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ON SINGULAR NONLINEAR H ~ 
CONTROL: A STATE-SPACE 
APPROACH* 

Jang-Lee Hong I and Ching-Cheng Teng I 

Abstract. A simple state-space approach for the four-block singular nonlinear H ~176 control 
problem is proposed in this paper. This approach combines a (J, J')-lossless and a class 
of conjugate (J, J')-expansive systems to yield a family of nonlinear H ~ output feedback 
controllers. The singular nonlinear H ~176 control problem is thus transformed into a simple 
lossless network problem that is easy to deal with in a network-theory context. 

1. Introduction 

The singular H ~176 control problem has been widely studied in linear systems. 
Khargonekar, Petersen, and Zhou [9], [11], [19] derived the solvable conditions 
for this problem in terms of a family of algebraic Riccati euqations parametrized 
by a positive constant e. Alternatively, Stoorvogel et al. [14], [ 15] investigated this 
problem by using quadratic matrix inequalities corresponding to Riccati equations. 

As in the singular nonlinear H ~176 control problem, Maas and Van der Schaft 
[10] extended the results from [9], [11], [19] to show that under assumptions this 
problem can be solved by a state feedback that leads to an L2-gain less than or 
equal to a prescribed bound >, for the closed-loop system. Maas and Van der Schaft 
also used the worst-case certainty equivalence principle to find a nonlinear output 
feedback controller. 

In this paper the singular nonlinear H ~176 control problem is reformulated in terms 
of the chain-scattering matrix description. An alternative approach that offers a 
family of controllers solving this singular problem is then developed. This approach 
is based on the classical network theory, which combines the traditional (J,  JP)- 
lossless system with a class of nonlinear conjugate (J, J/)-expansive systems. As 
will be seen, the controller thus obtained is straightforward and provides a deeper 
insight into the synthesis of the controllers. 
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2. Notation and preliminary information 

Throughout this paper, dom(Ric) denotes a Hamiltonian matrix with no eigen- 
values on the j w-axis. R n denotes n-dimensional Euclidean space. The chain- 
scattering matrix description is abbreviated as CSMD. We now proceed to define 
the L2-gain of  a nonlinear system. 

We are given a nonlinear system of the form 

:=  J ~ = f ( x )  + g(x)u 
I y = h(x) 

with x ~ R n, u(t) E R m, and y(t) E RP. Furthermore, let b/8 denote the set of  
piecewise continuous functions u : R --~ R m satisfying llu(t)[I < ~ for all t ~ R 
This gives the following definition for L2-gain of  the system Z [6], [8], [18]. 

Definition 1. I f  ~3 has a locally asymptotically stable equilibrium at x = 0 and 
is dissipative with respect to a supply rate s = Hu(t)]l 2 - lly(t)ll 2, then for each 
E > 0 there exists a storage function E(x) (with E(x) > 0 and E(O) = O) and 
3(E) > 0 such that for each u(.) ~ b/~(,) the response y(.) of  Z to u(.) from the 
initial state x (0) = 0 satisfies 

E(x(tl)) - E(x(to)) < (y2llu(t)H2 - Hy(t)H 2) dt 

for all tl > to > 0. Therefore, E has an Lz-gain which is less than or equal to y.  

2.1. The singular nonlinear affine H ~176 control problem. 

Consider the following smooth (C ~176 singular nonlinear affine H c~ framework: 

{ i ~ A(x) + Bl(x)w + B2(X)(u12) 
P := Cl(x) v , (1) 

C2(x) + D(x)w 

where z( t ) E R pl , y(t ) c RP2, w(t ) E R mx, and u(t ) ~ R rn2 are the error, observa- 
tion, disturbance, and control input, respectively. The states x = (xl, x2,, �9  xn) 
are local coordinates for a state-space manifold M defined in a neighborhood ~ of 
the origin in R n, Assume that x ---- 0, an equilibrium point, and also that A(0) = 0, 
Cl(0)  = 0, and C2(0)  = 0. 

The singular nonlinear affine H ~ control problem is then modeled so as to 
choose a controller K that connects the observation vector y to u such that g 
locally, asymptotically stabilizes the closed-loop system in a neighborhood ~2 of 
the origin. Furthermore, the closed-loop system with a local Lz-gain is tess than 
or equal to a prescribed number 2/. Figure 1 shows a general setup for this singular 
nonlinear affine H ~176 control system. 
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Y 

Figure 1. General setup. 

