IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 1, JANUARY 1999 297

Neural Networks for Seismic
Principal Components Analysis

Kou-Yuan Huang,Senior Member, IEEE

Abstract—The neural network, using an unsupervised general-
ized Hebbian algorithm (GHA), is adopted to find the principal
eigenvectors of a covariance matrix in different kinds of seismo-
grams. We have shown that the extensive computer results of
the principal components analysis (PCA) using the neural net
of GHA can extract the information of seismic reflection layers
and uniform neighboring traces. The analyzed seismic data are
the seismic traces with 20-, 25-, and 30-Hz Ricker wavelets,
the fault, the reflection and diffraction patterns after normal
moveout (NMO) correction, the bright spot pattern, and the

Yl ees YM (M<N)

real seismogram at Mississippi Canyon. The properties of high XX X Y. = I; Wi X o =1 .M.
amplitude, low frequency, and polarity reversal can be shown i . U
from the projections on the principal eigenvectors. For PCA, j=1

a theorem is proposed, which states that adding an extra point
along the direction of the existing eigenvector can enhance that Fig.1.
eigenvector. The theorem is applied to the interpretation of a fault
seismogram and the uniform property of other seismograms. The
PCA also provides a significant seismic data compression.

Sanger’s neural net.

pervised generalized Hebbian learning algorithm (GHA) could
_ ) ~find many principal eigenvectors of a covariance matrix in
Index Terms— Data compression, eigenvectors, generalized

. . e decreasing eigenvalue order [14], [15].
Hebbian algorithm, neural network, principal component hi h | ith , ised
analysis (PCA), Ricker wavelets, seismic interpretation. In this paper, the neural net with Sanger's unsupervise

GHA [14] is adopted to find the principal eigenvectors of
a covariance matrix in different kinds of seismograms. The
. INTRODUCTION neural net is shown in Fig. 1. The input data were fed into
HE PRINCIPAL components analysis (PCA), alsdhe neural net iteratively to find the principal eigenvectors.
known as the Karhunen—Loeve transformation, has be€he advantage of learning is the ability to find the principal
investigated and used in many applications [1]-[8]. Given a sgigenvectors incrementally from data as it becomes available.
of random dataX with dimensionN and M — E[j(] — 0, Itis not necessary to compute the covariance matrix from
we can compute the correlation matrix (covariance matridje complete data set in advance; the eigenvectors can be
Q= E[(X _ M)(j( _ M)T] _ E[XXT] and find the eigen- derived dlre_ctly from the dgta. If we use the_ tradmo_nal
values and the corresponding eigenvectors. The principafthod of eigenvector analysis to seismic data with 512 input
eigenvectors can point to the principal directions of th@imensions, the covariance matrix with dimension 54312
distribution of the data. may be over the memory limitation of some computers.
The PCA was applied to a seismic data set by Hagen [A/d we cannot sol\_/e the eigenve_ctors by the traditional
and Jones [8]. Hagen adopted the input data vector in tfgthod. However, using neural net with GHA can decrease the
vertical trace direction and computed the principal componer@mputational requirement and storage for the small number
to evaluate the subtle character changes of porosity in Pl Output eigenvectors. For example, using the notation in
neighboring uniform seismic traces. Jones adopted the inf# following Section I, if there are five output eigenvectors,
data vector in the horizontal direction and computed princip®l X will have only 5 x 512= 2560 elements and’Y " will
component to separate the diffraction and reflection patteritave only 25 elements. The required memory is less. Sanger
from seismic data after normal moveout correction (NMO). already stated that “when the number of inputs is large and the
Several neural network algorithms have been proposed faumber of required outputs is small, GHA provides a practical
PCA [9]-20]. Oja’s learning rule could find one principaland useful procedure for finding eigenvectors” [14]. Seismic
eigenvector of a covariance matrix [9]-[13]. Sanger's unsdata always have a large data set with large dimensions, and
_ _ _ we want to extract the information of a small number of
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work was supported by the National Science Council, Taiwan, under NSE?ﬂeCtlon Iayers and uniform traces to Improve the seismic
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kyhuang@cis.nctu.edu.tw). Fig. 2 shows the processing steps using the neural net based
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nput seismic data Sanger’s learning Project each input Combine m principal
vector horizontally neural net to get vector on m components and mean
or vertically weight matrix, i.¢., principal VEeCtor to recover each
from a seismogram m principal eigenvectors input vector

with mean vector gigenvectors

removed

Fig.2. System of Sanger’'s learning net for seismic PCA.

input data vectors from horizontal or vertical directions. Thand 0.01, which provides good convergence. Here we adopt

analyzed seismic data are the seismic traces with 20-, 25-, @ahger’s empirical values of(¢) thaty(¢) is held fixed at a

