
 http://pic.sagepub.com/
Engineering Science

Engineers, Part C: Journal of Mechanical 
Proceedings of the Institution of Mechanical

 http://pic.sagepub.com/content/213/5/461
The online version of this article can be found at:

 
DOI: 10.1243/0954406991522707

461
 1999 213:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Z-M Ge, C-S Chen, H-H Chen and S-C Lee
Regular and chaotic dynamics of a simplified fly-ball governor

 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Institution of Mechanical Engineers

 can be found at:Science
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical EngineeringAdditional services and information for 

 
 
 

 
 http://pic.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://pic.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://pic.sagepub.com/content/213/5/461.refs.htmlCitations: 
 

 What is This?
 

- May 1, 1999Version of Record >> 

 at NATIONAL CHIAO TUNG UNIV LIB on April 28, 2014pic.sagepub.comDownloaded from  at NATIONAL CHIAO TUNG UNIV LIB on April 28, 2014pic.sagepub.comDownloaded from 

http://pic.sagepub.com/
http://pic.sagepub.com/content/213/5/461
http://www.sagepublications.com
http://www.imeche.org/home
http://pic.sagepub.com/cgi/alerts
http://pic.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://pic.sagepub.com/content/213/5/461.refs.html
http://pic.sagepub.com/content/213/5/461.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://pic.sagepub.com/
http://pic.sagepub.com/


461

Regular and chaotic dynamics of a simplified fly-ball
governor

Z-M Ge*, C-S Chen, H-H Chen and S-C Lee
Department of Mechanical Engineering, National Chiao Tung University, Taiwan

Abstract: The dynamics of a simplified model of a fly-ball speed governor undergoing a harmonic
variation about its rotational speed is studied in this paper. This system is a non-linear damped
system subjected to parametric excitation. The harmonic balance method is applied to analyse the
stability of period attractors and the behaviour of bifurcations. The time evolutions of the response
of the non-linear dynamic system are described by time history, phase portraits and Poincaré maps.
The regular and chaotic behaviour is observed by various numerical techniques such as power spectra,
Lyapunov exponents and Lyapunov dimension. Finally, the domains of attraction of periodic and
stranger attractors of the system are located by applying the interpolated cell mapping (ICM ) method.

Keywords: governor, bifurcation, chaos, parametric excitation, cell mapping

NOTATION h angle between rod and vertical line
l Lyapunov exponent
j variable of integration in equation (20)

A matrix C 0 1

A21 −2a/vD t dimensionless time
W approximate transition matrix

B
k

(1/Dk) ∆tk
t
k−1

A(j) dj v perturbed frequency of the rotational speed
V
0

constant rotational speed of the fly-ballc damping coefficient in the rod bearing

C matrix C [C1 ]ij [C
12

]
ij

[C
21

]
ij

[C
2
]
ij
D (in Appendix)

1 INTRODUCTION
f V2

0
F −(2v0 ẍ0+2aẋ)

The dynamics of a one degree-of-freedom simplified
g acceleration of gravity

model of a fly-ball speed governor undergoing a har-
L Lagrangian

monic variation about its rotational speed is studied.
m total mass of the fly-ball

Many studies have been carried out in recent years on
M mass of the collar

one degree-of-freedom non-linear systems under sinus-
P −sin x0 oidal forcing and a substantial understanding of the
Q (1−cos t) sin 2x0 complicated phenomena that can arise from these appar-
R length of the rod

ently simple oscillators has been reached. The behaviour
V Lyapunov function

of parametrically excited systems is very complicated
w rotational speed of the fly-ball

even when only the linear case is considered. In recent
x defined as h

decades a number of studies on the chaotic behaviourX matrix [dx, dẋ]T
of a parametrically excited system have been carried out
by numerical techniques such as phase portraits,a c/(2m)
Poincaré maps, power spectrum and Lyapunovb mass ratio
exponents [1–3].c g/R

Harmonic balance (HB) methods [6–9] are suited toe: perturbed coefficient of the rotational speed
strongly non-linear systems. Ling and Wu [8] have dev-
eloped the fast Galerkin (FG) method which providesThe MS was received on 2 May 1997 and was accepted after revision

for publication on 30 July 1998. an efficient and accurate basis for the analysis of non-
* Corresponding author: Department of Mechanical Engineering,

linear systems. Lau et al. [9] developed the incrementalNational Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050,
Taiwan, Republic of China. harmonic balance (IHB) method which also deals
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462 Z-M GE, C-S CHEN, H-H CHEN AND S-C LEE

with strong non-linearities. In the IHB method the govern ‘isochronously’. However, the speed will undergo
a variation when the load of the engine changes; henceincrementation is followed by a Galerkin approximation.

