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Summary

This paper presents a simple graphical method for computing the displacement beneath/at
the surface of a transversely isotropic half-space subjected to surface loads. The surface load
can be distributed on an irregularly-shaped area. The planes of transverse isotropy are
assumed to be parallel to the horizontal surface of the half-space. Based on the point load
solutions presented by the authors, four in¯uence charts are constructed for calculating the
three displacements at any point in the interior of the half-space. Then, by setting z � 0 of
the derived solutions, another four in¯uence charts for computing the surface displacements
can also be proposed. These charts are composed of unit blocks. Each unit block is bounded
by two adjacent radii and arcs, and contributes the same level of in¯uence to the displace-
ment. Following, a theoretical study was performed and the results showed that the charts
for interior displacements are only suitable for transversely isotropic rocks with real roots of
the characteristic equation; however, the charts for surface displacements are suitable for all
transversely isotropic rocks. Finally, to demonstrate the use of the new graphical method,
an illustrative example of a layered rock subjected to a uniform, normal circular-shaped
load is given. The results from the new graphical method agree with those of analytical
solutions as well. The new in¯uence charts can be a practical alternative to the existing
analytical or numerical solutions, and provide results with reasonable accuracy.

1. Introduction

In the design of foundations on rocks, the deformation response of the materials
is an important factor. Conventionally, foundation materials are assumed to be
linearly elastic and isotropic for calculating the stresses, strains and displacements.
However, for most rocks, such as foliated metamorphic, strati®ed sedimentary,
and regularly jointed rocks, their responses to deformation exhibit some degree of
anisotropy. Hence, isotropic elasticity is not suitable for computing the stresses,
strains, and displacements in these rocks.

To calculate the stress, strain, and displacement in an anisotropic half-space,
one can use the closed-form solutions, numerical methods, or graphical methods.



Most of the existing closed-form solutions are limited to solving plane strain or
axisymmetric problems with simple boundary conditions, such as loading types
and shapes. The detailed review of the exact solutions for anisotropic media can be
referred to Wang and Liao (1998a). In the past few decades numerical techniques
have been developed for calculating the stresses, strains, and displacements un-
derneath an irregular-shaped foundation (Wang and Liao, 1998b). Through the
use of computer, these numerical methods can easily be automated and hence
can be e½cient to use. However, most of them contributed to the calculation of
stresses or displacements in isotropic media.

Several graphical methods for computing the displacements in an isotropic
half-space have been used for decades. A graphical method using in¯uence charts
was ®rst proposed by Newmark (1947). The in¯uence charts are e½cient to use in
calculating displacement as compared to other complex mathematical or numeri-
cal methods. However, the advantages of Newmark charts diminish if the loading
area is not uniform, or displacements at multiple depths are sought simulta-
neously. Uzan et al. (1980) constructed in¯uence charts for a special case of a two-
layer system underlain by a rigid base. Nevertheless, the charts proposed by Uzan
et al. (1980) were prepared for the materials with special elastic constants; hence,
the applications are restricted. Recently, Huang (1995) extended the Newmark
method to construct diagrams for computing the displacement in an isotropic solid
subjected to an embedded distributed uniform vertical load. Poulos (1967) pro-
posed a graphical method, called the sector method, for calculating the displace-
ments in an elastic half-space. All of the existing graphical methods are limited to
isotropic media. To the authors' knowledge, no graphical method of displacement
calculation has been proposed for anisotropic media. The aim of this paper is to
construct the new in¯uence charts for calculating the displacements in a trans-
versely isotropic half-space subjected to three-dimensional loads with an irregular
shape. By superposition of values corresponding to the in¯uence charts, the three
displacements at any point in the half-space can be estimated. This paper describes
the background of the new in¯uence charts and their application procedure. An
illustrative example is presented at the end of the paper to demonstrate the pro-
cedure of computing induced interior and surface displacements using the pro-
posed in¯uence charts in a layered rock mass. Veri®cations are also made by
comparing the graphical solutions (by the in¯uence charts) with the analytical
solutions.