30-Hz Ricker wavelets, the fault, the reflection and diffractiomalue between 0.1 and 0.01. From our seismic experiments,

patterns after NMO correction, and the bright spot patterthe number of iteration is increased as the valuey@f)

The real seismogram at Mississippi Canyon is also usedisdecreased. Also, we have other experimentsy@) that

the experiment. decreases linearly from 0.1 to 0.01, then keeps a small fixed
value after some iteration. The designed formula is

II. NEURAL NETWORK OF

GENERALIZED HEBBIAN LEARNING RULE ~v(t) = — 0.1 (# of iteration - 1000)/1000, when # of

iteration is less than or equal to 900

In Fig. 1, the neural net with Sanger's GHA has a sin- ) o
~(t) =0.01, when # of iteration is greater than 900.

gle weighting layer. The inpufV-dimensional column vec-

tor is X, E[X] = 0, the weight matrixW is M x N, In order to have the criterion for comparison, we calculate

and the outputM-d|menS|onaIAgolumn vector I8 = WX the mean-squared error (MSE) and the normalized mean-
with M < N, ie, v = >5y Wizt = 1,--+, M. squared error (NMSE) [14]. The NMSE is the ratio of the
The input data are fed into the net iteratively to find thg,ean.-squared error (MSE) to the data variance. For the seismic
principalﬂeigegvegtorsAof the corLeLation (covariance) ma”iﬁtensity I at positionm, n with removing the average, and
Q= E[(X — M)(X — M)T] = E[XX™]. The weight matrix the recovered intensity,
W needs to be updated for each iteration step. .

Sanger [14] proved that the GHA neural net converges NMSE = E[(1,1,n —Im,n)Q]/E[Iﬁw].
from random initial weights with probability one to find
the principal eigenvectors of the input covariance matrix in m

decreasing eigenvalue order. The GHA learning rule from ) .
Sanger [14] is given by We can select thg largest eigenvalues and their correspond-

ing p eigenvectors and discard the smallédt-{p) eigenvalues

in the data representation. The data representationfifor

becomesX’ = ? | a;e;. The MSE value between random

vector X and X" is the summation of the discardiny — p

where j is the index of inputy is the index of output, or in ejgenvalues [1]. There are two meanings in this technique of

matrix form as dimensionality reduction: 1) we can save a lot of memory

==7 =T space in data representation and 2) we can select the effective

AW(t) =YX — LIYY [W(t) fgatures in patteF;n recognition. :

. DATA COMPRESSION

Wii(t+1) = Wi (1) + v(Hw <37j - Z UkaJ>
k=1

where X = [xlv L2,y "ty xN]Tv Y= [y17 Y2, 000, y]\l]T and
LT].]is the lower triangular matrix, i.e., all elements above the IV. EFFECT OFADDING ONE EXTRA POINT ALONG
diagonal of its matrix argument are zerdsn,_...v(¢) = 0 THE DIRECTION OF EXISTING EIGENVECTOR
and 37, =5° +(t) = oc. The ith eigenvectore; is Wij, j = For PCA, a theorem is proposed, which states that adding
1, ---, N, and the corresponding eigenvalues have the relatigR extra point along the direction of the existing eigenvector
AL > Ag > > A > > A _ can enhance that eigenvector.

The “projection values” of the input data vectdf onto Thegrem 1 (Effect of Adding One Extra Point Along the Direc-
unit eigenvectors:; area; = X%7e; = el X,i=1,---, M. tion of Existing Eigenvector of a Covariance Matrix{siven a

We define a;e; as the “projection vectors” or “principal covariance matrix) computed fromV data and its eigenval-
components” of input datX ontoe;. We use a small numberues A; and eigenvectorg;, if adding one extra data vector
of a; and g,e; in the interpretations of seismic principal(mean vector is removed) along the direction of existing
components. eigenvectore;, then 1) the new eigenvalu¥ is larger than

In our seismic experiments, the definition of convergendbe original eigenvalug; if the square length of the extra data
is, if all absolute values of;;(t+1) — W;,(t) are less than a vector is greater than;, otherwiseX, is less than or equal to
constant 0.0001, the iteration stops. For the examples in [14],and 2) the new eigenvalug is increased more than other
Sanger chose/(t) empirically at a fixed value between 0.1new eigenvalues\;(j # 1).
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Proof: The extra data vector (mean vector is removed)

TABLE |

299

is represented ase;, c is the length of the vector £ 0. The EXPERIMENTAL RESULTS OF FiGs. 3—18FOR DIFFERENT LEARNING RATES y(t).
set of the new eigenvalues and eigenvectors computed fro%MBOLSZ DIMENSION OF INPUT VECTORS (#1), NUMBER OF INPUT VECTORS
g 9 p (#2), NumMBER OF STEPS TO CONVERGENCE (#3), MSE,AND NMSE

the V + 1 data is as follows.

