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Abstract 

We propose a new PID tuning method using fuzzy neural networks for a given gain and phase margin specifications 
(FNGP). We use fuzzy neural networks to determine the PID controller parameters. Because the definitions of gain and 
phase margin equations are complex, an analytical tuning method for achieving specified gain and phase margins is not 
available yet. In this paper, a fuzzy neural modeling method is first proposed to identify the relationship between the 
gain-phase margin specifications and the PID controller parameters. Then, the FNGP is used to automatically tune the PID 
controllers parameter for different gain and phase margin specifications so that neither numerical methods nor graphical 
methods need be used. Simulation results show that the FNGP can achieve the specified values much more efficiently 
than other methods. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Over the past 50 years, several methods for determining PID controller parameters have been developed. 
Some employ information about open-loop step response, for example, the Coon-Cohen reaction curve method 
[3]; other methods use knowledge of  the Nyquist curve, e.g., the Ziegler-Nichols frequency-response method. 
However, these tuning methods use only a small amount of  information about the dynamic behavior o f  the 
system, and often do not provide good tuning. 

Gain margin and phase margin have always served as important measures of  robustness. It is also known 
from classical control theories that phase margin is related to the damping of  the system, and therefore also 
serves as a performance measurement. Controllers designed to satisfy gain margin and phase margin (GPM) 
criteria are not new approaches. However, their solutions are normally obtained numerically or graphically 
by trial-and-error use o f  Bode plots. Such methods are certainly not suitable for use in adaptive control and 
auto-tuning. 

Tuning of  PID controllers based on gain and phase margin specifications (GPM) was proposed by Hang 
[4]. This method uses linear equations to approximate the arctan function in the gain-phase margin definition, 
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formulas are then derived to design the PI and PID controllers to meet user-specified gain margins and phase 
margins. The disadvantage of the GPM method is that the transfer function of the controlled process is 
restricted to the first-order-plus-time-delay type. This approach is certainly not suitable for use in adaptive 
control and auto-tuning. 

Although various kinds of fuzzy logic controllers (FLCs) [8] are widely used nowadays and have certain 
advantages over conventional PID controllers, relatively few theoretical analysis that explain why they can 
achieve better performance are available. 

In this paper, we present a new tuning method that uses a fuzzy neural network based on gain and phase 
margin specifications (FNGP), to tune the PID controller parameters efficiently and meet user-specified gain 
and phase margins exactly. This approach enjoys the advantage of functionally mapping the fuzzy neural 
network, and gives better performance than GPM. 

The arrangement of this paper is as follows. In Section 2, we briefly introduce gain and phase margins. 
Section 3 proposes the fuzzy neural network structure. Section 4 describes the proposed tuning method for a 
fuzzy neural controller based on gain and phase margin specifications (FNGP). Section 5 gives the simulation 
results and discusses the advantages of the proposed approach as compared with other methods. Finally, 
conclusions are summarized in Section 6. 

2. Gain margin and phase margin 

Denote the process and the controller transfer function by Gp(s) and Ge(s), as shown in Fig. 1, and the 
specified gain and phase margins by Am and ~bm, respectively. The formulas for gain margin and phase margin 
are as follows: 

arg[Gc(jwp)Gp(jWp)] = -rt, (1) 

1 
Am = [Gc(jwp )Gp(jWp )l, (2) 

[Gc(jwg)Gp(jWg)l = 1, (3) 

49m = arg[Gc(jwg)Gp(jWg)] + rt, (4) 

where the gain margin is defined by Eqs. (1) and (2), and the phase margin by Eqs. (3) and (4). The 
frequency wp at which the Nyquist curve has a phase of -Tt is known in classical terminology as the phase 
crossover frequency, and the frequency Wg at which the Nyquist curve has an amplitude of 1 as the gain 
crossover frequency. 

The PI controller is given by 

and the process is given by 

gp(1 q- Wnls)nl(l + Wn2S) n2"'" (1 -~- WnqS) nq e_Ls" 
Gp(s) = (1 + wals)al(1 + Wd2S) d2. '"  (1 + waps)dP 

The loop transfer function is obtained from 

Gc(s)Gp(s) = Kc Kp(1 + sT1)(1 + Wnls)nl(1 + Wn2S) n2"'" (1 + WnqS) nq e_LS 
sTI(I + wals)dl(1 + Wd2S) d2.. -(1 + WdpS) dp 
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Fig. 1. The overall system. 

