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Neural Networks for Seismic
Principal Components Analysis
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Abstract—The neural network, using an unsupervised general-
ized Hebbian algorithm (GHA), is adopted to find the principal
eigenvectors of a covariance matrix in different kinds of seismo-
grams. We have shown that the extensive computer results of
the principal components analysis (PCA) using the neural net
of GHA can extract the information of seismic reflection layers
and uniform neighboring traces. The analyzed seismic data are
the seismic traces with 20-, 25-, and 30-Hz Ricker wavelets,
the fault, the reflection and diffraction patterns after normal
moveout (NMO) correction, the bright spot pattern, and the
real seismogram at Mississippi Canyon. The properties of high
amplitude, low frequency, and polarity reversal can be shown
from the projections on the principal eigenvectors. For PCA,
a theorem is proposed, which states that adding an extra point
along the direction of the existing eigenvector can enhance that
eigenvector. The theorem is applied to the interpretation of a fault
seismogram and the uniform property of other seismograms. The
PCA also provides a significant seismic data compression.

Index Terms— Data compression, eigenvectors, generalized
Hebbian algorithm, neural network, principal component
analysis (PCA), Ricker wavelets, seismic interpretation.

I. INTRODUCTION

T HE PRINCIPAL components analysis (PCA), also
known as the Karhunen–Loeve transformation, has been

investigated and used in many applications [1]–[8]. Given a set
of random data with dimension and ,
we can compute the correlation matrix (covariance matrix)

and find the eigen-
values and the corresponding eigenvectors. The principal
eigenvectors can point to the principal directions of the
distribution of the data.

The PCA was applied to a seismic data set by Hagen [7]
and Jones [8]. Hagen adopted the input data vector in the
vertical trace direction and computed the principal components
to evaluate the subtle character changes of porosity in the
neighboring uniform seismic traces. Jones adopted the input
data vector in the horizontal direction and computed principal
component to separate the diffraction and reflection patterns
from seismic data after normal moveout correction (NMO).

Several neural network algorithms have been proposed for
PCA [9]–[20]. Oja’s learning rule could find one principal
eigenvector of a covariance matrix [9]–[13]. Sanger’s unsu-
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Fig.1. Sanger’s neural net.

pervised generalized Hebbian learning algorithm (GHA) could
find many principal eigenvectors of a covariance matrix in
decreasing eigenvalue order [14], [15].

In this paper, the neural net with Sanger’s unsupervised
GHA [14] is adopted to find the principal eigenvectors of
a covariance matrix in different kinds of seismograms. The
neural net is shown in Fig. 1. The input data were fed into
the neural net iteratively to find the principal eigenvectors.
The advantage of learning is the ability to find the principal
eigenvectors incrementally from data as it becomes available.
It is not necessary to compute the covariance matrix from
the complete data set in advance; the eigenvectors can be
derived directly from the data. If we use the traditional
method of eigenvector analysis to seismic data with 512 input
dimensions, the covariance matrix with dimension 512512
may be over the memory limitation of some computers.
And we cannot solve the eigenvectors by the traditional
method. However, using neural net with GHA can decrease the
computational requirement and storage for the small number
of output eigenvectors. For example, using the notation in
the following Section II, if there are five output eigenvectors,

will have only elements and will
have only 25 elements. The required memory is less. Sanger
already stated that “when the number of inputs is large and the
number of required outputs is small, GHA provides a practical
and useful procedure for finding eigenvectors” [14]. Seismic
data always have a large data set with large dimensions, and
we want to extract the information of a small number of
reflection layers and uniform traces to improve the seismic
interpretations. So from the advantages stated above, PCA
using GHA might be needed for seismic data.

Fig. 2 shows the processing steps using the neural net based
on Sanger’s GHA learning rule for the seismic PCA with the
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Fig.2. System of Sanger’s learning net for seismic PCA.

input data vectors from horizontal or vertical directions. The
analyzed seismic data are the seismic traces with 20-, 25-, and
30-Hz Ricker wavelets, the fault, the reflection and diffraction
patterns after NMO correction, and the bright spot pattern.
The real seismogram at Mississippi Canyon is also used in
the experiment.

II. NEURAL NETWORK OF

GENERALIZED HEBBIAN LEARNING RULE

In Fig. 1, the neural net with Sanger’s GHA has a sin-
gle weighting layer. The input -dimensional column vec-
tor is , , the weight matrix is ,
and the output -dimensional column vector is
with , i.e., .
The input data are fed into the net iteratively to find the
principal eigenvectors of the correlation (covariance) matrix

. The weight matrix
needs to be updated for each iteration step.