Convergence steps #3,
MSE, NMSE

The new covariance matrix is’'Q= (1/N + 1)[NQ +

Learning rate y(t)
is a decreasing function

Learning rate y(t)isa
constant 0.045

Figure 3. #1=2. #2=128.

(ce;)(ce;)T]. ForQ, its eigenvalues ark; and its eigenvectors e e

#3=469 MSE=.00000136
NMSE=.00074489

#3=697 MSE=.00000170
NMSE=.00093188

aree;. For matrixe;e!” because;ele; = e;, (ef'e; = 1), the
eigenvector is;. So the eigenvectors of ne@y are the same

Figurc 4. #1=2. #2=128.
o?-.00509162

#3=237 MSE=.00000011
NMSE=.00002089

#3=432 MSE=.00000021
NMSE=.00004053

as those ofQ). Figure 5. #1=3. #2-128,

#3=811 MSE=.000004662 .

#3=1573 MSE=.000001545

F - h ] | i N o2=.001168 NMSE=.003989943 NMSE=.001322128
or eigenvectore;, the new eigenvalue is\}, (1/N + Figurc 6. #1=128. #2=3. | #3= 654 MST=00001847 | #3-1104 MSE=.00001356
INQ + (cei)(cei)T]ei = Ne,. o2=.001168 NMSE=01580673 NMSE=.01160910
Figure 7. #1-3. #2=128. | #3= 864 MSE=000006476 | #3=3216 MSE=.000000281
. &2=.000961 NMSE=.006740044 NMSE=.000292096
‘ 2 TN Figure 8. #1=128. #2=3. | #3=815 MSL=.00002695 | #3= 1710 MSE=.00000679
N1 1 e; + N1l Tl C ez(ei ez) =Aei o= 000961 NMSE=.02804647 NMSE=.00706588
1 Figure 0. #1=32. #2=128. | #3=253 MSE=.002908 #3= 445 MSE=.002908
ey 4 2o = Ne. ole =1 o1=.004551 NMSE=.639098 NMSE=.639040
N+1 R N+1 Z 10 [ Figure 10. #1=128. #2=32. | #3=556 MSE=.002675 #3=: 854 MSE=.002675
N 1 &2=.004551 NMSE=.587913 NMSE=.587908
A+ 2 e = Ne Figure 11. #1=128. #2=28. | #3=273 MSE=.0026 #3= 435 MST=.0026
N4+1 g N4+1 g A 2= 0040 NMSE=.6549 NMSE=.6548
N 1 Figure 12. #1=128. #2=32. | #3= 110 MSE=.0027 #3= 189 MSFE=.0027
. 2 NMSE=. SE=.
New eigenvalu A+ ——c? =\, (1) o 0042 SFm 0522 NVISE- 0520
+1 N+1 Figure 13. #1=64. #2=512. | #3— 432 MSE=.0035 #3= 768 MSE=.0035
ot=.0044 NMSE=8017 NMSE=.8013
Figute 14. #1=512. #2=64. | #3= 255 MSE=.0034 #3=394 MSE=.0034
From (1) o7 = 0044 NMSE=7773 NMSE=.7768
Figure 15. #1=64. #2=512. | #3=439 MSE=.003502 #3= 432 MSE=.003501
1 o2=.004438 NMSE=.789089 NMSE=788915
X+ (62 — )\7‘,) = )\’i, (2) Vigure 16. #1-512. #2=64. | #3=237 MSE=.003511 #3= 322 MSE=.003504
N+1 52=.004438 NMSE=.791054 NMSE=.789480

Figure 17. #1=64. #2=512.

From (2), if ¢ > )\;, then X, > )\;. Otherwise)\, < ); or o =.000651

#3=70 MSE=.000212
NMSE=.325803

#3=127 MS[=.000212
NMSE=.325218

A, = A;. This proves 1). For eigenvectay,;(; # ¢), the o7=.000651

Figure 18. #1=512. #2=64.

#3=80 MSE=.000166
NMSE=255123

#3=137 MSE=.000165
NMSE=.253560

new eigenvalue isV,, (1/N + 1)[NQ + (ce;)(ce;)T]e; =
)\;»ej(eZTej = 0).