Substituting the above equation into Eqs. (1)-(4), we have 

I n + tan- 1 (Wp T1 ) + n 1 tan- 1 (WpWn I ) + "'" + nq tan- 1 (WpWnq) - Wp L 

- d l  t a n -  l ( Wp Wa l ) - d2 tan -  l ( wp wa2 ) . . . . .  dp tan-1(  Wp Wdp ) = 0, (5) 

V / I+w2T~v / ( I+wpW,  1 2  Z)n , . . .  . /  V (  l_ 2 2 nq ÷ Wp Wnq ) 
AmKc Kp = wpTI , (6) 

÷WpW~ll)dl (1 + . . .  (1 + Wp W~2 ,Vp '~dp J 

(1 A._v,,2,,,2 hdl (1 ÷ "*'2'a'2 "~d2 (l + 
- -  " g  'Vdl ] " g  '~d2 J g '~dp J 

KcKp = wgTl , (7) 
V/(I + Wg2 TT)V/(1 + Wg2 Wn2)nll " '"  ~/(1 --'4-w2w2"g "nq ,]nq 

~m~_ 1 rt + tan- 1 (Wg Tt ) + n I tan- 1 (WgWn 1 ) + "'" + nq tan- 1 (WgWnq) - Wg L 

- dl tan -1 (WgWal) - d2 tan-l(WgWa2) . . . . .  dp tan-l(wgWap).  (8) 

For a given process (Kp, wnl . . . . .  Wnq, Wdl, . . .  ,Wap, L )  and specifications (Am, ~bm), Eqs. (5)-(8) can be solved 
for the PI controller parameters (Kc, T~) and crossover frequencies (Wg, Wp) numerically but not analytically 
because of the presence of the arctan function. Controllers such as the IMC [2] and GPM [4] that are 
based on gain and phase margins cannot efficiently meet specifications within a 10% error margin owing to 
approximation of the arctan function. Therefore, another approach using a fuzzy neural network is considered 
here. 

3. Structure of a controller that uses a fuzzy neural network based on gain and phase margins (FNGP) 

The overall system block diagram is shown in Fig. 1. To get parameters (Kc, T1) for a PI controller more 
exactly, analytically avoid the presence of arctan functions, and a lack of solutions for the nonlinear Eqs. 
(5)-(8), we use fuzzy neural networks [6,9] based on gain and phase margins (FNGP) to model these 
equations analytically. 

Considering the nonlinear coupled Eqs. (5)-(8),  we find there are four parameters (Wp, Wg, Kc, Tr) in those 
four equations. If we are given gain margin and phase margin specifications (Am, ~bm), it may not be possible 
to solve the four parameters because the equations are nonlinear. 

Now, let us consider another aspect of these equations. First, we could put random controller parameters 
(Kc, T1) into those equations. Using Eq. (5), we could solve for Wp then substitute it into Eq. (6) to get Am. 
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Fig. 2. Block diagram of function mapping using FNGP. 
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Fig. 3. A two-input first-order Sugeno fuzzy model. 
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Fig. 4. The FNGP networks architecture. 
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And using Eq. (7), we could calculate Wg then substitute it into Eq. (8) to obtain q~m. Hence we could obtain 
the parameters (Wp, wg,Arn, ~bm) that correspond to the random controller parameters (Kc, T1) respectively. For 
example, in preparation for training the FNGP, we gather 200 points (Kc, TI) and corresponding (Am, ~bm) 
points, respectively, and put them into Fig. 2 as the training data. This approach avoids the problem of no 
solution being yielded by nonlinear Eqs. (5) - (8) ,  and reduces the overall task dimensions. 

Fig. 2 illustrates the block diagram of the function mapping of Eqs. (5 ) - (8 )  using FNGP with a Sugeno 
fuzzy model. A simple two-input first-order Sugeno fuzzy model is shown in Fig. 3. 