2. Deformability Anisotropy of Transversely Isotropic Rocks

Anisotropy is a general characteristic of foliated metamorphic rocks (e.g., argillite,
slate, schist, phyllite, gneiss), strati®ed sedimentary rocks (e.g., shale, sandstone,
coal, limestone), and regularly jointed rock masses. Deformability anisotropy
implies that the deformability of a material is direction dependent. Depending
on the planes of elastic symmetry, rock can be of general anisotropy, orthotropy,
transverse isotropy, or complete isotropy. For a transverse isotropic rock, there
is an axis of symmetry of rotation. The rock has isotropic properties in planes
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normal to this axis. The deformability of a transversely isotropic material can be
expressed in terms of ®ve elastic constants, i.e., C11, C13, C33, C44, C66 (Wang and
Liao, 1998b). These constants are directly related to the engineering elastic con-
stants E, E 0, u, u 0, and G 0 as:

C11 �
E 1ÿ E

E 0
u 02

� �
�1� u� 1ÿ uÿ 2E

E 0
u 02

� � ; C13 � Eu 0

1ÿ uÿ 2E

E 0
u 02

;

C33 � E 0�1ÿ u�
1ÿ uÿ 2E

E 0
u 02
; C44 � G 0; C66 � E

2�1� u� :

�1�

Where E, E 0 are the Young's moduli in the plane of transverse isotropy and its
normal, respectively; u, u 0 are the Poisson's ratios characterizing the lateral strain
in the plane of transverse isotropy to a normal stress acting parallel and normal
to it, respectively; and G 0 is the shear modulus in planes normal to the plane of
transverse isotropy. These engineering elastic constants can be determined by static
or dynamic experiments in the laboratory. Readers can refer to Wang and Liao
(1998b) for details of these methods.

3. Construction of the Displacement In¯uence Charts for a Loaded Transversely

Isotropic Half-Space

Similar to the Newmark charts (1947) for isotropic materials, the proposed charts
for transversely isotropic media contain systematic unit blocks. Two radial lines
and two adjacent arcs bound each block. The radii of the circles relate to the depth
of the interested point for interior displacements, or the base length of loading
area for surface displacements in the half-space. The in¯uence value of any unit
block in displacement should be equal and independent of its location in the chart.
To facilitate block counting, the plan of the surface load is drawn to a scale related
to the depth of the interested point (for interior displacements) or the base length
(for surface displacements). The unit blocks are made roughly square. The number
of the blocks covered by the scaled loaded area is then counted.

Combining the solutions for displacements induced by di¨erent sectors with
uniform loads (one of the sectors as shown in Fig. 1), one can obtain the dis-
placements at point C with depth uiz due to the uniform load on a unit block.
Selecting proper values of coe½cients in the closed-form solutions for the dis-
placements at point C, one can obtain the values of the radii and the central angle,
which form the unit block, for the in¯uence displacements being a uniform
amount, i.e. 0.004 or 0.01. In this section, the solutions for the displacements at a
depth uiz under the vertex of a uniformly loaded sector of a circle in a transversely
isotropic half-space are presented ®rst. Then, four independent in¯uence charts for
calculating the three interior displacements are proposed. Furthermore, by setting
z � 0 (at the surface) of the derived solutions, another four charts for calculating
the surface displacements can also be proposed.
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3.1 Interior Displacements under the Vertex of a Uniformly Loaded Sector

The solutions of displacements in a transversely isotropic half-space subjected to a
point load have been derived by several investigators (e.g., Liao and Wang, 1998).
By integrating the point load solutions, one can obtain the displacements in the
half-space, subjected to a uniform surface load of any irregularly-shaped area.
Details of deriving displacements under the vertex of a uniformly loaded sector of
a circle in a transversely isotropic half-space, based on the point load solutions of
Liao and Wang (1998), are described as follows:

Figure 1 shows that a uniform load, Pj ( j � x; y; z, forces per unit of area) acts
on a sector bounded by two radial lines and a circle arc. In the ®gure, the depth of
point C�0; 0; uiz� under the vertex is uiz, the radius is r, and the central angle is
b (positive counterclockwise with respect to X co-ordinate axis). Consider an ele-
mentary area of rdrdb in the sector, the displacement at point C, �U �C , is derived
by integrating the point load solutions (Liao and Wang, 1998) with dr from 0 to r
and db from 0 to b (Gradshteynn and Ryzhik, 1994) as:

�U �C �
� b

0

� r

0

�U �pr dr db; �2�

where �U � � �ux; uy; uz�T (superscript T denotes the transpose of matrix); the
superscript C denotes the point C at which the induced displacements are eval-
uated; the superscript p indicates a point load acting at point O. Upon integration,

Fig. 1. Uniformly loaded sector area
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�U �C has the following components:

uC
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p
; u1 and u2 are the roots of the following characteristic equation:

u4 ÿ su2 � q � 0; �6�
where s � C11C33ÿC13�C13�2C44�

C33C44
, q � C11

C33
. If the strain energy is assumed to be pos-

itive de®nite in the medium (Amadei et al., 1987), the roots of Eq. (6), u1 and
u2 are restricted to the following three cases:
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������������������������������������������
f1
2
�sG ��������������������s2 ÿ 4q�p �g

q
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case 2. When s2 ÿ 4q � 0, u1;2 �G

�������
s=2

p
;G

�������
s=2

p
are real double roots (i.e.,

complete isotropy);
case 3. When s2 ÿ 4q < 0, u1 � 1

2

����������������������s� 2
���
q
p �p ÿ i 1

2

�������������������������ÿs� 2
���
q
p �p � gÿ id,

u2 � g� id are two conjugate complex roots [where g cannot be equal
to zero (Liao and Wang, 1998)].

Using engineering elastic constants, the following criterion can distinguish the
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root type of Eq. (6).

G

G 0

� �2

�1� u� ÿ E

E 0

� �
1ÿ u� E

G 0

� �
u 0 ÿ 2

E

E 0

� �
u 02

� � > 0; for case 1

� 0; for case 2

< 0; for case 3

: �7�

Gerrard (1975) and Amadei et al. (1987) demonstrated that, for most trans-
versely isotropic rocks, the values of E=E 0 and G=G 0 are between 1 and 3, the
Poisson's ratios u and u 0 are between 0.15 and 0.35, and the value of u 0E=E 0 is
between 0.1 and 0.7. Based on these data, Liao and Wang (1998) presented that
approximately two thirds of transversely isotropic rocks belong to the case 1 (i.e.,
two real distinct roots).

3.2 In¯uence Charts for the Interior Displacements

Presented displacement in¯uence charts include an index length representing the
depth of the desired point, and numbers of concentric circles and radial lines. A
unit block, except for those adjacent to the point C, is formed by two radial lines
and two concentric circle arcs. �U �C depends on the geometry of the loaded sector
as described in Eqs. (3)±(5). The geometry is de®ned by a set of coe½cients
a; b; c; d; e, F i, G i and H i. The values of a; b; c; d and e depend on the central angle
b. The coe½cients F i, G i and H i relate to the ratio of r=uiz. The value of c is
positive regardless of the value of b. The others (i.e., a; b; d and e) can be either
positive or negative. For a given depth uiz, the values of F i, G i, H i only depend on
the radius r, and F1 � F2 � F3, G1 � G2 � G3, H1 � H2. Hence, only the charts

for aH i, bH i, cF i, dG i, and eG i are required for estimating �U �C in a half-space
graphically. The data of r are calculated using the Newton-Raphson method.
Combining the numerical value to be 0.4% of a unit load intensity, a series of b
and r can be obtained for aH i, bH i, dG i, and eG i, and 1% of a unit load intensity
for cF i, respectively. Considering the symmetric properties of triangular functions,
the charts for aH i and bH i are identical, except that the X- and Y-axes are
exchanged. Consequently, only four independent charts (i.e., aH i, cF i, dG i, eG i)
are needed for computing �U �C . Figures 2±5 depict the in¯uence charts of aH i,
cF i, dG i and eG i, respectively. The index length of depth uiz in these ®gures is set
to 0.8 cm. The calculated r is symmetrical with respect to the original point O,
therefore, only one quarter of the chart is drawn. The sign ``ÿ'' in the ®gures
indicates that the values of a; b; d and e are negative. The in¯uence value is nega-
tive for the blocks with a ``ÿ'' sign. The details of the preparation of the in¯uence
charts can be referred to Wang and Liao (1998b).