Sanger [14] proved that the GHA neural net converges
from random initial weights with probability one to find
the principal eigenvectors of the input covariance matrix in
decreasing eigenvalue order. The GHA learning rule from
Sanger [14] is given by

where is the index of input, is the index of output, or in
matrix form as

where and
is the lower triangular matrix, i.e., all elements above the

diagonal of its matrix argument are zeros.
and . The th eigenvector is

, and the corresponding eigenvalues have the relation
.

The “projection values” of the input data vector onto
unit eigenvectors are , .
We define as the “projection vectors” or “principal
components” of input data onto . We use a small number
of and in the interpretations of seismic principal
components.

In our seismic experiments, the definition of convergence
is, if all absolute values of are less than a
constant 0.0001, the iteration stops. For the examples in [14],
Sanger chose empirically at a fixed value between 0.1

and 0.01, which provides good convergence. Here we adopt
Sanger’s empirical values on that is held fixed at a
value between 0.1 and 0.01. From our seismic experiments,
the number of iteration is increased as the value of
is decreased. Also, we have other experiments on that
decreases linearly from 0.1 to 0.01, then keeps a small fixed
value after some iteration. The designed formula is

(# of iteration - 1000)/1000, when # of

iteration is less than or equal to 900

when # of iteration is greater than 900.

In order to have the criterion for comparison, we calculate
the mean-squared error (MSE) and the normalized mean-
squared error (NMSE) [14]. The NMSE is the ratio of the
mean-squared error (MSE) to the data variance. For the seismic
intensity at position with removing the average, and
the recovered intensity,

NMSE

III. D ATA COMPRESSION

We can select the largest eigenvalues and their correspond-
ing eigenvectors and discard the smallest ( ) eigenvalues
in the data representation. The data representation for
becomes . The MSE value between random

vector and is the summation of the discarding
eigenvalues [1]. There are two meanings in this technique of
dimensionality reduction: 1) we can save a lot of memory
space in data representation and 2) we can select the effective
features in pattern recognition.

IV. EFFECT OFADDING ONE EXTRA POINT ALONG

THE DIRECTION OF EXISTING EIGENVECTOR

For PCA, a theorem is proposed, which states that adding
an extra point along the direction of the existing eigenvector
can enhance that eigenvector.
Theorem 1 (Effect of Adding One Extra Point Along the Direc-
tion of Existing Eigenvector of a Covariance Matrix):Given a
covariance matrix computed from data and its eigenval-
ues and eigenvectors , if adding one extra data vector
(mean vector is removed) along the direction of existing
eigenvector , then 1) the new eigenvalue is larger than
the original eigenvalue if the square length of the extra data
vector is greater than , otherwise is less than or equal to

and 2) the new eigenvalue is increased more than other
new eigenvalues .
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Proof: The extra data vector (mean vector is removed)
is represented as , is the length of the vector . The
set of the new eigenvalues and eigenvectors computed from
the data is as follows.

The new covariance matrix is Q Q
. For , its eigenvalues are and its eigenvectors

are . For matrix because , , the
eigenvector is . So the eigenvectors of new are the same
as those of .

For eigenvector , the new eigenvalue is
Q .

Q

New eigenvalue (1)

From (1)

(2)

From (2), if , then . Otherwise or
. This proves 1). For eigenvector , the

new eigenvalue is , Q
.

Q

(3)

From (1) and (3), the new is enhanced more than the new
. This proves 2).

Property 1: Given a covariance matrix computed from
a set of data, if we add these same set of data to
compute the eigenvalues and eigenvectors, the new ones are
not changed.

Proof: The new covariance matrix is Q
Q Q Q, the same as the original covariance matrix

, so new eigenvalues and eigenvectors are not changed.
Example 1: Given the samples: ,

, , .

Mean vector:

Covariance matrix:

Q

TABLE I
EXPERIMENTAL RESULTS OFFIGS. 3–18FOR DIFFERENT LEARNING RATES 
(t).
SYMBOLS: DIMENSION OF INPUT VECTORS(#1), NUMBER OF INPUT VECTORS

(#2), NUMBER OF STEPS TOCONVERGENCE(#3), MSE,AND NMSE

Example 2: Adding two extra samples, ,
, on Example 1 along the direction of the

second eigenvector
Mean vector:

Covariance matrix:

Q

The second eigenvector on Example 1 becomes the first
eigenvector on Example 2.

