(0,0),(0,1),(1,0),(1,1)}, '/ de-
notes the node iju, 3...uju.

Lemma 4. For any two different vertices u and v in TQ,, there are n disjoint paths,
Li,Ly,...,Ly,, joining u to v such that (1) the length of each L; is at most
[n/2] + 2, (2) Ly is the shortest path joining u to v, and (3) the length of L; is at
most [n/2] + 1 if L; is a twisted path.
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Proof. The proof is by induction. Obviously, the lemma is true for n = 1. For
n = 3, assume that such & disjoint paths exist for any two distinct nodes in 70y
and any odd k < »n. Now, we consider any two nodes u = u,_ju,_2 ... uju and
U= Uy 1Up_3... 0109 In TQ,. We discuss the following six cases.

In cases 1 and 2, both u and v satisfy v,_3 ...0j00 = u,_3 ... u1ug. Without
loss of generality, we assume that « is in S%!. Note that the degree of any node
in the subgraph of 7Q, induced by S%' is n-2. Let Nu)ns* =
{ws,wa,...,w,}. Since w, #w, for 3<r#s<n, we have w'£w for
(1,7) € {(0,0),(0,1),(1,0), (1, 1)}.

Case 1: v, \Vp-2 # Up_1ttp—2 and P,_3(u) = P,_3(v) = 1.

Subcase 1.1: v,105_2 = Uy_1ii,—>. In this case, u = ¥*! and v = 0. Let L; be
the path u = u®!, 0% = v, and L, be the path u = u®! 4" 410 00 =y If
P, 3(w;) =1for 3<i<n, thenset L; as u = u0~‘,w?l,w00, 0.0 = . Obviously,
the length of L; is 3. If P, 3(w;)=0 for 3<i<n, then set L; as
u= u‘)l wO’1 wl'o,w?’o, 00 = . Obvnously, thc length of L; is 4. Since
P, 1( )#P,, 1( ) or P,_ 1( )#P,, 1( ), L; is not a twisted path.
Thus, we have n dlSjOlnt paths joining u to v satlsfying (1)-(3). See Fig. 2(a)
for illustration.

Subcase 1.2: v,_1vp_2 = @iy fi,_>. In this case, v = u®' and v = v!¥. Let L, be
the u = u®!, 400 !0 =y, and L, be the u = u®',u! 00 = v, If P_a(w;) =1
for 3 z<n then set L; as u = u®!, w! Wi Wl p10 =y Thus, L; is not a
twisted path and the length of Z; is 4. If B,_3(w;) = 0 for 3<j<n, then set
Ljasu=u", ?‘l,w} 0 p1® = . Thus, the length of ; is 3. Obviously, , is a
tw1sted path and its length is at most {n/27] + 1.We get n disjoint paths joining
u to v satisfying (1)—(3). See Fig. 2(b) for illustration.

Subcase 1.3: v, 1Up_3 = 14, 7. In this case, u = u®! and v = v Let L, be
the u = u®!,v"! = v, and L, be the u = u*!,4%° "0 "' = v, For each path L
with 3 <7/ < n, set L, to be u = u®! wi! w! ” v''! = v. Thus, the length of L; is 3.
It is observed that none of L; for 1 <i<{n is a twisted path. We find » disjoint
paths joining u to v satistfying (1)-(3). See Fig. 2(c) for illustration.

Case 2: vy 1Vp-2 # Up_1up—2 and P, (u) = P,_3(v) = 0.

Subcase 2.1: v,_Uy,_2 = Uy, _1it,_>. In this case, u = u®! and v = 1*9. Set L, as
u=u"1 40 "0 =y and set Ly as u ="' 0" 090 = o If P_3(w;) =1 for

3<ign, then set L; as u = o Wl "0 00 — g, Thus, the length of L; is 3.

I

If P _3(w;)=0 for 3<i<n, then set Li as u=u0l Wl w0 w00 00 —

I

Thus, the length of Z; is 4. We have constructed n disjomt (u, v)-paths satisfying
(1)-(3). See Fig. 3(a) for illustration.

