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Abstract

By taking account of the complex relaxation times fors- andd-wave order parameters in the time-dependent Ginzburg–
Landau equations, our results indicate that the imaginary parts of the relaxation times can change the sign of the Hall angle for
mixed s- and d-wave superconductors. The effect of the concentration of the nonmagnetic impurities on the Hall angle is
investigated, and it is found that the concentration of the nonmagnetic impurities can affect the parameters in the Ginzburg–
Landau free energy and the relaxation times. The results of the anomalous Hall effect arising from the nonmagnetic impurities
are discussed.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:A. High-Tc superconductors; D. Electronic transport; D. Galvanomagnetic effects

The pairing symmetry of the order parameter in
high-Tc superconductors (HTS) attracts attention and
a number of experimental observations strongly
support thed-wave pairing symmetry [1–3]. Most of
the theories proposed that the superconducting state
might be relevant to the heavy fermion and the high-Tc

superconductors [4–6]. Based on group theory argu-
ments, the phenomenological Ginzburg–Landau (GL)
theory with many unknown parameters has been
studied [4,5,7]. Ren et al. [8,9] microscopically
derived the GL equations for the pured-wave as
well as mixeds- andd-wave superconductors in the
framework of the weak coupling theory.

Recently attention has been focussed on the anom-
alous behavior of the Hall effect, which appears to
undergo a sign change in the superconducting mixed
state [10–15]. The phenomenological theories about

the vortex motion have been proposed to investigate
the anomalous Hall effect of superconductors [16–
20]. Dorsey [20] introduced a complex relaxation
time in the time-dependent Ginzburg–Landau
(TDGL) equation and then derived the equation of
motion for a single vortex

Vs1 × ẑ� a1VL 1 a2VL × ẑ; �1�

where (a1 anda2 are functions of the parameters that
appear in the TDGL equation. The results showed
that, if a2 , 0, the Hall effect in the vortex state
will change its sign, which is opposite to the sign of
the normal-state Hall effect. Experimental measure-
ments in Tl2Ba2CaCuO8 systems also showed a
consistent description of the behavior of the imagin-
ary part of the order parameter relaxation time [21].
However, the problems of the Hall effect ford-wave
superconductors have not been fully understood.
Following the generalized London theory, derived
by Affleck et al. [22], Alvarez, Domı´nguz and Bleeder
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studied the dynamics of vortices ind-wave supercon-
ductors. They found that an intrinsic Hall effect
depended on sin�4j� with an anglej with respect to
theb crystal axes [23]. Dai and Yang [19] have eluci-
dated that both the imaginary parts of the relaxation
times for the order parameters and the parameters in
the GL free energy functional can affect the anoma-
lous Hall effect for a pured-wave superconductor.
Here we will investigate the Hall effect for mixeds-
and d-wave superconductors from the TDGL equa-
tions.

The phenomenological TDGL equations in the
dimensionless form fordx22y2 superconductors can
be expressed as
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where P 0 � 2i7=k 2 A; ~f � 2ef; s and d are the
order parameters,as andad depend on the tempera-
ture, andb1, b2, b3, b4, g s, gd andgn are assumed to
be positive. One should treat the order parameters not
as wave functions but as a thermodynamic variable
like the magnetic moment in an Ising magnet or like
the volume in an expanding gas. The parametersg are
related to the effective masses withgi � "2

=2mi* for
i � s; d; n. These parameters in the TDGL equations
can determine the thermodynamic stability. The
dimensionless order-parameter relaxation timehd

andhs can be defined by

hd ; hd1 1 ihd2; hs ; hs1 1 ihs2: �4�
The imaginary part of the complex relaxation time
breaks the particle-hole symmetry in superconductors,

resulting in nonvanishing Hall current [10,20]. As
these nonlinear TDGL equations are complicated,
we shall derive an equation of motion for a single
vortex in the limit h p Hc2 Namely, the magnetic
fields are slightly above the lower critical fieldHc1.
According to this limit, the vortices are well separated
and may be studied individually. The normal current
Jn and the supercurrentJs can be rewritten in the form

Jn � s�n�· 2
1
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7 ~f 2 2tA

� �
; �5�

Js � 2s*�P 0s�1 2
gd

gs

� �
d*�P 0d�1 2

gn
gs

� �
{ x̂�s*�P 0xd�
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The Hall conductivity s�n�xy of the normal-state

conductivity tensor produces a Hall effect due to the
transverse response of the normal fluid to the electric
fields, generated in the vortex core for type-II super-
conductors [20].

First, we express the complex order parametersd
ands in terms of an amplitude and a phase,d�r ; t� �
f �r ; t�eiud�r ;t� and s�r ; t� � g�r ; t�eius�r ;t�; to discuss an
isolated vortex. In a superconductor the gradient of
the phases can determine the observable quantityJs.
Affleck et al. [22] have derived the supercurrent of a
d-wave superconductor by way of the generalized
London theory. If gn � 0; these TDGL equations
have the same solutions as those presented in conven-
tional superconductors. This case is not interesting to
us. We attempt to solve these equations forgn ± 0:
By substituting the complex order parameters and Eq.
(4) for Eqs. (2), (3), (5) and (6), we can separate the
real and imaginary parts from the TDGL equations. In
order to solve these nonlinear TDGL equations, three
essential steps are applied. First, we assume that the
vortices translate uniformly. Therefore all the quanti-
ties, which characterize the vortex system, are func-
tions of the quantityr 2 VLt with VL the vortex line
velocity and can be expanded in first order ofVL

c�r ; t� � c�0��r 2 VLt�1 c�1��r 2 VLt�: �7�
Herein the correction termsc�1� are small relative to

the velocity of motionVL. Next, the equations can be
expanded in powers ofVL. The terms of order of unit
and order ofVL correspond to the equilibrium GL
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equations and a set of inhomogeneous differential
equations, respectively. The equilibrium GL equa-
tions have been done well [8,9,24]. We need to
solve the O�VL� equations. Following [25] the time-
independent GL equations possess translational invar-
iance. As the magnetic field can be neglected in the
large-k limit, the distributions of the field and current
can be investigated far from and close to the vortex
cores, respectively (see Ref. [19] for a detailed deri-
vation). Finally, we obtain an equation of motion for
the vortices by deriving a solvability condition