Using Theorem 1, if we add more and more points along the
direction of some existing eigenvector, that eigenvector may
become the first principal eigenvector. The seismic example
of the Theorem 1 is shown in the following experiment of
fault seismogram using vertical seismic traces as the inputs.
This theorem can improve the seismic interpretation that the
seismic data with uniform or consistent property can enhance
the principal eigenvectors.
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Fig. 3. Seismic data (20-Hz Rocker wavelet). (b) Seismic data (horizontal mean vector removed). (c) Distribution from (a). (d) Distribution from (b). (e)
and (f) On first and second projection values. (g) and (h) On first and second components. (i) Sum of two components and mean vector.

Fig. 4. (a) Seismic data (20-Hz Ricker wavelet). (b) Seismic data (horizontal mean vector removed). (c) Distribution from (a). (d) Distribution from(b). (e)
and (f) On first and second projection values. (g) and (h) On first and second components. (i) Sum of two components and mean vector.

Fig. 5. (a) Seismic data (20-Hz Ricker wavelet). (b) Data (horizontal mean vector removed). (c), (d), and (e) On first, second, and third projection values.
(f), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.

V. PCA IN SEISMIC RICKER WAVELET ANALYSES

We start the basic seismic PCA experiments on the different
layers with different Ricker wavelets. Then we extend the PCA
applications to simulated seismograms and real seismic data.
We list the results for each seismic experiment on Figs. 3–18
in Table I.

A. Two-Dimensional (2-D) PCA of Ricker Wavelets in One
Seismic Layer using Input in Horizontal Direction

Fig. 3(a) shows one layer with the 20-Hz zero-phase Ricker
wavelets with reflection coefficient 0.25 in two seismic
traces. The sampling rate is 0.004 s. Using horizontal input
data vector, the data vector form of 20-Hz Ricker wavelets at
the layer is and can be in one line with high correlation
in Fig. 3(c), which is the 2-D scatter diagram from Fig. 3(a).
Fig. 3(b) is the traces with horizontal mean vector removed.
Fig. 3(d) is the 2-D scatter diagram of data from Fig. 3(b). The
neural net can find the first eigenvector corresponding to the
layer’s Ricker wavelets. Fig. 3(e) is the projection value on the
first eigenvector for each data vector. Fig. 3(f) is the projection

value on the second eigenvector for each data vector. Fig. 3(g)
is the first component. Fig. 3(h) is the second component.
Fig. 3(i) is the recovered portion from the first and the second

components plus mean vector, . The sum
of several components plus mean vector in the later analyses
of Figs. 4–19 is similar to this explanation. Fig. 4(a) is the
addition of 10–56-Hz Gaussian white band noise (mean,
standard deviation ) to the Fig. 3(a). In Fig. 4, the neural
net can also find the first eigenvector.

B. PCA of Two Seismic Layers

1) Input in Horizontal Direction: In Fig. 5(a), the 20-Hz
zero-phase Ricker wavelets are on the three traces. One
horizontal layer is on traces 1 and 2, the other layer is on trace
3. We use input data in the horizontal direction, so the data are
three-dimensional (3-D). The input data vector type at the first
layer is , and the input data vector type at the second
layer is . Fig. 5(c)–(e) show the three projection
values. The projection component on the first eigenvector can
recover the first layer in Fig. 5(f). The projection component
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Fig. 6. (a) Seismic data (20-Hz Ricker wavelet). (b) Data (vertical mean vector removed). (c), (d), and (e) On first, second, and third projection values.
(f), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.

Fig. 7. (a) Seismic data (20-, 25-, and 30-Hz Ricker wavelet). (b) Data (horizontal mean vector removed). (c), (d), and (e) On first, second, and third
projection values. (f), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.

on the second eigenvector can recover the second layer in
Fig. 5(g). From the distances between the origin
and these 3-D data vectors, the distribution of the data in the
first layer is longer than that of the second layer, so the largest
component is corresponding to the first layer. Elongated data
distribution can generate the first eigenvector.

2) Input in Vertical Direction: Fig. 6(a) is the same signal
as Fig. 5(a). We take input data vector from vertical direction.
The number of dimensions is 128. One trace is one sample.