The FNGP architecture is shown in Fig. 4. Suppose we are given (Am,~bm) and have R i ( i =  1 . . . . .  n 2) 
implications, then the value of y E {Kc, T1 } is implied as follows. 

Layer 1: Every node i in this layer is an adaptive node with a node output defined by (Here we denote 
the output node i in layer l as Ol, i.) 

Ol,i =llA,(Am), for i =  1 . . . .  ,n, 

Ol , i+n  = 12Ai+,, (~bm), 

where xi is the input to the node and Ai is a fuzzy set associated with this node. In other words, outputs from 
this layer are the membership values of  the premise part. Here the membership function can be characterized 
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by the generalized bell-shaped function: 

1 
~tA,(X) = 

1 ~- [(X i -- ci)2/a2i]bi'  

where {ai, bi, ci} is in the parameter set $1. Parameters in this layer are referred to as premi se  parameters .  
Layer 2: Every node in this layer is a fixed node labeled H, which multiplies the incoming signals and 

outputs the product, 

02,k =Wk =[~Ai(Am) X ]2A/(~bm) , i , j =  1 . . . . .  n, k =  1 . . . .  ,n  2. 

Each output of the node represents the firing strength of a rule. (In fact, any other T-norm operators that 
perform fuzzy AND operations can be used as the node functions in this layer.) 

Layer 3: Every node in this layer is a fixed node labeled N. The ith node calculates the ratio of the ith 
rule's firing strength to the sum of all rule's firing strengths: 

03,  i = l~i = Wi , i =  1 . . . . .  n 2. 
w t 4- . . .  4- wn~, 

For convenience, the outputs from this layer are called normal i zed  f i r in9 strengths.  

Layer 4: Every node i in this layer is an adaptive node with a node function 

O4.i = ~ i f i  =ff~i(p~Am 4- P~(~m + P~), i :  1 . . . .  ,n  2, 

where ~i is the output of layer 3 and {p~, Pl, P~} is in the parameter set $2. Parameters in this layer are 
referred to as consequent  parame ter s .  

Layer 5: The single node in this layer is a fixed node labeled ~ that computes the overall outputs as the 
summation of all incoming signals: 

Y l  = 05,1 : Z w i f i  --  ~ i  wift" i = 1 . . . .  , n 2. 
i ~ i  wi  

4. Tuning of the FNGP 

We noted that when the values of the premise parameters are fixed, the overall output Yl E {Kc, Tr } can 
be expressed as a linear combination of consequent parameters. In symbols, the output Yl in Fig. 4 can be 
written as 

W1 Wn2 
Yl = f l  + ' " - [ -  fn2 =Wlf l  - } - ' ' '+ f f :nZ fn  2 

Wl + " " 4- Wn2 Wl + " " + Wn2 

= (~,Arn)pl + (~1 ~bm)p~ + (~I)P~ -4- . . -+  (ff~n2Am)p~ 2 + (~n2q~m)p~ 2 + (~n2)p~ 2, 

which is linear in the consequent parameters {pl, l l : : Pl ,  P2 . . . . .  p ~ ,  p f ,  p~2}. Note that if a fuzzy neural network 
output or its transformation is linear in some of the network's parameters, then we can identify these linear 
parameters using the well-known linear least-squares method [5]. 

4.1. O f f  line learnin9 

For simplicity, we assume that the fuzzy neural network under consideration has only one output 

output = F(L S), (9) 
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where i is the input variable vector and S is the set of parameters. If there exists a function H such that the 
composite function H o F is linear in some of the elements of S, then these elements can be identified by the 
least-squares method. More formally, if the parameter set S can be decomposed into two sets 

S = Sl (~ $2, 

where ® represents direct  sum,  such that H o F is linear over the elements of $2, then upon applying H to 
Eq. (9), we have [6] 

H(output) = H o F ( L  S), (10) 

which is linear over the elements of $2. Now, given values of elements of Sl, we can put M training data 
into Eq. (10) and obtain the matrix equation: 

X P  = Y, Y = [yl . . . .  ,y2] T, (11) 

p = [p l , . . . ,  pg . . . . .  pl . . . . .  PT,--., P~ . . . . .  P~]. 