Subcase 2.2: Vy_10,—3 = #l,_1it,_>. In this case, u = 4! and v = v!0. Set L, as

u=u" 0" =y, and set L, as u=u®' ul! 400 0!0 =y If P,_3(w;) =1 for

3<1<n then set L; as u = u®!, Ol,w:'o 10 510 — Thus, the length of Z;

is4. If P,_3(w;) = 0 for 3<i< n, then set L; alsu—u01 wol,wlo, 10“v.Thus,

7

the length of Z; is 3. We have found » disjoint (u, v)-paths satisfying (1)—(3). See
Fig. 3(b) for illustration.
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Subcase 2.3: Ln \Un_2 = fy_Up-2. In this case, u = &% and v = v!'!. Let L; be
the path u = %, o' = v, and Lz be the path u = u® !0, 00,1)"1 =v. For
each L; with 3 < z<n, let Z; be the path u = u®', w' wl! p!1 = v, Thus, the
length of L; is 3. We have obtained » disjoint (u, v)-paths satisfying (1)-(3).
See Fig. 3(c) for illustration.

In cases 3-6, we consider u,_3u,_ 4 Uy F Up—3Up_4 . . . Ug. Since $*! induces
a 7Q, », by induction there are n — dlSjOlnt paths. Let L(l) l,L2 b LOI be
n — 2 disjoint paths joining #%' to ¢*! such that (1) the length of ea.ch path
is at most [(n—2)/2] +2, (2) L% is the shortest path j Jomlng u® to %! in

$%! and (3) the length of L2 is at most [(n — 2)/2] + 1if L' is a twisted path.

Hence, the length LO1 is at least 2 if i>1. Write LO‘1 as

W=y uy .y k = o*!, where £, is the length of L!"'. Let LY be the corre-

sponding path of L in " joining 'Y to v’/. Without loss of generality, we
assume that  is in S0~‘.

Case 3: uy_1U,_3 = Uy_10,-2. In this case, u = u®! and v = v*'. We simply let
L= L?'] for 1 <i<n— 2. We have obtained » — 2 disjoint (u, v)-paths satisfy-
ing (1)~(3). To construct the remaining two disjoint (u, v)-paths L, | and L, we
consider the following three subcases. 0

Subcase 3.1: Py_3(u) = P,—3(v) = 1. Let L, be the path u = Ul 008,00,
! = v, and L, be the path u = u%'. 4" L 1 v®! = p. Since the length ofL00
and L'! are at most [(n—2)/2], the length of L,.; and L, are at most
[(n—2)/2] 4+ 2. Note that [(n —2)/2] + 2 = [n/2] + 1. See Fig. 4(a) for illus-
tration.

Subcase 3.2: P, 3{u) = P,_3(v) = 0. Let L, be the path u = 4% u
o100 = p, and let L, be the path u = u®', 1. ’—w” ! = v, Similarly, the
length of L' is at most [(n — 2)/2]. Therfore, the length of L,_; and L, are
at most [(n —2)/2] + 2. See Fig. 4(b) for illustration.,

Subcase 3.3: P,_3(u) # P,_3(v). Without loss of generality, we assume that
P,3(u) =0 and P, 3(v) =1. Let L, ; be the path u=u"" u'?, OOLl

20,09 = v, and L, be the path u = *1, u" T 1 0% = p. See Fig. 4(0) for il-
lustration. Thus we have obtained » disjoint (u, v)-paths satisfying (1)~(3).
Case 4: Up_|Un_2 = Uy_18n_2. In this case, ¥ = u®! and v = ™0, For those
paths LO"1 with any node ug‘} satisfying P,,_3(u?'j )=1 where
0.1 01 00 00 0.0

0l _
1<z<n—21<1<k,,setL dsu-_ulo,ull,...,u,} Ui oW jigsee s Ui = U

Since P, 1( ) # P, 1( ) L; is not a twisted path and its length is at most
[n/2] +2. Others paths ]f” where | <r<n—2 with P,_ 3(u,, ) =0 for all

1<y < k,, set L, as u = u?ol, ?1', u,'lo,u??, ?20, "’”O/? — p- Since P,_ l(u,llo) #

,,,l(u,d ) and by Lemma 2, L, is not a twisted path’and its length is at most
[n/2] +2. We have constructed n — 3 disjoint (u,v)-paths satisfying (1)-(3).
To construct the remaining three disjoint (u, v)-paths L;,L,_; and L,, we con-

sider the following three subcases.