The samples are too less, and the mean vector is not.
Fig. 6(b) is the traces with mean vector removed. After remov-
ing the mean vector, the shapes of wavelets are changed. In
Fig. 6(i), through PCA and adding mean vector, the wavelets
of the layers can be recovered.

C. Analysis of Three Class Ricker Wavelets in
Three Seismic Layers, Respectively

1) Input in Horizontal Direction: In Fig. 7(a), the 20-, 25-,
and 30-Hz zero-phase Ricker wavelets are on the first, second,
and third traces, respectively. They have the same maximum
amplitude 0.25. The difference is the duration, i.e., number
of points, at three Ricker wavelets. We use input data in the
horizontal direction. The input data vector types are
at the first layer, at the second layer, and
at the third layer. The first layer has the largest number of
points in 3-D space corresponding to 20-Hz Ricker wavelet.
Fig. 7(c)–(e) show the three projection values. The largest
component is corresponding to the first layer with 20-Hz
Ricker wavelet. Fig. 7(f) shows that the projection component
on the first eigenvector can recover the first-layer 20-Hz Ricker
wavelet. Fig. 7(g) shows that the projection component on the
second eigenvector can recover the second-layer 25-Hz Ricker

wavelet. Fig. 7(h) shows that the projection component on the
third eigenvector can recover the third-layer 30-Hz Ricker
wavelet. So if the layer with Ricker wavelet in the same
amplitude range can contribute more points, the direction of
the data is more significant, and the eigenvector can dominate.
We can use the above Theorem 1 in this interpretation.

2) Input in Vertical Direction: Fig. 8(a) is the same signal
as Fig. 7(a). We take input data from the vertical direction. The
mean vector is not . Fig. 8(b) is the traces with mean vector
removed. After removing the mean vector, the wavelets are
changed. In Fig. 8(i), through PCA and adding mean vector,
the wavelets can be recovered.

VI. PCA IN SIMULATED AND REAL SEISMOGRAMS

We apply the PCA based on the neural net to the analysis of
simulated and real seismograms. Finally, we use the traditional
power numerical method of PCA in the simulated bright spot
seismogram for comparison of the performance.

A. PCA of a Fault

1) Input in Horizontal Direction: The seismogram in
Fig. 9(a) shows a fault. The left-hand side has 24 uniform
traces, and the right-hand side has eight uniform traces.
The seismic trace has the 20-Hz zero-phase Ricker wavelet
with reflection coefficient 0.2, 4-ms sampling interval,
and 10–56-Hz Gaussian white band noise (mean ,
standard deviation ). Using the input data vector in the
horizontal direction, the data type of the layer on the left side
is and the data type of the layer
on the right side is . The two sides
of a fault are corresponding to two principal eigenvectors.
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Fig. 8. (a) Seismic data (20-, 25-, and 30-Hz Ricker wavelet). (b) Data (vertical mean vector removed). (c), (d), and (e) On first, second, and third projection
values. (f), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.

(a) (b) (c)

(d) (e) (f)

Fig. 9. (a) A fault. (b) Data (horizontal mean vector removed). (c) Three projection values. (d) First component. (e) Second component. (f) Sum of
three components and mean vector.

Fig. 9(b) is the data with mean vector removed. Fig. 9(c)
shows the projection values of each horizontal data vector on
three eigenvectors. Fig. 9(d) shows the projection component
of each horizontal data vector on the first eigenvector
corresponding to the first layer. Fig. 9(e) shows the projection
component of each horizontal data vector on the second
eigenvector corresponding to the second layer. Fig. 9(f) shows
the summation of three principal components and mean vector.
The two sides of a fault are corresponding to two principal
eigenvectors. The 24 uniform wavelets on the left-hand side
reflect the largest projection value on the first eigenvector.
And the eight uniform wavelets on the right-hand side
reflect the largest (negative) projection value on the second
eigenvector. The reason is the same as the above experiment
(Section V-B). Because the distances between data vectors

and the origin are longer than the
distances between data vectors and
the origin in horizontal data vector.

2) Input in Vertical Direction: We take input from the ver-
tical direction. One trace is one sample. The mean vector is not

. Fig. 10(a) is the traces with mean vector removed. After
removing the mean vector, the wavelets on the first layer are
changed. In Fig. 10(e), through PCA and adding mean vector,
the wavelets can be recovered.