Example 2: Adding two extra samplesX; = [5, —5]7,

N N X =
0 s=XNe;, — Xe;=Ne;. — .= ). 6 :
N+ 1er i NS T A% NIV T second eigenvectos,
(3) Mean vector:

M =E[X]= (X, + Xo+ X3+ X4+ X5+ X¢) = 0.

From (1) and (3), the new is enhanced more than the newcgvariance matrix:
Q=[(X — M)(X ~ M)7]
1 T — =T — T — =T
=X X + XX, + XX, + XX,

Ni(j # 1). This proves 2).
Property 1: Given a covariance matri¥? computed from
a set of N data, if we add these same set Bf data to

compute the eigenvalues and eigenvectors, the new ones are - T  _ _T

not changed. + X5 X5 + XeXs)
Proof: The new covariance matrix is'Q= (1/N + _[ 10 —22/3}

N)[NQ+NQ] = Q, the same as the original covariance matrix | —22/3 10

2, so new eigenvalues and eigenvectors are not changed.

[-5, 5], on Example 1 along the direction of the

T
A =17.3348, e = [—1/\/5, 1/\/5} ,

Example 1: Given the samplesX; = [2, 2], X,
v 3 T
(=1, 117, Xz = [-2, =2, Xy = [1, —1]", A2 =2.6652, e = [1/\/5, 1/\/5} .
Mean vector:
J\ZI:E[X] _ i<X1+X2+X3+X4) - 0. The second eigenvector on Example 1 becomes the first

Covariance matrix:
Q=E[(X - M)(X — M)"] = E[XX"]
= %()_(1)_(? +)_(2)_(Z +)_(3)_(3T +)_(4)_(4T) = E
[1/v2. 1/v2).
-1/v2. 1/\/§]T.

(2 B
[\
(2 B
| I

)\1 24, e =

)\2 I]., €y =

eigenvector on Example 2.
Using Theorem 1, if we add more and more points along the
direction of some existing eigenvector, that eigenvector may
become the first principal eigenvector. The seismic example
of the Theorem 1 is shown in the following experiment of
fault seismogram using vertical seismic traces as the inputs.
This theorem can improve the seismic interpretation that the
seismic data with uniform or consistent property can enhance
the principal eigenvectors.



300 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 1, JANUARY 1999

Stanon  3tanon

) 33 L oe— Lo~ 3taton  Staton  Staton
0.3 3.3 o - o 2 2 -
0.0 0.0 0,07 0037 0.0 0,071 D D
X X
X e
X <
> e > ;] 0. & AR > >
<8 . X N <
& &
0.5 0 54 .54 rOS cng .54 5.5
Sec. (a) Sec. o (c {d) sec. (e} Sec. Mmoo ec. (2} 3ec. i SRS

Fig. 3. Seismic data (20-Hz Rocker wavelet). (b) Seismic data (horizontal mean vector removed). (c) Distribution from (a). (d) Distribution {@m (b)
and (f) On first and second projection values. (g) and (h) On first and second components. (i) Sum of two components and mean vector.
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Fig. 4. (a) Seismic data (20-Hz Ricker wavelet). (b) Seismic data (horizontal mean vector removed). (c) Distribution from (a). (d) Distribufibp fegm
and (f) On first and second projection values. (g) and (h) On first and second components. (i) Sum of two components and mean vector.
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Fig. 5. (a) Seismic data (20-Hz Ricker wavelet). (b) Data (horizontal mean vector removed). (c), (d), and (e) On first, second, and third prajestion val
), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.

V. PCA IN SEISMIC RICKER WAVELET ANALYSES value on the second eigenvector for each data vector. Fig. 3(g)

We start the basic seismic PCA experiments on the differdrit the first component. Fig. 3(h) is the second component.
layers with different Ricker wavelets. Then we extend the PC9- 3() is the recovered portion from the first and the second
applications to simulated seismograms and real seismic d&@mponents plus mean vectdf ZZ 1 azez—kM The sum
We list the results for each seismic experiment on Figs. 3—@8several components plus mean vector in the later analyses
in Table I. of Figs. 4-19 is similar to this explanation. Fig. 4(a) is the

_ . _ _ addition of 10-56-Hz Gaussian white band noise (meah
A. Two-Dimensional (2-D) PCA of Ricker Wavelets in One standard deviatios= 0.1) to the Fig. 3(a). In Fig. 4, the neural
Seismic Layer using Input in Horizontal Direction net can also find the first eigenvector.