These methods are applied to parametric studies for the the governor must change speed with variation in load.
It is assumed that the fly-ball governor rotates at con-purpose of seeking parameter diagrams by changing the

system parameters in turn. The multivariable Floquet stant speed and undergoes a variation with a harmonic
term, i.e. w=V0−e:V0 cos vt, and then (1) becomestheory [6, 7] is applied to analyse the stability of periodic

solutions through the module of eigenvalues of the
associated monodromy matrix of the system. ḧ+2aḣ+c=

f

2
sin 2h−e: f cos vt sin 2h+O(e:2)

It is well known that different initial conditions
(2)may lead to different attractors in a non-linear system.

Often, stable and unstable attractors are coexistent. The where 2a=c/m, c=g/R, f =V2
0
. For simplicity, the e:2

attractors and corresponding basins of attraction of term is neglected, x=h is defined and equation (2)
a non-linear system can be located by the method of becomes
interpolated cell mapping [9, 10], which has been
demonstrated over the past few years to high advantage ẍ+2aẋ+c sin x=

f

2
sin 2x−e: f cos vt sin 2x (3)

in exploring global non-linear behaviour. The domains
of attraction of the period and chaotic attractor with Obviously, equation (3) is a non-linear, one degree-of-
respect to initial conditions are investigated by inter- freedom, parametrically excited system.
polated cell mapping techniques in this paper.

2.2 Lyapunov exponents and Lyapunov dimension
2 FLY-BALL GOVERNOR WITH A SIMPLE

The Lyapunov exponents for the system under consider-MODEL
ation can be obtained numerically. The algorithm for
calculation of the Lyapunov exponents has been2.1 Mathematical model
described in detail by Wolf et al. [11 ].

The fly-ball speed governor ( Watt governor) is shown in Parametrically excited dynamic system (3) with the
Fig. 1. For simplicity, it is assumed for the system that: chosen parameters

1. The masses of the collar and of the rods are neglected.
ẍ+1.4ẋ+4 sin x=

f

2
(1−cos 8t) sin 2x (e:=0.5)2. Viscous damping in the rod bearing of the fly-ball is

presented by damping constant c. (4)

The Lagrange equation is derived as follows: possesses three Lyapunov exponents. Figures 2a and b
indicate the Lyapunov exponents of the system under

ḧ+
c

m
ḣ+

g

R
sin h=

w2

2
sin 2h (1) various parameters to determine the occurrence of

chaotic motion. From Fig. 2a the exponents are
In most cases the governor is required to rotate at con-

l
1
=−0.1663, l

2
=0, l

3
=−1.2337stant speed and the governing device should therefore

and from Fig. 2b the exponents are

l
1
=0.7035, l

2
=0, l

3
=−2.1035

In this linear damping case the sum of all three
Lyapunov exponents is equivalent to the negative damp-
ing coefficient in the system, which is independent of the
initial conditions and time [12]. Thus, the sum of the
three Lyapunov exponents for these two cases is always
−1.4. The largest Lyapunov exponent is plotted in Fig. 3
with f ranging from 0 to 30. It is clear that, when f is
small, l1 is negative and the system is periodic.
Furthermore, the values of the exponents approach zero
as the solutions change their types. When f is increased
to 20.76, l1 changes from negative to positive values;
this is the critical point for the onset of chaotic motion.
It is noted that in some intervals of large f, for example
f =22.12, the exponent becomes negative again and the
system is then periodic (see Table 1, where df is the