For the medium with conjugate complex roots of the characteristic equation
[Eq. (6)], the value of uiz is a complex variable. Hence, the presented four in¯uence
charts are not suitable for computing the displacements in a transversely isotropic
half-space categorized into case 3. For case 3 material, the preparation of in¯uence
charts requires elastic constants as a prior and uiz being replaced by z. This means
that the charts prepared for case 3 material are valid only for a particular medium.
The Appendix illustrates the method for constructing the in¯uence chart and
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Fig. 2. In¯uence chart for aH i (in¯uence value per block is G0:004, negative in¯uences are indicated
by a minus, �ÿ�, sign)

Fig. 3. In¯uence chart for cF i (in¯uence value per block is 0.01)
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Fig. 4. In¯uence chart for dG i (in¯uence value per block isG0:004, negative in¯uences are indicated by
a minus, �ÿ�, sign)

Fig. 5. In¯uence chart for eG i (in¯uence value per block is G0:004, negative in¯uences are indicated by
a minus, �ÿ�, sign)
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calculating the vertical displacement in a half-space subjected to a uniform normal
load for case 3 material.

3.3 Closed-Form Solutions and the In¯uence Charts for Surface Displacements

Equations (3)±(5) are limited to solving the displacements in the interior of a
transversely isotropic half-space subjected to three-dimensional uniform loads.
Also, the proposed charts (Figs. 2±5) are only suitable for computing the
displacements in the half-space subjected to irregularly-shaped surface loads.
Practically, displacements at the surface of a half-space induced by surface loads
are important. In order to prepare the in¯uence charts for computing the surface
displacements of a transversely isotropic half-space, the closed-form solutions for
the surface displacements (at point O) have to be derived. The exact solutions for
surface displacements can be derived from Eqs. (3)±(5) by setting z � 0. Then, the
closed-form solutions for the surface displacements at point O due to uniform
loads can be expressed as:

u0
x �

Px

2
L ÿ k ÿ km

u1
ÿ 1

u3C44

� �
� cI � 1

2p
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� 1
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� �
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� �
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4p
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u1
� 1

u3C44

� �
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2p
Lk�u2 ÿm� � aI ; �8�

u0
y �
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4p
L k ÿ km

u1
� 1

u3C44

� �
� dI

� Py

2
L ÿ k ÿ km

u1
ÿ 1

u3C44

� �
� cI ÿ 1

2p
k ÿ km

u1
� 1

u3C44

� �
� eI

� �
� Pz

2p
Lk�u2 ÿm� � bI ; �9�

u0
z �

Px

2p
Lk�mÿ u2� � aI � Py

2p
Lk�mÿ u2� � bI � PzLku2�mÿ u1� � cI ; �10�

where I � r=L, and L is the base length for the surface displacements. The loaded
area can be drawn to any scale whatever and the base length L determined for the
particular scale used. Equations (8)±(10) indicate that the displacements can be
computed from knowing the loads, the base length, the material constants, and the
geometry of sector (a; b; c; d; e; I ). Hence, one can draw the charts for aI , bI , cI , dI
and eI for computing the three surface displacements, using graphical methods.
Similarly to preparing the charts for interior displacements, except that the radii of
the circles relate to the base length (L) of surface displacements, the charts for aI ,
bI , cI , dI , and eI can be constructed. The chart for bI is the same as for aI if the
X- and Y-axes are exchanged. Consequently, only four independent charts, aI
(Fig. 6), cI (Fig. 7), dI (Fig. 8), and eI (Fig. 9) are needed for computing the
surface displacements. The in¯uence value of each unit block on surface displace-
ments is 0.04 of load intensity for aI , dI and eI , and of 0.01 of load intensity for
cI , respectively. Since the base length L in the right corner of Figs. 6±9 is always
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Fig. 6. In¯uence chart for aI (in¯uence value per block is G0:04, negative in¯uences are indicated by a
minus, �ÿ�, sign)