Here, P is an unknown vector whose elements are parameters in $2. This equation represents the standard, 
linear least-squares problem and the best solution for P, that minimizes I[XP - YI[ 2, is the least-squares 
estimator (LSE) P*: 

p* =(xTx)-lxVr, 

where X T is the transpose of X and ( x T x )  -1 is the pseudo-inverse of x T x .  The parameter vector P can be 
calculated using a stable-state Kalman filter, which is an algorithm for calculating the parameters of a linear 
algebraic equation that gives the least squares of errors. Of course, we can also employ the recursive LSE 
formula [5]. Specifically, let the ith row vector of matrix X defined in Eq. (11) be xT, and the ith element 
of Y be yT; p can then be calculated recursively as follows: 

Pi+l = Pi q- Qi+l Xi+l (y i+ l  - Xi+l • Pi) ,  

QiXi+l x~_l Qi 
Qi+l = Q i -  1 + xTi+lQixi+l ' i = 0 , 1  . . . . .  M -  1, 

P = P M ,  

where the initial values of P0 and Q0 are set as follows: 

P o = 0 ,  Q o = a - 1 ,  

where a is a large number and 1 is the identity matrix. 
For given fixed values of parameter in Sl, the parameters in set $2 thus found are guaranteed to be global 

optimum points in set $2 parameter space because of the choice of the squared-error measure. Not only can 
this hybrid learning rule decrease the dimensions of the search space in gradient descent method, but, in 
general, it will also substantially reduce the time needed to reach convergence. 

For the recursive least-squares formula to account for the time-varying characteristics of the incoming data, 
the effects of old data pairs must decay as new data pairs become available. One simple method for ensuring 
this is to formulate the squared error measure as a weighted version that gives higher weighting factors to 
more recent data pairs. This amounts to addition of  a forgetting factor 2 to the original recessive formula: 

Qi+lXi+lXi+lOi] 
Pi+l = P i + I  q- Qi+lXi+l(yT+l T 1 T 

-- Xi+lPi+l ), Qi+l = -~ Qi+l - 2 + x/T+I QiXi+l J ' 

where typical value for 2 in practice is between 0.9 and 1. The smaller 2 is, the faster the effects of old data 
decay. A small 2 sometimes causes numerical instability. 
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Table 1 

Forward pass Backward pass 

Premise parameters Fixed Backpropagation 
Consequent parameters Least-squares method Fixed 

27 

4.2. On-line learnin 9 

If the parameters are updated after each data presentation, we have an on-line learning scheme. This learning 
strategy [ 1 ] is vital to on-line parameter identification by systems with changing characteristics. In this learning 
scheme, we use back-propagation learning [8] to modify the premise parameters {ai, bi, ci} in parameter set Sj. 

Let the cost function, El, of the training pattern k be proportional to the square of the difference between 
the plant output yp(k) in the frequency domain and the actual output y1(k) of NFGP in Fig. 2, and let E~ be 
defined by 

El =/[yp(k)  - yl(k)] 2. (12) 

The gradient of error in Eq. (11) with respect to the parameter weighting vector SI in Fig. 4 then becomes 

~Ez ~et(k ) ~.. ~yl(k) ¢30i(k) 
(~S, =ei(k)  O S ~ - -  eit.K) ~[l - ei(k) OS---~ 

The weights can be adjusted using the following gradient descent method: 

S l ( k + l ) = S l ( k ) + A S l ( k ) = S l ( k ) + q i \  0 S l J '  

where r/l is a learning rate. 
Thus, the learning process is as listed in Table 1. 

5. Simulation 

The approach based on gain and phase margins as important measures is attractive not only in performance, 
but also in robustness. In this section, we give a specific performance comparison with GPM because both 
were designed based on gain and phase margin specifications. 

Example 1 (High-order process). The process is given as follows: 

1 
G p ( s )  = (1 + s )  5" 

Since the process is not a first-order type, the GPM cannot be applied. Therefore, a first-order type with 
time-delay model is used to approximate a high-order type. Various gain and phase margins are specified 
for this model in Table 2. It can be seen that the FNGP performs much better than the GPM design. 
A performance and robustness comparison is shown in Fig. 5. 