Fig. 3(a) shows one layer with the 20-Hz zero-phase Rlcker
wavelets with reflection coefficient-0.25 in two seismic - PCA of Two Seismic Layers
traces. The sampling rate is 0.004 s. Using horizontal inputl) Input in Horizontal Direction: In Fig. 5(a), the 20-Hz
data vector, the data vector form of 20-Hz Ricker wavelets a¢ro-phase Ricker wavelets are on the three traces. One
the layer isle, ¢]7 and can be in one line with high correlatiorhorizontal layer is on traces 1 and 2, the other layer is on trace
in Fig. 3(c), which is the 2-D scatter diagram from Fig. 3(a)3. We use input data in the horizontal direction, so the data are
Fig. 3(b) is the traces with horizontal mean vector removethree-dimensional (3-D). The input data vector type at the first
Fig. 3(d) is the 2-D scatter diagram of data from Fig. 3(b). THayer is[c, ¢, 0], and the input data vector type at the second
neural net can find the first eigenvector corresponding to thyer is [0, 0, ¢]¥. Fig. 5(c)—(e) show the three projection
layer’'s Ricker wavelets. Fig. 3(e) is the projection value on thalues. The projection component on the first eigenvector can
first eigenvector for each data vector. Fig. 3(f) is the projectiaecover the first layer in Fig. 5(f). The projection component
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Fig. 6. (a) Seismic data (20-Hz Ricker wavelet). (b) Data (vertical mean vector removed). (c), (d), and (e) On first, second, and third projestion value
), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.
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Fig. 7. (a) Seismic data (20-, 25-, and 30-Hz Ricker wavelet). (b) Data (horizontal mean vector removed). (c), (d), and (e) On first, second, and third
projection values. (f), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.

on the second eigenvector can recover the second layemiavelet. Fig. 7(h) shows that the projection component on the
Fig. 5(g). From the distances between the orifin0, 0]* third eigenvector can recover the third-layer 30-Hz Ricker
and these 3-D data vectors, the distribution of the data in tivavelet. So if the layer with Ricker wavelet in the same
first layer is longer than that of the second layer, so the largeshplitude range can contribute more points, the direction of
component is corresponding to the first layer. Elongated ddkee data is more significant, and the eigenvector can dominate.
distribution can generate the first eigenvector. We can use the above Theorem 1 in this interpretation.

2) Input in Vertical Direction: Fig. 6(a) is the same signal 2) Input in Vertical Direction: Fig. 8(a) is the same signal
as Fig. 5(a). We take input data vector from vertical directioas Fig. 7(a). We take input data from the vertical direction. The
The number of dimensions is 128. One trace is one sampigean vector is nob. Fig. 8(b) is the traces with mean vector
The samples are too less, and the mean vector is(not removed. After removing the mean vector, the wavelets are
Fig. 6(b) is the traces with mean vector removed. After remoghanged. In Fig. 8(i), through PCA and adding mean vector,
ing the mean vector, the shapes of wavelets are changedth@ wavelets can be recovered.

Fig. 6(i), through PCA and adding mean vector, the wavelets

of the layers can be recovered. VI. PCA IN SIMULATED AND REAL SEISMOGRAMS
C. Analysis of Three Class Ricker Wavelets in We apply the PCA based on the neural net to the analysis of
Three Seismic Layers, Respectively simulated and real seismograms. Finally, we use the traditional

1) Input in Horizontal Direction: In Fig. 7(a), the 20-, 25-, power numerical method of PCA in the simulated bright spot

and 30-Hz zero-phase Ricker wavelets are on the first, second>mogram for comparison of the performance.

and third traces, respectively. They have the same maximum

amplitude 0.25. The difference is the duration, i.e., numbér PCA of a Fault

of points, at three Ricker wavelets. We use input data in thel) Input in Horizontal Direction: The  seismogram in
horizontal direction. The input data vector types pted, 0]  Fig. 9(a) shows a fault. The left-hand side has 24 uniform
at the first layer[0, d, 0]* at the second layer, arid, 0, ¢]* traces, and the right-hand side has eight uniform traces.
at the third layer. The first layer has the largest number ®he seismic trace has the 20-Hz zero-phase Ricker wavelet
points in 3-D space corresponding to 20-Hz Ricker wavelatith reflection coefficient—0.2, 4-ms sampling interval,
Fig. 7(c)—(e) show the three projection values. The largemtd 10-56-Hz Gaussian white band noise (mean 0,
component is corresponding to the first layer with 20-Hgtandard deviatios= 0.1). Using the input data vector in the
Ricker wavelet. Fig. 7(f) shows that the projection componehbrizontal direction, the data type of the layer on the left side
on the first eigenvector can recover the first-layer 20-Hz Rickir [c, c, ¢,- -+, 0, 0, ---, 0]7" and the data type of the layer
wavelet. Fig. 7(g) shows that the projection component on tbe the right side ig0, 0, ---, ¢, ¢, -, ¢]¥. The two sides
second eigenvector can recover the second-layer 25-Hz Rickéra fault are corresponding to two principal eigenvectors.
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values. (f), (g), and (h) On first, second, and third component. (i) Sum of three components and mean vector.
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Fig. 9. (a) A fault. (b) Data (horizontal mean vector removed). (c) Three projection values. (d) First component. (e) Second component. (f) Sum of
three components and mean vector.