10K
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LU,l
Subcase 4.1: P,_3(u) = P,_3(v) = 1. Let Ly be u = u®' %1 000 =4, L, be
U= uo’l,uO’OL—:nvo’U = P and L, beu = uo’l, ul’l, ulvoiulv()’ UO'O = p- See Flg 5(a)
for illustration.

(b) Pp3W)=Pp5»=0

Fig. 5. Relative positions of the source node and the destination node with « in §%' and v in $°° for
case 4.
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(d) Ap-3W)2Pp3(7
Fig. 5. (Continued)
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Subcase 4.2: P,_3(u) = P,—3(v) = 0. If the length ofLO‘l is1, or P_3(u;) =0

L
0,1_1> 0,1 U]l 0,0 ()1

for all 1<j <k, set L) as u=u =uv, set L, | as u=u"

1.0 100
W OS50 00—y and set L, as u = u®', 0"y 190 =y If the length of
L?l is greater or equal to 2 with any node ull. satisfying P,,_3(u?:;) =1,

) 01 0.1 01 00 00 0,0
1<j<hy, set Ly as u=upyuy,... UL Uy ”1J+1a-- Vg, = U Lp-1 as
% 2 .
u=u", '°—>vl’0 %0 =y, and L, as u = u®', 1"—>v1*1,v0'0=v. See Fig. 5(b)

and (c) for illustration.
Subcase 4.3: P,_3(u) # P,_3(v). Without loss of generality, we assume that

otbl 01 400
P, 3{(u) =0 and P,_3(v) —1 Let L; be the path u = u”" —v" =wv, L,
be the path u =u®!, ‘0—->1)1° 0 =y, and L, be the path u—u‘”, ull

OO 00 _ 1 See Fig. 5(d) for illustration. Hence we have constructed n dis-
joint (u, v)-paths satisfying (1)-(3).

Case 5: vy_\Un_y = fiy—18y—2. In this case, u = ™ and v = vl . For those
paths L' with any node uoj‘.l satisfying P, 3( ) 0, where

1 i,
01 0]l 01 10 10
1<i<n—2,1<j <k, let L; be the path u =5, w;y, ..., 45,05, U,

]0 = v. Obviously, the length of L; is at most [n/2] + 2. If L; is a twisted

path L is a twisted path in S%'. By induction, the length of L' is at most
[(n— ) /2] + 1. This implies that the length of L; is at most [n /2] +1if L is
a twisted path. Others paths LOl with P,_ 3(ur ¥ y=1forall 1< ] < ky, set L,

01 01 00 10 10 .
asu=u,, ,l,ull,u,l,urz,...,ulk =, ItlseasytoseethatL is a twisted

pathin %! with P, *(“w ) = 1forall 1 </ < k. Therefore, the length of L, is at
most [n/2] + 2 and L, is not a twisted path. We have found » — 3 disjoint (u, v)-
paths satisfying (1)-(3). To construct the remaining three disjoint (u, )-paths
Ly,L, | and L,, we consider the following three subcases.

Subcase 5.1: P,_3(u} = P,_3(v) = 1. Iglthe length ofLO'l is1,or Py 3(u;) =1

0,1

for all 1</ <k, set L, as u—u‘“Ll o0t ”, o0 = L,y as u=u"",
uoolfuoo’vlo =v, and L, as u = ™' u'! b 0L — o If the length of L(l)l
is greater or equal to 2 with any node u?'j] satisfying P,,_3(u?:;)20,
1<j<k, let Li be the path u—u?é,u?}, . u?;,u:?,uifﬂ,...,u{:g] =u,
L,.; be the path u=u"!u 004" 0010 =y and L, be the path
= L1 510 — . See Fig. 6(a) and (b) for illustration. N