3) Input in Vertical Direction in Another Fault Seismogram:
Another fault seismogram is shown in Fig. 11(a). There are
28 traces. Traces #19–24 (six traces) show the left side of the
fault, and traces #25–28 (four traces) show the right side of the
fault. Using input from the vertical direction, one trace is one
sample and the mean vector is approximate to. Fig. 11(b)
is the traces with mean vector removed. After removing the
mean vector, the shapes of the wavelets on the first and second
layers are kept. The first eigenvector is on the direction of the
traces #19–24, and the second eigenvector is on the direction
of the traces #25–28. In Fig. 11(c), the uniform property on
the first and second layers is shown from the projection values
on the first and second eigenvectors.

4) Input Extra Vertical Seismic Traces to Show the Seismic
Example of the Theorem 1:Fig. 12(a) is the seismogram with
four extra traces on Fig. 11(a). The four extra traces #29–32
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(a) (b) (c)

(d) (e)

Fig. 10. (a) Data (vertical mean vector removed). (b) Three projection values. (c) First component. (d) Second component. (e) Sum of three components
and mean vector.

(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) A fault. (b) Data (vertical mean vector removed). (c) Three projection values. (d) First component. (e) Second component. (f) Sum of
three components and mean vector.

have the same uniform layer property with the right side traces
#25–28. It means that four extra samples are added along the
direction of the second eigenvector in Fig. 11. Because the
number of uniform traces is increased, the second eigenvector
in Fig. 11 becomes the first eigenvector in Fig. 12. This shows
the property of the Theorem 1. We can infer that the more
uniform samples can enhance the principal eigenvector.

B. PCA for Filtering of Diffraction Pattern

The simulated horizontal geological layer with termination
is shown in Fig. 13(a). The depth of the layer is 500 m, the
seismic P-wave velocity is 2500 m/s, and the receiving station
interval is 50 m. The generated seismogram after NMO has
reflection and diffraction patterns in Fig. 13(b). The source
signal is a 20-Hz zero-phase Ricker wavelet with reflection
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(a) (b) (c)

(d) (e) (f)

Fig. 12. (a) A fault with extra traces #29–32. (b) Data (vertical mean vector removed). (c) Three projection values. (d) First component. (e) Second
component. (f) Sum of three components and mean vector.

(a) (b) (c)

(d) (e) (f)

Fig. 13. (a) Geological model. (b) Reflection and diffraction patterns. (c) Data (horizontal mean vector removed). (d) Three projection values. (e) First
component. (f) Sum of three components and mean vector.
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(a) (b) (c)

(d)

Fig. 14. (a) Data (vertical mean vector removed). (b) Three projection values. (c) First component. (d) Sum of three components and mean vector.

coefficient 0.2. The Gaussian white band 10–56-Hz noises are
added to the seismogram.

1) Input in Horizontal Direction: Using the input data
vector in the horizontal direction, the data type is

in the whole uniform layer.
Fig. 13(e) shows that the diffraction seismic pattern is filtered
from horizontal reflection layer in the projection component
of each horizontal input data vector on the first eigenvector.

2) Input in Vertical Direction: We take input from the ver-
tical direction. One trace is one sample. The mean vector is
not . Fig. 14(a) is the traces with mean vector removed. The
shapes of the Ricker wavelets on the right-hand side of the
layer are kept, but amplitudes are reduced. The projection
value on the first eigenvector in Fig. 14(b) shows the uniform
property on the right-hand side of the traces. In Fig. 14(c), the
diffraction pattern is filtered using one principal component.

C. PCA in Bright Spots Seismogram

1) Input in Horizontal Direction: Fig. 15(a) shows that
there is a structure of bright spots that indicate the gas and
oil sand zones with large (negative) reflection coefficient

0.29 at the top of the gas sand zone [21]. The seismogram
has 64 traces with 512 data per trace. Using the input data
vector in the horizontal direction to compute the five principal
eigenvectors of the covariance matrix, Fig. 15(c) shows that
the projection value of each horizontal vector on the first
eigenvector can show the high amplitude content and polarity

reversal of the wavelets. Fig. 15(d) shows the projection of
each horizontal data vector on the first eigenvector. The central
part of the first layer at time 0.3 s and the central flat part
of the bright spot structure, totally four layers, appear in
the projection component on the first eigenvector. But the
whole first layer at time 0.3 s is not corresponding to the first
eigenvector. The reason is that the number of data vectors in
the central flat three layers of the bright spot structure is three
times more than that in the one layer at 0.3 s. Fig. 15(i) shows
the recovered seismogram using five principal components.
Because there are nonflat layers in the bright spot pattern, we
need to choose more principal components in the recovered
seismogram.