Fig. 7. In¯uence chart for cI (in¯uence value per block is 0.01)
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Fig. 8. In¯uence chart for dI (in¯uence value per block is G0:04, negative in¯uences are indicated by a
minus, �ÿ�, sign)

Fig. 9. In¯uence chart for eI (in¯uence value per block is G0:04, negative in¯uences are indicated by a
minus, �ÿ�, sign)
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a real number (i.e., 0.8 cm), the values of L are una¨ected by the media with
conjugate complex roots (case 3) of the characteristic equation. Hence, the charts
for aI , cI , dI and eI can be adopted to compute the surface displacements for all
transversely isotropic rocks.

4. Use of the In¯uence Charts

The three displacement components at a point in the interior or at the surface of
the half-space subjected to three-dimensional loads on an arbitrary shape can be
estimated from the new proposed in¯uence charts. For this purpose, one must
know (1) the elastic constants of half-space materials, (2) the types and magnitudes
of surface loads, (3) the types of loading shapes, and (4) the depth of desired point
�uiz� or the base length (L) of the surface displacements. Detailed procedure to use
the in¯uence charts and their applications are described as follows:

(1) Identify the type of rock (i.e., isotropic, transversely isotropic, orthotropic or
generally anisotropic). If the rock is isotropic, the desired displacements can be
computed using the Newmark charts (1947). However, the charts can only be
used to compute the vertical displacement beneath/at the surface of an elastic
mass induced by a uniform normal load. If the rock is orthotropic or generally
anisotropic, there are no in¯uence charts available.

(2) Verify if the planes of isotropy are parallel to the surface. The in¯uence charts
presented herein are applicable only if the planes of isotropy are parallel to the
surface.

(3) Determine the root type of characteristic equation [i.e., case 1, 2 or 3, in Eq.
(7)] for the half-space. Continue to step (4) through step (9) if the root type is
case 1 or case 2. If the root type is case 3, the in¯uence charts will have to be
prepared individually and the following steps do not apply.

(4) Calculate the characteristic root ui (i � 1; 2; 3), functions m and k from Eqs.
(5) and (6).

(5) Adopt a scale that should be equal to the depth uiz �i � 1; 2; 3� as shown in
Figs. 2±5 for the interior displacements, or equal to the base length L in Figs.
6±9 for the surface displacements.

(6) Redraw the plan of the loaded area, using the scale obtained in step (5).
Transparent paper is recommended.

(7) Place the plan of the loaded area plotted in step (6) on the in¯uence charts.
The point at which the displacements are desired should be placed over the
center of the circles on these charts.

(8) Count the number of blocks on the in¯uence charts covered by the plan of the
loaded area.

(9) Compute the interior displacements from Eqs. (3)±(5), or the surface dis-
placements from Eqs. (8)±(10), based on functions m, k [from step (4)] and the
number of blocks covered by plan of the loaded area [from step (8)].

Figure 10 presents a ¯ow chart that illustrates the use of the in¯uence charts.
Although the charts are proposed for uniform loads, the displacement induced by
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Fig. 10. Flow chart for computing the displacements induced by irregular loading shapes using
in¯uence charts
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non-uniform loads can be estimated by dividing the entire loading area into several
sub-areas, each with an approximately uniform load.

5. Illustrative Example

To demonstrate and verify the usage of the proposed displacement in¯uence
charts, an example is illustrated in this section. The interior and surface displace-
ments of a half-space constituted by the layered rocks subjected to a uniform
circular-shaped load are computed (Fig. 11a). The load with circular shape is
chosen because there are several analytical solutions (i.e., Hanson and Puja, 1996)
for verifying the results obtained from the presented graphical methods.