Fig. 9(b) is the data with mean vector removed. Fig. 9(d). Fig. 10(a) is the traces with mean vector removed. After
shows the projection values of each horizontal data vector mmoving the mean vector, the wavelets on the first layer are
three eigenvectors. Fig. 9(d) shows the projection componehianged. In Fig. 10(e), through PCA and adding mean vector,
of each horizontal data vector on the first eigenvecttihe wavelets can be recovered.

corresponding to the first layer. Fig. 9(e) shows the projection3) Input in Vertical Direction in Another Fault Seismogram:
component of each horizontal data vector on the secoAdother fault seismogram is shown in Fig. 11(a). There are
eigenvector corresponding to the second layer. Fig. 9(f) sho@8 traces. Traces #19-24 (six traces) show the left side of the
the summation of three principal components and mean vectiault, and traces #25-28 (four traces) show the right side of the
The two sides of a fault are corresponding to two princip&ult. Using input from the vertical direction, one trace is one
eigenvectors. The 24 uniform wavelets on the left-hand sidample and the mean vector is approximatedtoFig. 11(b)
reflect the largest projection value on the first eigenvectads. the traces with mean vector removed. After removing the
And the eight uniform wavelets on the right-hand sidemean vector, the shapes of the wavelets on the first and second
reflect the largest (negative) projection value on the secolayers are kept. The first eigenvector is on the direction of the
eigenvector. The reason is the same as the above experimexdes #19-24, and the second eigenvector is on the direction
(Section V-B). Because the distances between data vectofghe traces #25-28. In Fig. 11(c), the uniform property on

[e,c, ¢ -+, 0,0,---, 0] and the origin are longer than thethe first and second layers is shown from the projection values
distances between data vectdes 0, ---, c, ¢, ---, ¢/* and on the first and second eigenvectors.
the origin in horizontal data vector. 4) Input Extra Vertical Seismic Traces to Show the Seismic

2) Input in Vertical Direction: We take input from the ver- Example of the Theorem 1Fig. 12(a) is the seismogram with
tical direction. One trace is one sample. The mean vector is fiotir extra traces on Fig. 11(a). The four extra traces #29-32
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Fig. 11. (a) A fault. (b) Data (vertical mean vector removed). (c) Three projection values. (d) First component. (e) Second component. (f) Sum of
three components and mean vector.

have the same uniform layer property with the right side tracBs PCA for Filtering of Diffraction Pattern

#25-28. It means that four extra samples are added along thghe simulated horizontal geological layer with termination

direction of the second eigenvector in Fig. 11. Because tReshown in Fig. 13(a). The depth of the layer is 500 m, the
number of uniform traces is increased, the second eigenvegelsmic P-wave velocity is 2500 m/s, and the receiving station
in Fig. 11 becomes the first eigenvector in Fig. 12. This showsterval is 50 m. The generated seismogram after NMO has
the property of the Theorem 1. We can infer that the moreflection and diffraction patterns in Fig. 13(b). The source
uniform samples can enhance the principal eigenvector. signal is a 20-Hz zero-phase Ricker wavelet with reflection
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component. (f) Sum of three components and mean vector.
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Fig. 14. (a) Data (vertical mean vector removed). (b) Three projection values. (c) First component. (d) Sum of three components and mean vector.

coefficient 0.2. The Gaussian white band 10-56-Hz noises aesersal of the wavelets. Fig. 15(d) shows the projection of
added to the seismogram. each horizontal data vector on the first eigenvector. The central
1) Input in Horizontal Direction: Using the input data part of the first layer at time 0.3 s and the central flat part
vector in the horizontal direction, the data type isf the bright spot structure, totally four layers, appear in
[e,c, -, ¢, 2 2¢ -, 2|7 in the whole uniform layer. the projection component on the first eigenvector. But the
Fig. 13(e) shows that the diffraction seismic pattern is filteraghole first layer at time 0.3 s is not corresponding to the first
from horizontal reflection layer in the projection componergigenvector. The reason is that the number of data vectors in
of each horizontal input data vector on the first eigenvectorthe central flat three layers of the bright spot structure is three
2) Input in Vertical Direction: We take input from the ver- times more than that in the one layer at 0.3 s. Fig. 15(i) shows
tical direction. One trace is one sample. The mean vectortie recovered seismogram using five principal components.
not 0. Fig. 14(a) is the traces with mean vector removed. THéecause there are nonflat layers in the bright spot pattern, we
shapes of the Ricker wavelets on the right-hand side of theed to choose more principal components in the recovered
layer are kept, but amplitudes are reduced. The projectis@ismogram.
value on the first eigenvector in Fig. 14(b) shows the uniform 2) Input in Vertical Direction: For the input data vector in
property on the right-hand side of the traces. In Fig. 14(c), thilee vertical direction, one trace is one sample. In the first
diffraction pattern is filtered using one principal componentprincipal projection values of Fig. 16(b), the traces in the
central part show the uniform property and the neighboring
traces at two sides show the polarity reverse property.
C. PCA in Bright Spots Seismogram