Fig. 1 Physical model of a fly-ball governor system Lyapunov fractal dimension).
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463REGULAR AND CHAOTIC DYNAMICS OF A SIMPLIFIED FLY-BALL GOVERNOR

Fig. 2 Lyapunov exponents as a function of the number of drive cycles for (a) f =19 and (b) f =23

Fig. 3 Largest Lyapunov exponent as a function of f

2.3 Poincaré map, phase portraits, time history and Figs 4a to f. Note that a pair of period 2T motions arise
and invert each other from these figures. One of thepower spectrum analysis
orbits that the trajectories are attracted to depends on

For each initial condition, differential equation (4) is where the initial conditions are located. When f =19 the
solved by the fourth-order Runge–Kutta numerical inte- phase portraits and Poincaré maps show that the system
gration method. The results obtained by Poincaré maps is period 2T motion. When f =20.2 the system is

period 8T motion, with eight Poincaré points. It can bein comparison with phase trajectories are shown in

C03497 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part C
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Table 1 Lyapunov exponents and Lyapunov dimension for band power spectrum with some spikes on it, which con-
different values of f in equation (4) firms a chaotic motion of the system.

f

2.4 Bifurcation diagram14 19 19.5 20.3 25

The bifurcation diagrams in Figs 6 and 7 show thel1 −0.1212 −0.1678 −0.1297 −0.0246 0.69
l −1.2788 −1.2322 −1.2703 −1.3753 −2.09 long-term values of the angular displacement and
W
i
l
i

−1.4 −1.4 −1.4 −1.4 −1.4 angular velocity respectively, obtained by the fourth-
df 1 1 1 1 2.33

order Runge–Kutta numerical integration algorithm,Period T Period 2T Period 4T Period 8T Chaotic
plotted against the dimensionless excitation amplitude
fµ[0, 30], in which the incremental value of f is 0.01.
At each value of f the first 300 points of the Poincaréseen that with f =20.37 and f =23 the steady state

Poincaré orbits of chaotic systems are distinctive. The maps are discarded in order to exclude the transient state
of motion. After that, the system is assumed to be in thestrange attractors for f =20.37 have two inverse chaotic

attractors, but these two independent attractors are steady state, the velocity for the next 200 points is plotted
in the bifurcation diagram and only the stable limit setdestroyed when f =23.

The time history and power spectrum analysed for f = is plotted. The period doubling route to chaos is shown
in the bifurcation diagram. The solution is a station-19, 20 and 23 are shown in Figs 5a to f. It is clear that

the spectrum of a periodic motion consists only of dis- ary point at the origin until f =4.14 and supercritical
bifurcation occurs. After this bifurcation, a period 1Tcrete frequencies, whereas the spectrum of a chaotic

motion is not composed solely of discrete frequencies attractor is generated. When f grows through 14.38, a
symmetry-breaking bifurcation takes place and eachbut has a continuous, broad band nature. This noise-

like spectrum is characteristic of chaotic systems. From period 1T orbit bifurcates into a period 2T attractor.
When f =19.37 a period 4T solution is generated. AfterFig. 5b it can be observed that a strong peak occurs at

the fundamental frequency together with superharmonic that, there occurs a cascade of period doubling from f =
19.37 to 20.36, through which periods of the periodicfrequencies. The presence of the spectral line at half the

fundamental frequency shows that the period has now motions become longer and longer: T×2n (n=0, 1, . ..).
When f =20.36 the chaotic motion appears. It is noteddoubled, as indicated in Fig. 5d. When the value of f is

increased to 23, the response has a continuous, wide that within the chaotic region there is a small interval in

Fig. 4 (Continued over)

C03497 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part C

 at NATIONAL CHIAO TUNG UNIV LIB on April 28, 2014pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


465REGULAR AND CHAOTIC DYNAMICS OF A SIMPLIFIED FLY-BALL GOVERNOR

Fig. 4 Phase portraits and Poincaré points for (a) f =19; (b) f =20.2; (c), (d) f =20.37; and (e), (f ) f =23

which the motion abruptly becomes periodic again. The t=vt is defined, e:=0.5 and b= f /2. Equation (3) then
becomessudden end of the chaotic attractor appears at f =25.95.