1
2k

Z
dS·�J�1�s u�`�d 1 J�1�s u�`�s 2 J�`�s u�1�d 2 J�`�s u�1�s �

�
Z
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0 Pd 2 hd2f0fv

1 hs1g2
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where` is an infinitesimal translation,fv ; VL·7f0,
gv ; VL·7g0, f` ; `·7f0; g` ; `·7g0,
u`

d ; `·7u�0�d , and u`
s ; `·7u�0�s : S1�VL� andS2�VL�

come from the imaginary and real parts of the TDGL
equations, respectively, and include multitudes of
functions, which consist of the characteristic func-
tions. This expression, satisfied by the first order in
VL, is equal in effect to derive an equation of motion
for the vortices. The inhomogeneous equations are
solvable while this solubility condition for steady
vortex motion in Eq. (8) holds.

We choose a system of coordinates with thezdirec-
tion along the applied magnetic field, the applied
transport currentJt to be in thex direction; the direc-
tion of the vortex in motion at an angleuH with respect
to the 2 y direction and the origin ofr–w plane (in
the polar coordinates) at the center of a vortex. The
displacement vector̀ makes an anglex respect to the
x-axis. Numerical and asymptotic solutions for the
single vortex have been carried out [8,9,24]. At a
distance of several coherence lengthsjd from the
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Fig. 1. The function�hd2=hd1�v 0 versus the reduced temperaturet � T=Td0. The solid line represents the condition in the absence of impurities
and the dashed line labels one in the presence of the low impurity concentration doped. We chooseTs0 � 0:5Td0 and�hs=hd� � 2:



core thes-wave order parameter is much less thand-
wave order parameter so that thes–d coupling terms
are weak enough to be neglected. For the purpose of
investigating how thes–d coupling terms affect the
sign of the Hall effect, we choose the region close to
the vortex core. The interaction between two vortices
can be neglected asr q ld with ld the penetration
depth of thed-wave order parameter. The integration
regions in Eq. (8), therefore, are cutoff atld and we
obtain

tanuH � v0 1 v 0; �9�
where

Here the scalar potentialsPd1, Pd2, Ps1 and Ps2

satisfy a set of homogeneous equations related to
O(VL) as r ! 0. v0 is independent of the imaginary
parts of the relaxation times and positive due to the

large-k limit. If v 0 is negative and satisfies

uv 0u . v0;

we can get the sign change of the Hall effect.
Xu et al. [26,27] derived the Ginzburg–Landau

equations for a mixeds1 d symmetry superconductor
with nonmagnetic impurities and showed that the
transition temperature fors-wave order parameter
can only be affected by the magnetic impurity scatter-
ing while the transition temperature ford-wave order
parameter is dominantly affected by the nonmagnetic
scattering. Hence, the parameters,a s and ad, are
given by
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T
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where Ts0 andTd0 are the critical temperatures of a
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clean superconductor, c is the concentration of the
impurities,C (z) is the digamma function, anda �
pU2

=N0�0� and 1=pN0�0� for the Born limit and the
unitary limit, respectively. (U is the nonmagnetic
potential due to the static impurities andN0(0) is the
normal state electron density of states at the Fermi
level.) When the concentration of the impurities
increases, the parameterad will change from linear
T behavior to T2 behavior. The high scattering
strength can also affect the ratio of the parameters
g , related to the effective masses. In this limit, one
can find that

gs q gd . gn:

In order to illustrate the effect of nonmagnetic
impurities onv 0, we takegs=gd � 2, Tc � 0.95Td0

and Ts0 � 0.5Td0. In Fig. 1 we plot the function
�hd2=hd1�v 0 versust�� T=Td0� in the absence of impu-
rities and in the presence of the low impurity density
doped. In Fig. 2 we plot the function�hs2=hs1�v 0

versus t for the high scattering strength. Fig. 1
shows thatv 0 is negative near the critical temperature.
v 0 , 0 can lead to the sign change of the Hall angle.
Also, the impurity concentrations increasing from low
to high, the lowest Hall angle shifts to lower tempera-
ture and becomes nonnegative. This implies that the
anomalous Hall effect also depends on the concentra-
tion of the impurities. This feature is consistent quali-
tatively with the experimental results.

In conclusion, we show that the imaginary parts of
the complex relaxation times can give rise to the
anomalous Hall effect for mixeds- and d-wave
symmetry superconductors. We decompose the Hall
angle into two parts:v0 andv 0. The former part is
independent of the imaginary parts of the relaxation
times and positive in the large-k limit. The sign of the
latter part can be affected by the relaxation times. If
the real and imaginary parts of the relaxation times
have the same sign,v 0 will be negative near the criti-
cal temperature. We also show that the doped
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Fig. 2. The function�hs2=hs1�v 0 versus reduced the temperaturet � T=Td0 for high nonmagnetic impurity density doped. We chooseTc �
0:55Td0 andTs0 � 0.5Td0.



nonmagnetic impurities can influence the temperature
range of the anomalous Hall effect. In addition, it is
noteworthy that the concentration of the impurities
can affect the Hall effect. When the impurity concen-
trations are increasing from low to high, the depen-
dence of the Hall angle changes from thed-
component to thes-component.
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