2) Input in Vertical Direction: For the input data vector in
the vertical direction, one trace is one sample. In the first
principal projection values of Fig. 16(b), the traces in the
central part show the uniform property and the neighboring
traces at two sides show the polarity reverse property.

D. PCA in Real Seismogram at Mississippi Canyon

1) Input in Horizontal Direction: The real seismogram at
Mississippi Canyon is shown in Fig. 17(a). Fig. 17(c) shows
the five projection values. The central part reflects strong to
the projection on the first eigenvector in Fig. 17(d). The left
part reflects strong to the projection on the second eigenvector
in Fig. 17(e). The right part reflects strong to the projection
on the third eigenvector in Fig. 17(f). One structure can
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 15. (a) Bright spot pattern. (b) Data (horizontal mean vector removed). (c) Five projection values. (d) First component. (e) Second component. (f) Third
component. (g) Fourth component. (h) Fifth component. (i) Sum of five components and mean vector.

be decomposed into three significant principal components.
Fig. 17(g) shows the recovered data using three principal
components.

2) Input in Vertical Direction: We use the input data vector
in the vertical direction in Fig. 18(a). Fig. 18(b) shows the
three projection values. The first projection value can show

the high amplitude and polarity reversal at the central part
and both sides. The seismic traces at the central part of the
seismogram show the uniform property. Fig. 18(c) shows the
projection component of each trace on the first eigenvector.
Fig. 18(f) shows the recovered data using three principal
components.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 16. (a) Data (vertical mean vector removed). (b) Five projection values. (c) First component. (d) Second component. (e) Third component. (f) Fourth
component. (g) Fifth component. (h) Sum of five components and mean vector.

E. Traditional PCA in Bright Spots Seismogram

1) Input in Horizontal Direction: We use traditional PCA
in the bright spots in Fig. 15(a). The input data vector is in the
horizontal direction and the dimension is 64. The first step is to
find the covariance matrix 64 64 from the complete data set.
The second step is to find the five principal eigenvectors by the
traditional power numerical method, which can find the several
dominant eigenvectors [22]. The third step is to find the five
principal components and the recovered seismogram. Fig. 19
shows the recovered data using five principal components.

In order to avoid the problem of large dimension in DOS-
based computer memory, the calculation is one step by one
step sequentially. The MSE is 0.003 551, and the NMSE
is 0.800 152. They are close to the results of Fig. 15 in
Table I.

2) Input in Vertical Direction: We use the input data vector
in the vertical direction in Fig. 15(a). However, the dimension
512 512 of the covariance matrix causes the memory
problem in the DOS-based computer. So it is not feasible to
get the covariance matrix and the eigenvectors.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 17. (a) Seismogram at Mississippi Canyon. (b) Data (horizontal mean vector removed). (c) Five projection values. (d) First component. (e) Second
component. (f) Third component. (g) Sum of three components and mean vector.

VII. D ISCUSSIONS

1) Bright spot seismogram in Fig. 15(a) has magnitude
between 0.4036 and 0.4622. The real seismogram in
Fig. 17(a) has magnitude between0.2075 and 0.2316.
The dimension of the input data vector can reach to
the scale 512. Although the number of seismic data is

large and the magnitude of the seismic data is small,
the information of the seismic layers and the uniform
seismic traces can be extracted by the PCA using GHA.

2) For the input vector with dimension , the traditional
method uses memory space order of in computa-
tion because of the covariance matrix, but the neural
net based on Sanger’s learning rule uses a memory
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(a) (b) (c)

(d) (e) (f)

Fig. 18. (a) Data (vertical mean vector removed). (b) Three projection values. (c) First component. (d) Second component. (e) Third component. (f)
Sum of three components and mean vector.

Fig. 19. Input vector in the horizontal direction. Sum of five components
and mean vector by the traditional power numerical method.

space order of to find the eigenvectors. For the
input seismic data vector in the vertical direction with
512 dimensions, covariance matrix is 512512. The
memory space of real number is 4 512 512 bytes

1 048 576 bytes and is over the restriction of 64 K
bytes of DOS-based computer memory space. In this
study, the computation of our experiment cannot work
on a DOS-based computer by the traditional method.
However, using Sanger’s learning rule with feeding
data iteratively, we can find the eigenvectors running

on Microsoft FORTRAN in the DOS-based computer
without the memory space problem. The computation of
eigenvectors in seismic data becomes feasible through
the neural net based on Sanger’s learning rule in a
DOS-based computer.