v2ẍ+2avẋ+c sin x−b(1−cos t) sin 2x=0 (5)
2.5 Incremental harmonic balance method

where (Ω) represents a derivative with respect to the
dimensionless time. The first step in this method is aThe steady state periodic solutions of equation (3) can

be obtained by the IHB method [13], which can deal Newton–Raphson procedure. Let x0(t) denote the
current solution of equation (5) corresponding to thewith strong non-linearity very well and is convenient for

computer implementation. Here the dimensionless time excitation parameters v0, c0 and b0 . A neighbouring

C03497 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part C
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466 Z-M GE, C-S CHEN, H-H CHEN AND S-C LEE

Fig. 5 Time history and power spectrum: (a), (b) period 2T motion for f =19; (c), (d) period 4T motion
for f =20; (e), (f ) chaotic motion for f =23
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467REGULAR AND CHAOTIC DYNAMICS OF A SIMPLIFIED FLY-BALL GOVERNOR

Fig. 6 Bifurcation diagram for the Poincaré points of angular displacement

Fig. 7 Bifurcation diagram for the Poincaré points of angular velocity
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468 Z-M GE, C-S CHEN, H-H CHEN AND S-C LEE

solution is obtained by adding small increments to the T
q
, i.e. A(t+T

q
)=A(t). The stability of a linear per-

iodic system is analysed by the multivariable Floquet–current solution:
Lyapunov theory with an efficient numerical scheme for

x=x0+Dx, v=v0+Dv computing the transition matrix at the end of one period,
W(T
q
, 0). Here, the approximate transition matrixc=c0+Dc, b=b0+Db

W(T
q
, 0) is given by the following:(6)

For a small increment Dx, the non-linear terms sin x and
W(T
q
, 0)=a

N
k

i=1
AI+ ∑

N
j

j=1

(D
i
B
i
)j

j! B (19)sin 2x of equation (5) can be written as first-order Taylor
expansions:

B
k
=

1
D
k
P tk
t
k−1

A(j) dj (20)sin x=sin x0+cos x0Dx

sin 2x=sin 2x0+2 cos 2x0Dx where N
k

is the number of intervals in each period T;(7)
N
j

is the number of terms in the approximation of the
Substituting equations (6) and (7) in (5) and neglecting constant matrix B

i
exponential; the kth interval is

all the non-linear terms, the linearized incremental equa- denoted by t
k

and its size by D
k
=t
k
−t
k−1

; in the kth
interval the periodic coefficient matrix A(t) is replacedtion is obtained:
by a constant matrix B

k
.

v2
0
Dẍ+2av

0
Dẋ+g

1
(x
0
, t)Dx The eigenvalues of the monodromy matrix W(T

q
, 0)

are also called the Floquet multipliers (r1 , r2) which can=R+DvF+DcP+DbQ (8)
determine the stability of steady state solution. If all the

where modules of the eigenvalues r
k

are smaller than unity, the
solution is stable. If the module of one of the eigenvaluesg

1
(x
0
, t)=c

0
cos x

0
−2b

0
(1−cos t) cos 2x

0
(9)

r
k

is larger than unity, the solution is unstable. When
R=−[v2

0
ẍ
0
+2av

0
ẋ+g

2
(x
0
, t)] (10) an eigenvalue r

k
passes through the unit circle, bifur-

g
2
(x
0
, t)=c

0
sin x

0
−b
0
(1−cos t) cos 2x

0
(11) cation occurs.

The solutions obtained by the IHB method in com-F=−(2v
0
ẍ
0
+2aẋ) (12)

parison with those obtained by numerical integration are
P=−sin x

0
(13) shown in Figs 8a to c, in which the symbols (Ω) indicate

the solutions obtained by the IHB method and the fullQ=(1−cos t) sin 2x
0

(14)
curves indicate solutions obtained by numerical inte-

The second step of the IHB method is the Galerkin pro- gration. These solutions agree well for the same
cedure (see the Appendix). parameters.