For simplicity, and yet without any loss of generality of the derivations in 
subsequent sections, we make the following assumptions. 

Assumption 1. (A(x), Bl(x)) and (A(x), B2(x)) are locally stabilizable and 
(C1 (x), A(x)) and (C2(x), A(x)) are locally detectable in a neighborhood f2 of 
the origin. 

Assumption 2. D(x)DT (x) = Ip2. 

Furthermore, if one considers the linear version of this setup, Desoer and 
V/dyasagar [2] have shown that the stability of the closed-loop system also guar- 
antees that 

f7 /7 llu(t)ll 2 dt < k llw(t)li 2 dt, 

where k is a constant and 0 < k < ~ .  For this reason, in the present singular non- 

linear problem, it is further assumed that the stabilizing feedback (Ul)  = ( u ~  
li2 ~U~/] 

not only ensures the L2-gain of the closed-loop system is less than or equal to ?' 
but satisfies the following assumption. 

Assumption 3. For all x 6 M there exists a constant k > 0 such that 

fo fo Ilu~(t)llZ dt ~ k ilw(t)][2 dt, 

where T > 0 and w 6 L2[0, T]. 

(2) 

Figure 2 shows the setup of this system. 

Now an extra signal ~ = eu2 is introduced into P to obtain a modified system 
/5 given by 

{ 2 = a(x) +Bl(X)W+ Bz(x)(U~) 

\el (X)] (3) 
y = C2(x) -~- D(x)w 
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V 

Figure 2. Setup of modified system. 

Theorem 1. The following two conditions are equivalent. 

(i) The closed-loop system P with stabilizing feedback u* has L 2-gain less than 
or equal to y. 

(ii) Suppose that e is sufficiently small; then the closed-loop system/5 with sta- 
bilizing feedback u* has L z-gain less than or equal to V. 

Proof.  (i) ~ (ii) Suppose that the stabilizing feedback u* is already such that the 
L2-gain of  the closed-loop system P is less than or equal to y. From Definition i, 
this implies that for every x 6 M there exist two functions U (x) (with 0 __5. U(x) < 
oo and U(0) = 0) and 0 ( x )  (with 0 < (l(x) < oo and 0 (0 )  = 0), and 3 > 0 
such that 

i0 fo IIz(t)ll z dt + U(x) < y211w(t)ll2 dt 

( fo or Ilz(t)l[ 2 dt < y211w(t)lle dt + U(x) (4) 

fo llz(t)ll 2 dt < (7/2 - 3) IIw(t)il z dt + O(x) or  

for all T _> 0 and w 6 L2[0, T]. 
We multiply both sides of  equation (2) by e 2 and let e > O with e sufficiently 

small so that 8 - eZk = / z  > 0. From equation (4), one can find a function U(x)  
such that 

io fo (llz(t)lt 2 + e211u~(t)ll 2) dt < (y2 _ / z )  llw(t)ll 2 dt + U(x), 

for all T > 0 and w 6 L2[0, T]. This implies that the stabilizing feedback u* also 
provides an L2-gain of an closed-loop system/5 that is less than or equal to y.  

fo io (ii) =~ (i) Because ([Iz(t)ll 2 + e211u~(t)lt 2) dt > Ilz(t)ll 2 dt, this is 

naturally true. 
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3. The CSMD and (J, J ' ) -systems 

A nonlinear C ~ chain-scattering system G is given as 

[~ -Ul [ ic = a(x)  + b(x)u Yl G u G := 
Y Y2 ......... ~ , u s  y = c(x) + d(x)u  

(5) 

with Yl e RP, Y2 c Rq, Ul 6 R m, and uz ~ R n. Without a loss of generality, one 
assumes that G has an equilibrium point at x = 0 with c(0) = 0. 

Definition 2. 
of the nonlinear system G are defined as 

if~ W(xo) = min llul [[2-[lu2ll2dt = 
ueL2(-~176 2 CO 

x (-oo)=0,x (0)=x 0 

and 

min 
u~L2 (-or,0) 

x (- ~)=0,x (0)=x 0 

The controllability function W(x)  and observability function V(x)  

- u r j ~ u d t  
2 00 

1 l V(xo) = ~ tlYl [12- Ily2]12dt 
o o  

'f; = -  y r  j y  dt,  x(O) = xo, u(t) -~ O, O < t < oo, 
2 ~ - 

where J = diag{Ip, - I q }  and J '  = diag{Im, - In} .  