3) Seismic data are compressed significantly. For a seis-
mogram with 64 traces and 512 data per trace, there are
32 768 data. If we use input data in the vertical direction
to find three principal eigenvectors, each eigenvector has
512 dimensions. Each seismic trace has three projection
values, so there are 3 64 data for the projection
values of 64 traces. We can store one mean vector
(512 dimensions), three eigenvectors with 3512 data,
and projection values of 64 traces. The total stored
data are 512 3 512 3 64 2240. That
indicates 32 768/2240 14.6 fold information redun-
dancy. If we use input data in the horizontal direction to
find three principal eigenvectors, each eigenvector has
64 dimensions. Each seismic horizontal data vector has
three projection values, so there are 3512 data for the
projection values of 512 vectors. We can store one mean
vector (64 dimensions), three eigenvectors with 364
data, and projection values of 512 vectors. The total
stored data are 64 3 64 3 512 1792. That
indicates 32 768/1792 18.3 fold information redun-
dancy. If the seismic layers are most flat, the recovered
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seismogram is acceptable by using several principal
components. From a data representation point of view,
the principal components net provides a technique to
seismic data compression.

4) Initial setting of coefficients of the weighting matrix
may affect the final direction of the first eigenvector
to the positive or negative direction. To overcome this
problem, at first, we randomly set the initial weight
coefficients . After convergence, we check the first
principal projection value. If the projection value is
positive, we can accept the set of the eigenvectors.
Otherwise, we change the initial weight coefficients until
the first principal projection value is positive.

5) In 2-D, if the data distribution is highly correlated along
one line, the first eigenvector can be computed from
the net, but the remaining second eigenvector cannot
be derived to the correct value. And it is the same in

-dimensional case.
6) How many eigenvectors can we choose? In the real

seismogram, we can check the first to the fifth principal
projection values of each data, then decide how many
eigenvectors are still significant, i.e., large projection
values. Or, we may project each data on each eigen-
vector and calculate the variance of the data on each
eigenvector. The variances are the eigenvalues, and

[1]. And we can
choose eigenvectors with larger variances and neglect
the eigenvectors with smaller variances.

7) is easy to get in the horizontal input direction,
but not easy to get in the vertical input direction because
of the layer effect. In the vertical input direction, if

is not equal to , the recovered components can
not match the original seismogram until mean vector is
added.

8) We may subtract the principal components from the orig-
inal seismogram, then the remaining are the nonuniform
property patterns: the slope pattern, the curve pattern
like diffraction pattern, and the noise.

VIII. C ONCLUSIONS

1) PCA can improve seismic interpretations and show how
many uniform classes and where the locations are in the
seismogram in both input directions, respectively, which
are not easy to identify by human eyes or by experience.
The real seismogram at Mississippi Canyon is a good
example.

2) For PCA, a theorem is proposed, which states that
adding an extra point along the direction of the existing
eigenvector can enhance that eigenvector. The theorem
is applied to the interpretation of a fault seismogram
and the uniform property of other seismograms. The
uniform property of seismic data is corresponding to
high correlation.

3) Using the input data vector in the horizontal direction,
the principal components can show the uniform property
of the wavelets from the same horizontal layer. The
projection values on the first eigenvector can show

the high amplitude content and polarity reversal for
wavelets at different layers. These properties appear in
the analyses of the seismogram of bright spot pattern
and the real seismogram at Mississippi Canyon. From
simulation on the Ricker wavelets, for different layers,
the projection on the first eigenvector can also show the
large duration (low frequency) content of the wavelet.

4) Using the input data vector in the vertical direction, the
principal components can show the uniform property
of the neighboring seismic traces. The projection on
the first eigenvector can show the uniform and reverse
properties of the traces. In the analyses of the seismo-
gram of bright spot pattern and the real seismogram at
Mississippi Canyon, the traces in the central part show
the uniform property and the neighboring traces at two
sides show the polarity reverse property.

5) Diffraction seismic pattern after NMO is separated from
horizontal reflection layer using the first principal com-
ponent for the input data in both horizontal and vertical
directions.

6) Two sides of a fault correspond to two principal eigen-
vectors in both direction analyses.

7) We can use PCA in the seismic data compression.
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