Fig. 11a shows that the vertical displacement at point C �uC
z � with a depth of 5

meters below the surface point O is desired. The layered rocks can equivalently be
transversely isotropic rock, and the planes of transverse isotropy are parallel to the
horizontal surface. The equivalent transversely isotropic properties of the layered
rocks can be obtained fromWardle and Gerrard (1972). The mechanical properties
of the hypothetical layered rock are given in Table 1. This ten-layer hypothetical
rock satis®es the assumption of Salamon's model (1968) that the representative
sample must contain a large number of layers. The deformability properties (Ei, ui)
of the hypothetical layers are adopted from Kulkawy (1975) for various sedimen-
tary rocks obtained from uniaxial compression tests. The adopted Ei increases
with the increase of depth. Then, the ®ve equivalent elastic constants of the layered
rock are E � 42:5 GPa, E 0 � 30:5 GPa, u � 0:24, u 0 � 0:14, G 0 � 13:3 GPa. The
calculated ®ve elastic constants satisfy the chosen domains of Gerrard (1975) and
Amadei et al. (1987) for most transversely isotropic rocks. From Eq. (7), the me-
dium belongs to case 1 with two real distinct roots. The half-space is subjected to a
uniform normal load (Pz) on the horizontal surface with a loading area shown in
Fig. 11a. Equation (5) then is rewritten as:

uC
z =Pz � 2ku1u2z � �m � cF1 ÿ u2 � cF2�: �11�

Equation (11) indicates that, knowing the elastic constants, ui, m, and k, one
independent in¯uence chart cF i (Fig. 3) is enough for computing the normalized
vertical displacement uC

z =Pz in this example. For illustration, the procedures of
calculating uC

z =Pz are described as follows:

(1) Calculate the characteristic roots and functions m and k: u1 � 0:801, u2 �
1:495, m � 2:224 and k � 0:029.

(2) Set the unit length as: u1z � 4:005, u2z � 7:475 for cF1 and cF2, respectively.
(3) Redraw the plan of the loaded area, using the scales obtained in step (2) on

transparent papers (for cF1 and cF2).
(4) Place the transparent papers prepared in step (3) on the in¯uence chart �cF i�.

Point C should be placed over the center of the chart. Figs. 11b and 11c
demonstrate the procedure for overlapping planes of the loaded area on the
chart for cF1 and cF2, respectively.

(5) Count the numbers of blocks of blocks on Fig. 11b and Fig. 11c covered by
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Fig. 11a, b. a Plan of loaded area acting on the surface, b the blocks covered by the plan of the loaded
area for cF1
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Fig. 11c, d. c The blocks covered by the plan of the loaded area for cF2, d the blocks covered by the
plan of the loaded area for cI
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the loaded area. The numbers of blocks are about 41 in Fig. 11b, and 20 in
Fig. 11c.

(6) From Eq. (11), the normalized vertical displacement �uC
z =Pz� at point C is

computed as:

uC
z =Pz � 2 � 0:029 � 0:801 � 1:495 � 5 � �2:224 � 41ÿ 1:495 � 20� � 0:01

� 0:2128�m=GPa�:
Comparing the result with analytic solutions of Hanson and Puja (1996), the

vertical displacement computed using the in¯uence chart agrees with the analytic
result within 2%.

Also, the vertical surface displacement at point O �u0
z � is computed. For a

uniform normal load acting on the horizontal surface shown in Fig. 11a, Eq. (10)
can be rewritten as:

u0
z =Pz � Lku2�mÿ u1� � cI : �12�

Equation (12) indicates that the normalized vertical surface displacement
u0

z =Pz can be calculated from a single in¯uence chart cI (Fig. 7). Figure 11d
demonstrates the procedure for overlapping plan of the loaded area on the chart
for cI . The base length (L) is set to be 5 meters. Then, approximately 71 blocks are
located in the loaded area of Fig. 11d. Hence, the value of u0

z =Pz [Eq. (12)] is equal
to 0.2190. Comparing with the analytical result (0.2174), the di¨erence between
them is less than 1%. Similarly, one can easily compute the horizontal displace-
ments (uC

x ; u
0
x ; u

C
y ; u

0
y ) following the above procedures.