Example 2 (First-order with time-delay process). The process is given as 

e-0.1s 
Gp(s)-- 1 + s '  L/z=O.l  <l .  
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Table 2 
Different PI controllers for Gp(s)= 1/(1 + s) 5 

Tuning method High order Specifications Resultant Error 

1/(1 +s )  5 Am ~b ° Kc rl Wg W v A* (P~n A t  Otto 

GPM e - 2"93s/(1 + 2 7 3 s )  3 60 0.4879 2.7300 0.1771 0.4828 3.8528 59.026 28.4% 1.62% 
2.5 70 0.6350 3.7335 0.1823 0.5319 3.9115 65.728 56.5% 6.10% 

FNGP 1/(1 + s) 5 3 60 0.5559 2.7281 0.2109 0.5621 3.0051 60 .355  0.17% 0.59% 
2.5 70 0.8723 4.6649 0.2456 0.6297 2.5141 69 .705  0.56% 0.42% 

'iI 
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Fig. 5. (a) Step response of FNGP and GMP with Spec. (3,60 °) in Example I. (b) Step response of FNGP and GPM with Spec. 
(2.5, 70 °) in Example 1. 

Table 3 
Different PI controllers for Gp(s)= e-°As/(1 + s) 

Tuning method First-order 
time delay Specifications Resultant Error 

e-°ls/(1 + s) Arn d) ° Kc TI Wg Wp A* ~)Tn Arm ~tm 

GPM e-°  L~/(1 + s) 3 45 4.9087 0.3520 5.3984 12.780 3.3075 40.308 1 0 . 2 %  10.4% 
5 60 3.0543 0.5410 3.3413 13.534 5.9904 58.140 19.8% 3.10% 

FNGP e-°ls/(1 +s )  3 45 6.1984 0.5626 6.2430 13.586 2.9786 45.411 0.71% 0.91% 
5 60 3.7851 0.6601 3.9214 13.777 5.0292 60 .039  0.58% 0.07% 

The results for different specifications in this example  are i l lustrated in Table  3, which  shows that even  when  

the plant is first-order with t ime-delay,  the p roposed  F N G P  approach has better pe r fo rmance  than GPM. F N G P  



S.-E Chu, C.-C. Teny/Fuzzy Sets and Systems 101 (1999) 21 30 29 

1.4 

1.2 

Step response 

o 1 ,..a 

"~08 

~o.6 
0.4 

0.2 

e-01.r 
/ f t -  Process 1 +---~ 

Spec. (3,45") 

P,\ 
i l~. \  
!/ ' , \  

x. ~- - ~__~- 

.t 

I // _ _  uncompensated 
- - - GPM 
- . -  FNGP 

1.2 

0.8 

"~o 0 .6  

0.4 

Step response 

/ "  Process 
/ l+s  

/ /  Spec. (5,60") 

?/ 

?/ 

i q / 
.t I 
! tl 
J/ 

_ _  uncompensated ] 
GPM 
FNGP 0.2 

t /  
# 0 ' 

°o i 2 a 4 o i 2 ; 4 
(a) Time (see) (b) Time (see) 

Fig. 6. (a) Step response of FNGP and GPM with Spec. (3,45 °)  in Example 2. (b) Step response of FNGP and GPM with Spec. 
(5, 60 °)  in Example 2. 

yields less than a 1% error but GMP's is greater than 10%. FNGP also has such a shorter rise time and lower 
overshoot than GPM, as shown in Fig. 6. 

6. Conclusions 

This paper has investigated fuzzy neural controllers based on gain and phase margins (FNGP). The pro- 
posed FNGP is a new approach to tuning controller parameters according to gain margin and phase margin 
specifications. 

There are two advantages of using the proposed FNGP for formulating gain and phase margin problems• 
First, the trained FNGP automatically tunes PI controller parameters for different gain and phase margin spec- 
ifications so that neither numerical methods nor graphical methods need be used. Second, the FNGP can also 
find the relationship between PI controllers (Kc, T1) and specifications (Am, q~rn) in the weighting parameters 
in the networks. Therefore, the proposed method is simple and systematic in reducing the dimensions of the 
problem presented in this paper. 

PID controller tuning also employs the same approach in meeting user-specified gain and phase margin 
specifications. The PID tuning formulas are detailed in [4]. 
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