Subcase 5.2: P,3(u) =P, 3(v)=0. Let L; be the path u~u0]L——>v°]
!0 =vp, L,_, be the path w=ul, u‘OL—w‘*O v, and L, be the path
u=u"1 0L—>v°°, L0 — . If L, is a twisted path, then L°? is a shortest
path joining u®? to ™0 satisfying P, 3(z) = 0 for all nodes z in L°°. It follows

from Lemma 2 that the length of L% is at most [(n — 2)/2] — 1. Hence, the
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(b)  Pp-3w=Pp3M=l

Fig. 6. Relative positions of the source node and the destination node with « in $%! and vin §'? for
case 5.
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(d) Pﬂ—}(")*Pn-:}(V)

Fig. 6. (Continued)
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length of L, is at most ([(n — 2)/2] — 1) + 3=[n/2] + 1if L, is a twisted path.-
See Fig. 6(c) for illustration.
Subcase 5.3: P,_3(u) # P,_;(v). Without loss of generality, we assume that

1,0
P,_3(u) =0 and P,_ 3( ) =1. Let L, be the path u = uo’l,ul'OL—w‘vO =0, Ln)

Ll.l
be the path u—u‘”—»v‘” 00 10 = ¢ and L, be the path u = u%!, 4!

vh! 10 =y, See Fig. 6(d) for illustration. Thus we have found n disjoint
(u, v)-paths satisfying (1)-(3).
Case 6: Vy_Vy_2 = ly_ Uy—>. In this case, ¥ = u®! and v = v!"!. Note that the

length ofL01 1satleasttwofor 1 <i<n—2.8etL;asu = ulool, u?ll, ullll, u,lz1

.- u” vfor 1 <ig<n—2 Since P,_(u ll)aéP,, 1(u ,1) L; is not a twisted
path and its length is at most [n/2] + 2. We have constructed »n — 3 disjoint
(u,v)-paths satisfying (1)~(3). To construct the remaining three disjoint
(u,v)-paths L;,L, | and L,, we consider the following tlgfee subcases.

Subcase611 P,.3(u) =P, a(v)=1.LetLibeu = u‘”f—av(” oM =y, L, | be

o1 1t 1

u=u" "5 =y, and L, be wuw=u", O'O,ulo——m‘*o ol =». Since
P 1 (1) # P, (u!®), L, is not a twisted path and its length is at most
[n/2] + 2.See Fig. 7(a) for illustration. o

L
Subcase62 P,3(u) = P,_3(v) = 0. Let L; be u = u0~1—1—>u0*1 vl =0, L, be

10
u=u" MBLAGNB = v, and L, be u = u®! !0 p10 100 yLl — 4 See Fig. 7(b)

for illustration.

Subcase 6.3: P,_3(u) # P,-3(v). Without loss of generallty, we assume
P, 3(u)=0 and P,3(v)=1. Let L, be u= u‘”——»v‘”, o=y, L, be

1,0

u=u"ul 1 = = v, and L, be u = 1%, ul 955510 ph1 = 4. See Fig. 7(c) for
illustration. Hence we have constructed » disjoint (u,v)-paths satisfying (1)-
3). O

The following corollary follows from Lemma 4 and that the degree of each
vertex in TQ, is n.
Corollary 1. Assume n is an odd integer. The connectivity of TQ,, x(TQ,), is n,
and D.(TQ,) < [n/2] + 2. Hence, TQ, is maximal connection.

The following theorem follows from Lemmas 3 and 4.

Theorem 3. D! | (TQ,) = Do(TQ,) = [n/2] + 2 if n is odd.
4. Embedding of cycles

A cycle structure is often used as a connection structure for local area net-
work, for example Token Rings, and can also be used as a control/data flow
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structure for distributed computations in arbitrary networks. In this section,
we will show that 7Q, contains a cycle C; of length 7 for all 4 <i<2".

Theorem 4. Let n be an odd integer and n = 3. For all i with 4 <i<2", there
exists a cycle Ci= @ ul,.. . u=' U0 of length i where u°’=0",
=070 and t is an odd mteger with 3<t < n such that 272 < i< 2"

Proof. We prove this lemma by induction. In 7Q;, we have the following cycles:

C; = (000, 100,010, 110, 000),
= (000,001,011,010, 110, 000,
= (000, 100,010,011, 111,110, 000},
= {000,100, 101,001,011, 111, 110,000},
= (000,001,011,010, 100, 101, 111, 110, 000}.