1) Input in Horizontal Direction: Fig. 15(a) shows that ) ] S
there is a structure of bright spots that indicate the gas ald PCA in Real Seismogram at Mississippi Canyon
oil sand zones with large (negative) reflection coefficient 1) Input in Horizontal Direction: The real seismogram at
—0.29 at the top of the gas sand zone [21]. The seismograississippi Canyon is shown in Fig. 17(a). Fig. 17(c) shows
has 64 traces with 512 data per trace. Using the input daite five projection values. The central part reflects strong to
vector in the horizontal direction to compute the five principahe projection on the first eigenvector in Fig. 17(d). The left
eigenvectors of the covariance matrix, Fig. 15(c) shows thaéart reflects strong to the projection on the second eigenvector
the projection value of each horizontal vector on the firgh Fig. 17(e). The right part reflects strong to the projection
eigenvector can show the high amplitude content and polaray the third eigenvector in Fig. 17(f). One structure can
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Fig. 15. (a) Bright spot pattern. (b) Data (horizontal mean vector removed). (c) Five projection values. (d) First component. (e) Second cd)riflungnt. (
component. (g) Fourth component. (h) Fifth component. (i) Sum of five components and mean vector.

be decomposed into three significant principal componentse high amplitude and polarity reversal at the central part
Fig. 17(g) shows the recovered data using three princigaid both sides. The seismic traces at the central part of the
components. seismogram show the uniform property. Fig. 18(c) shows the

2) Input in Vertical Direction: We use the input data vectorprojection component of each trace on the first eigenvector.
in the vertical direction in Fig. 18(a). Fig. 18(b) shows th&ig. 18(f) shows the recovered data using three principal
three projection values. The first projection value can shavemponents.
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E. Traditional PCA in Bright Spots Seismogram In order to avoid the problem of large dimension in DOS-

1) Input in Horizontal Direction: We use traditional PCA Pased computer memory, the calculation is one step by one
in the bright spots in Fig. 15(a). The input data vector is in thgeP sequentially. The MSE is 0.003551, and the NMSE
horizontal direction and the dimension is 64. The first step is ¥ 0-800152. They are close to the results of Fig. 15 in
find the covariance matrix 64 64 from the complete data set.Table I.

The second step is to find the five principal eigenvectors by the2) Input in Vertical Direction: We use the input data vector
traditional power numerical method, which can find the severiall the vertical direction in Fig. 15(a). However, the dimension
dominant eigenvectors [22]. The third step is to find the fiv@l2 x 512 of the covariance matrix causes the memory
principal components and the recovered seismogram. Fig. @®blem in the DOS-based computer. So it is not feasible to
shows the recovered data using five principal componenggt the covariance matrix and the eigenvectors.
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VII. DISCUSSIONS

1) Bright spot seismogram in Fig. 15(a) has magnitude

between—0.4036 and 0.4622. The real seismogram in 2)

Fig. 17(a) has magnitude betwee®.2075 and 0.2316.
The dimension of the input data vector can reach to
the scale 512. Although the number of seismic data is

large and the magnitude of the seismic data is small,
the information of the seismic layers and the uniform
seismic traces can be extracted by the PCA using GHA.
For the input vector with dimensiofy, the traditional
method uses memory space order/éf in computa-
tion because of the covariance matrix, but the neural
net based on Sanger's learning rule uses a memory
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T ) 5 9w on Microsoft FORTRAN in the DOS-based computer
without the memory space problem. The computation of
> ; h eigenvectors in seismic data becomes feasible through
the neural net based on Sanger’s learning rule in a
DOS-based computer.