6. Conclusions

Based on the derived closed-form solutions for displacements under the vertex of a
uniformly loaded sector in a transversely isotropic half-space, four independent
in¯uence charts are proposed for calculating the three displacement components at

Table 1. Thickness and deformability properties of
sedimentary rocks for the illustrative layered rock

Rock layer Rock type Thickness Ei ui

i ti (m) (GPa)

1 conglomerate 2.0 13.0 0.15
2 subgraywacke 4.0 14.6 0.07
3 sandstone 4.0 18.4 0.21
4 marlstone 10.0 19.3 0.04
5 graywacke 10.0 20.1 0.08
6 siltstone 10.0 24.0 0.18
7 shale 10.0 26.0 0.09
8 limestone 10.0 47.5 0.23
9 dolomite 20.0 59.0 0.30

10 anhydrite 20.0 75.8 0.27
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any point in the interior of a half-space subjected to three-dimensional surface
loads on an irregularly-shaped area. Then, by setting z � 0 in the derived solutions,
another four in¯uence charts for computing the surface displacements are also
proposed. The desired displacements are computed from the charts by counting
the number of elements covered by a plan of the loaded area, drawn to a proper
scale and laid upon the charts. The in¯uence values from the four in¯uence
charts are then summed up. Since the in¯uence charts for computing the interior
displacements are prepared on the basis of the index length �uiz�, the proposed
charts for computing the interior displacements are only suitable for a transversely
isotropic half-space with real roots of the characteristic equation. However, the
charts for calculating the surface displacements can be adopted for all transversely
isotropic media because of the base length (L) always being a real number. The
new in¯uence charts are easy to use, and the computed results are reasonably ac-
curate. These charts o¨er a practical alternative to the analytical and numerical
solutions.
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Appendix: Illustration for Constructing the In¯uence Chart for Case 3

To demonstrate the construction and usage of in¯uence charts for case 3, an ex-
ample for computing the vertical displacement �uC

z � subjected to a uniform normal
load �Pz� is illustrated. From Eq. (6), u1 � gÿ id, u2 � g� id. Then, the normal-
ized vertical displacement �uC

z =Pz� can be expressed in terms of the central angle b
and a depth ratio r/z as follows:

uC
z =Pz � 2kmu1u2z � cF1 ÿ 2ku1u

2
2z � cF2

� z � cF 0; �13�

where c � b
2p
, F 0 � ku2 ÿu1�mÿ u2� �m

�����������������
r
z

ÿ �2�u2
1

q
ÿ u1

������������������
�r

z
�2 � u2

2

q� �
.

Similar to the method for drawing the charts for aH i, cF i, dG i, and eG i, the
chart for cF 0 can also be constructed, except that the elastic constants of the me-
dium are involved in this chart. Assuming that the elastic constants are E � 50
GPa, E 0 � 25 GPa �E=E 0 � 2�, G=G 0 � 1, and u � u 0 � 0:25, and solving Eq. (6),
the characteristic roots are complex and the values of g and d are 1.0082 and
0.5914, respectively. Figure 12 is the in¯uence chart for cF 0. For a uniform load as
shown in Fig. 11a and using z as the scale (right corner of Fig. 12), one can redraw
the plan of the loaded area. The number of blocks covered by the loaded area is
approximately 37. Using Eq. (13), the normalized vertical displacement uC

z =Pz is
equal to 0.185 (�5 � 37 � 0:001, m/GPa). The value is very close to the exact solu-
tions (0.188) of Hanson and Puja (1996).
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List of Symbols

a; b; c; d; e functions of central angle, b
Cij �i; j � 1@ 6� elastic constants
E, E 0; u; u 0;G 0 engineering elastic constants of a transversely isotropic rock
Ei; ui deformability properties of the i-th layer of the layered rock
F 0 functions of the complex roots g, d, and the depth ratio, r/z
F i;G i;H i functions of the depth ratio, r=uiz �i � 1; 2; 3�
L the base length
Pj� j � x; y; z� uniform loads (forces per unit of area)
r radius of a circle
r=uiz the depth ratio
ti thickness of the i-th layer of the layered rock
u1; u2; u3 roots of the characteristic equation

uC
x ; u

C
y ; u

C
z interior displacements induced by irregularly-shaped loads

u0
x ; u

0
y ; u

0
z surface displacements induced by irregularly-shaped loads

X, Y, Z Cartesian co-ordinate system
b central angle
g; d real and imaginary part of the complex roots, respectively
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