With these five cycles, it is easy to see that the lemma is true for n = 3. Assume
that the Lemma is true for any odd 4 with 3<k < n.

For 4<i<2" 2, by 1nduct10n there exists a cycle C; = (u°, 1}, ... 4", u%) of
length i in TQ,_» where W =072, 4 = 0721202 and ¢ is an odd integer
with 3 <¢ < — 2 such that 22 < i < 2!, Since §* induces 7Q,_,, TQ, contains
a cycle C; of length i for all 4 <i< 2% in §°0 where 40 = 07, 4! = 0"~1120"2

and ¢ is an odd integer with 3 << n such that 272 < i < 2. We first consider
22 < i< 2", Then there exist two integers a,b such that a +b =i and
2"3<a,b<2"2. By induction, in TQ, , there exist two cycles

Co=@ ..., 0 u® and C,= ( ool DO> with 4 =% =0"2 and

w =l = b=l = 12074 Let €00 = (x* x" "1 x% denote the corresponding cy-

cle of C, in §°° and C1 = <yo yb 0 denote the corresponding cycle of

Cy in SU!. Obviously, x° = 07, x¢~ U2 2]20 4,30 = 12072 and y*~! = 14074,

We define 27 =/ if 0<j<a— 1 and zf =y D ifa<j<i— 1. It is easy to

see that2 (zo,zz‘, ...,2712% forms a cycle of length i such that z° = 0” and
= 140"

Now we consider 2"~! < i< 2". Then there exist four integers a, b, ¢, d such
thata+b+c+d=iand 2" > <a,b.c,d <2"? By induction, in 70,_» there
exist four cycles C, = (p°,...,p" L, p"%, Cp = (q”,... g, ) C.=1{"...,
LAY, and Gy = (0.0, 5% 5% with PP = q = rO =0 =02 and
pafl :qb-l — el =1 = 12009 Let Coo ( ‘u0>’ CLI,'U —
0, ), OO = (0 x X0 and C Q yd .49 denote
the corresponding cycles of C,, C;, C.., Cy in S*0, S1 0§01 dnd st respectively.
Obviously, u® = 07, ! = 0212074, 10 = 1071, 1p=1 = 1012074, x0 = 01072,
7t =01%0"4, 30 =120"? and y* ' =1°0"* We define 7 =4 if 0<;
<a-1, Z=0v7"D if g<j<a+b-1, Z=xUD if g4+b<<
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a+b+c—1and Z =y07V if g+ b+e<j<i— 1. It is easy to see that
(0,2',...,271,2% forms a cycle of length i such that 2% =0" and 7! =
1202, O

Based on the above proof idea, we can easily construct a cycle of arbitrary
length. We here illustrate two examples of constructing Cy; and Cy; in 7Qs. To
construct Cy, in TQs, we find two cycles of length 6 and 5 in 701, where Cg and
Cs are given by

Cs = (000, 100,010,011, 111,110, 000),
Cs = (000,001,011,010, 110,000),

then C0° and C}' are

2 = (00000, 00100, 00010,00011,00111, 00110, 00000},
€M = (11000,11001, 11011, 11010, 11110, 11000},

respectively. We can use c*;" and C5"l to construct a C;; as follows:

C;1 = (00000,00100,00010,00011,00111,00110,11110,11010,11011,
11001, 11000, 00000).

Similarly, we can construct a Cy; as follows:

Cy; = (00000, 00100,00010,00011,00111,00110, 10110, 10010, 10011,
10001, 10000,01000,01001,01011,01010,01110, 11110, 11010,
11011, 11001, 11000, 00000).

5. Concluding remarks

This paper studies wide diameter, fault diameter and embedding cycles
problems in twisted cubes. We have shown that the twisted cube is to improve
the performance of the hypercube. It is known that DI ,(Q,) =
D(Q,) = n+ 1. In this paper, we have proven that wide diameter and fault di-
ameter of the twisted cube are about the half of the corresponding parameters
of the hypercube. Furthermore, we also proved that the twisted cube is a pan-
cyclic network. Hence, the twisted cube is an attractive topology for intercon-
nection networks.
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