WRSiivedia 3) Seismic data are compressed significantly. For a seis-
e mogram with 64 traces and 512 data per trace, there are
32768 data. If we use input data in the vertical direction
to find three principal eigenvectors, each eigenvector has
512 dimensions. Each seismic trace has three projection
values, so there are & 64 data for the projection

g values of 64 traces. We can store one mean vector
(512 dimensions), three eigenvectors witlk $12 data,

and projection values of 64 traces. The total stored
data are 512+ 3 x 512 + 3 x 64 = 2240. That
indicates 32768/2246= 14.6 fold information redun-

Tims(Sec)

Fig. 19. Input vector in the horizontal direction. Sum of five components
and mean vector by the traditional power numerical method.

space order ofN to find the eigenvectors. For the dancy. If we use input data in the horizontal direction to
input seismic data vector in the vertical direction with find three principal eigenvectors, each eigenvector has
512 dimensions, covariance matrix is 5¥2512. The 64 dimensions. Each seismic horizontal data vector has
memory space of real number isx4 512 x 512 bytes three projection values, so there are 312 data for the

= 1048576 bytes and is over the restriction of 64 K projection values of 512 vectors. We can store one mean
bytes of DOS-based computer memory space. In this  vector (64 dimensions), three eigenvectors witlx $4
study, the computation of our experiment cannot work  data, and projection values of 512 vectors. The total
on a DOS-based computer by the traditional method. stored data are 64 3 x 64+ 3 x 512 = 1792. That
However, using Sanger’'s learning rule with feeding indicates 32768/1792 18.3 fold information redun-
data iteratively, we can find the eigenvectors running  dancy. If the seismic layers are most flat, the recovered
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seismogram is acceptable by using several principal
components. From a data representation point of view,
the principal components net provides a technique to
seismic data compression.

Initial setting of coefficients of the weighting matri¥x

may affect the final direction of the first eigenvector

to the positive or negative direction. To overcome this
problem, at first, we randomly set the initial weight 4)
coefficientsi¥,;. After convergence, we check the first
principal projection value. If the projection value is
positive, we can accept the set of the eigenvectors.
Otherwise, we change the initial weight coefficients until
the first principal projection value is positive.

In 2-D, if the data distribution is highly correlated along
one line, the first eigenvector can be computed from
the net, but the remaining second eigenvector cannot
be derived to the correct value. And it is the same in 5)
N-dimensional case.

How many eigenvectors can we choose? In the real
seismogram, we can check the first to the fifth principal
projection values of each data, then decide how many6)
eigenvectors are still significant, i.e., large projection
values. Or, we may project each data on each eigen-7)
vector and calculate the variance of the data on each
eigenvector. The variances are the eigenvalues, and
AL > A > o> N > -

theﬂeigenvectors with smaller variances. and
E[X] = 0 is easy to get in the horizontal input direction,
but not easy to get in the vertical input direction because
of the layer effect. In the vertical input direction, if
E[X] is not equal to0, the recovered components can
not match the original seismogram until mean vector is
added. 2]
We may subtract the principal components from the orig-
inal seismogram, then the remaining are the nonuniforns]
property patterns: the slope pattern, the curve pattern
like diffraction pattern, and the noise.

VIII. (5]

PCA can improve seismic interpretations and show how
many uniform classes and where the locations are in th
seismogram in both input directions, respectively, which
are not easy to identify by human eyes or by experiencé’]
The real seismogram at Mississippi Canyon is a googg]
example.

For PCA, a theorem is proposed, which states thglgl
adding an extra point along the direction of the existin
eigenvector can enhance that eigenvector. The theorem
is applied to the interpretation of a fault seismograrPrO]
and the uniform property of other seismograms. The
uniform property of seismic data is corresponding t&1]
high correlation.

Using the input data vector in the horizontal directioni2]
the principal components can show the uniform proper
of the wavelets from the same horizontal layer. Th
projection values on the first eigenvector can show

C ONCLUSIONS

i)

the high amplitude content and polarity reversal for
wavelets at different layers. These properties appear in
the analyses of the seismogram of bright spot pattern
and the real seismogram at Mississippi Canyon. From
simulation on the Ricker wavelets, for different layers,
the projection on the first eigenvector can also show the
large duration (low frequency) content of the wavelet.
Using the input data vector in the vertical direction, the
principal components can show the uniform property
of the neighboring seismic traces. The projection on
the first eigenvector can show the uniform and reverse
properties of the traces. In the analyses of the seismo-
gram of bright spot pattern and the real seismogram at
Mississippi Canyon, the traces in the central part show
the uniform property and the neighboring traces at two
sides show the polarity reverse property.

Diffraction seismic pattern after NMO is separated from
horizontal reflection layer using the first principal com-
ponent for the input data in both horizontal and vertical
directions.

Two sides of a fault correspond to two principal eigen-
vectors in both direction analyses.

We can use PCA in the seismic data compression.
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