From the Appendix, the qT period steady state solu- The different types of bifurcation can be verified by
calculating the Floquet multipliers of the monodromytion x0(t) has been determined and its local stability is
matrix as a function of parameter f as shown in Fig. 9.investigated by considering the following perturbed solu-
To investigate the bifurcation further, a Poincaré map istion:
used to display the bifurcation diagram in Fig. 10, which

x=x
0
+dx (15) shows the steady state Poincaré map.

Inserting equation (15) into equation (5) and neglecting
the terms of higher order in dx, the linear variational

3 GOVERNOR WITH AN ATTACHED COLLARequation is obtained with periodic coefficients in the fol-
MASS Mlowing form:

v2dẍ+2avdẋ+g
1
(x
0
, t)dx=0 (16) The mass of the collar is neglected for simplicity in the

previous investigation, and it can be seen from the aboveEquation (16) can be arranged in matrix form as
discussion that the simple model of the governor system

Ẋ=A(t)X (17) exhibits complex non-linear and chaotic dynamics. A
governor with an attached collar will now be studied.where

X= [dx, dẋ]T, A(t)=C 0 1

A
21

−2a/vD 3.1 Problem formulation

Using Lagrange’s equation, the differential equation for
the system is derived as follows:A

21
=−

g
1
(x
0
, t)

v2
(1+4b sin2 h )ḧ+2aḣ+2bḣ2 sin 2h+(1+2b)c sin h(18)

Since x0 is a periodic function of time t with a period =
1
2

( f −2e: f cos vt) sin 2h (21)
T
q
=2qp, the coefficient matrix A(t) has the same period

C03497 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part C
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469REGULAR AND CHAOTIC DYNAMICS OF A SIMPLIFIED FLY-BALL GOVERNOR

Fig. 8 Comparison between the IHB and numerical integration methods for (a) f =19, (b) f =20 and
(c) f =20.2
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470 Z-M GE, C-S CHEN, H-H CHEN AND S-C LEE

Fig. 9 Floquet multipliers as a function of f

Fig. 10 Response in Poincaré section by the IHB method
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471REGULAR AND CHAOTIC DYNAMICS OF A SIMPLIFIED FLY-BALL GOVERNOR

Fig. 11 Bifurcation diagram for e:=0.3 with 50 initial conditions

where b=M/m (mass ratio), 2a=c/m, c=g/R and 3.2 Numerical simulations and discussion
f =V2

0
.

The bifurcation structure of the angular velocity compo-If t=vt, the dimensionless form of equation (21) is
nent is shown in Fig. 11. The diagram shows a symmetryrewritten as
structure in which there are two chaotic regions. The
solution is a stationary point at the origin until f =18.72

(1+4b sin2h)ḧ+2
a

v
ḣ+2bḣ2 sin 2h+

(1+2b)c
v2

sin h and the system undergoes a supercritical bifurcation,
whereupon a time periodic solution that is a period T
Hopf bifurcation is generated. It is evident that, when f=

1
2v2

( f −2e: f cos t) sin 2h (22)
grows through 23.1, a symmetry-breaking pitchfork
bifurcation takes place and each period 1T bifurcates

With substitution of h=x, equation (22) becomes into a subharmonic period 2T. These motions then
undergo a succession of complete period-doubling cas-
cades (flip bifurcation), which eventually merge into the(1+4b sin2 x)ẍ+2

a

v
ẋ+2bẋ2 sin 2x+

(1+2b)c

v2
sin x

first chaotic region. The boundary crisis can be observed
at f =26.58, where it causes the chaotic attractor to be

=
1

2v2
( f −2e: f cos t) sin 2x (23) destroyed and results in a period 1T solution. It is clear

that there are two narrow windows within the second
chaotic region, one of which, period 5T, exists betweenThe number of the parameters affecting the system
f =46.12 and f =46.68. Figure 12, which is an enlarge-response is more than two. For example, let the
ment of the bifurcation diagram in Fig. 11 for f betweenrotational speed be the control parameter with the other
46.12 and 46.68, illustrates a period 5T window. For f =parameters fixed. The transition from regular to chaotic
46.14 a window of stable orbits appears.motion is considered for the following values of the par-

ameters of the system:

4 GLOBAL ANALYSIS BY THE INTERPOLATED
b=0.2, v=2,

2a
v

=1.2 CELL MAPPING METHOD

In the study of non-linear dynamic systems the influence(1+2b)c
v2

=4, e:=0.3
of initial conditions on system behaviour plays an

C03497 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part C
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Fig. 12 Enlargement of the bifurcation diagram in Fig. 11, showing a period 5T window for f =46.12–46.68

important role. For some system parameters, different
initial conditions may lead to different attractors that
may be regular or chaotic. Therefore, knowledge about
attractors and the domains of attraction is very import-
ant when investigating a non-linear system. Attractors
and domains of attraction must be delineated in the
region of interest in order to characterize the global
behaviour of a system.

Considering the case of f =18, equation (4) becomes

ẍ+1.4ẋ+4 sin x=9 sin 2x−9 cos 8t sin 2x (24)

To apply the interpolated cell mapping algorithm, the
first stage of any computation is to generate the mapping
function from a 10 201 (101×101) grid of points distrib-
uted in the phase plane using a fourth-order Runge–
Kutta integration algorithm. A trajectory is considered
to be periodic when the distance between two trajectory
states is less than 10−3. When no periodic motion occurs
until 20 interpolation steps, a trajectory is considered

Fig. 13 Domains of attraction for period 2T motion of equa-chaotic.
tion (24) with a damping value of 1.4

Figure 13 shows the result obtained by the ICM
method applied to equation (24) for the region of inter-

different multiperiodic solutions and cause differentest: −2.3∏x∏2.3, −2∏y∏2. In Fig. 13 the domain
domains of attraction. In addition, the basins of attrac-of attraction of attractor 1 is depicted by dots, the
tion of the chaotic attractor when f =20.37 and f =23domain of attraction of attractor 2 by the symbol ×
in equation (4) are shown in Figs 17 and 18.and the sink cell by the symbol +.

It is natural to study similar effects to the basin of
attraction for the other parameters that control the

5 CONCLUSIONSsystem. In this problem, the effects of the damping term
are considered. The values of the coefficient of damping
are chosen as 2.0, 1.1 and 0.8 respectively in equation It has been shown that the simplified model of a fly-ball

governor exhibits both regular and chaotic motions.(24). Figures 14 to 16 show that different damping
values can yield different attractors that correspond to Parametric studies have been performed by the IHB

C03497 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part C
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473REGULAR AND CHAOTIC DYNAMICS OF A SIMPLIFIED FLY-BALL GOVERNOR

Fig. 16 Domains of attraction for chaotic motion of equationFig. 14 Domains of attraction for period 1T motion of equa-
tion (24) with a damping value of 2.0 (24) with a damping value of 0.8

Fig. 17 Domains of attraction for chaotic motion of equation
Fig. 15 Domains of attraction for period 4T motion of equa- (24) with f =20.37

tion (24) with a damping value of 1.1

maps and power spectra are obtained numerically. Based
on such analyses, many aspects of the dynamic behav-method, the numerical integration method and other

analytical techniques to analyse the behaviour of bifur- iour of this simplified governor model are presented.
The global behaviour of the systems is obtained bycation and chaos. With the parametric studies the per-

iodic solutions can be clearly guided by the IHB method means of the interpolated cell mapping method (ICM).
The basins of attraction of the period attractor andand their stability is analysed by examining the move-

ments of eigenvalues of the monodromy matrix. The chaotic attractor are obtained for certain system param-
eters of interest.solutions obtained by the IHB method are found to

match exactly those obtained by numerical integration. It must be emphasized that this mathematical model
for a fly-ball governor is only a simplified one. The sim-A symmetry-breaking precursor to period-doubling

bifurcation and a cascade of period doubling routes to plifications are not all reasonable, for instance the neg-
lect of the O(e:2) term in equation (4) for e:=0.5. Thechaos are observed in this system. Many of the character-

istics available for detecting chaotic motion such as numerical data used are chosen to enrich the dynamic
behaviour rather than to agree closely with the practicalLyapunov exponents, Lyapunov dimensions, Poincaré
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where Elements of matrices R, F, P and Q:
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