This definition results from the facts that the value of the controllability function 
at x0 is the minimum of control energy required to reach state xo and the value 
of the observability function at xo is the amount of output energy generated by 
xo. Furthermore, from equation (5), the u consists of input element U l and output 
element u;, and the y consists of output element Yl and input element Y2. Partic- 
ularly if system G is asymptotically stable and if xo is reachable from 0, then the 
preceding two functions will be finite. 

Theorem 2. Suppose that a(x)  is asymptotically stable on a neighborhood f2 o f  
the origin, and the smooth function W(x )  on f2 (with W(x)  > 0 and W(O) = O) 
is the solution of  

Wx(x)a(x)  + 1 W x ( x ) b ( x ) J ' b r  (x)Wrx (X) = 0 

a(x)  + 2 b ( x ) J ' b r ( x ) W f  (x) = 0 

such that - ( a ( x ) + b ( x ) J ~ b T ( x ) W rx ( x ) ) is asymptotically stable on f2 ; then W ( x ) 
is the unique smooth solution. Furthermore, for  all x ~ [2, V (x) (with V (x) >_ 0 
and V (O) = O) is the unique smooth solution of  Vx (x)a(x)  + l cT (x )Jc (x )  = O. 
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Proof. The proofis quite similar to that of Theorem 3.2 in [ 12] and is thus omitted. 
D 

The following two theorems are derived from Theorem 2; they are extensions 
of the (I, I t) case [13] applied to the chain-scattering setting. Also, Theorem 3 is 
a modification from the (I, lt)-lossless system [18] to the (J, Jt)-lossless system. 

Theorem 3. System G with d T (x) J d(x) = ji, which is reachable from O, is called 
( J, J')-lossless if and only if there exists a differentiabIe function V (x ) such that 

(i) Vx(x)a(x) + l cr (x )Jc(x)  = O; 

(ii) Vx(x)b(x) + cr (x )Jd(x)  = O; 

(iii) V(x)  > O, V(O) = O. 

Proof. From the lossless property, there exists a smooth storage function V(x)  
such that 

V(X(tl)) - V(x(to)) = ~ (ur( t )J 'u( t )  -- y r ( t )Jy ( t ) )  dt > O, 

where V (x ) > O, V (O) = O, and to < tl. 
Differentiating both sides, one obtains 

Vx(x)[a(x) + b(x)u] = uT j t  u -- ~[c(x) + d(x)u]r j[c(x)  + d(x)u]. 

Direct computation yields (i) through (iii). 

Theorem 4, System G with d(x)J Idr  (x) = J, which is reachable from O, is 
called conjugate ( J, Jr)-lossIess if and only if there exists a differentiable function 
W(x)  such that 

(i) a(x) + �89 (x)Wrx (x ) = O; 

(ii) c(x) + d (x )J 'br  (x)Wrx (X ) = 0; 

(iii) W(x)  >_ O, W(O) = O. 

Proof. Because it is a direct extension of the co-inner matrix in (I, F)  case ~13] 
to the (J, J ' )  system, the proof is omitted. 

Corollary 1. Let G be a conjugate (J, Jt)-lossless system. Then 

-~ (ur ( t)J '  u(t) -- yT ( t )Jy(t))  dt > O. 
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Proof. From the lossless property, there must exist a storage function W(x) such 
that 

W(x(q))  - W(x(to)) = -~ (ur(t)J'u(t)  - yr( t )Jy( t ) )  dt > 0, 

where W(x) > 0 and W(O) = O. [] 

The following theorem is an extension of the linear conjugate (J, J')-expansive 
system [7] to the nonlinear setting. One might confuse the conjugate (J, J ' ) -  
expansive system with the preceding conjugate (J, J')-lossless system; however, 
the J-expansive has been defined in [3]. For clarity, our current study also uses 
this definition. As will be seen, the conjugate (J, J1)-expansive system is indeed 
a conjugate ( - J ,  -Jf)-lossless system with the chain-scattering setting contrary 
to the conjugate (J, J')-lossless system. 

This nonlinear C ~ chain-scattering system G is given as 

Yl ~ u l  { Jc = a(x) + b(x)u 
Y Y~ u2 y = c(x) + d(x)u 

Theorem 5. System G with d(x)J 'dr(x)  = J, which is reachable from O, & 
called conjugate ( J, Jt)-expansive iff there ex&ts a differentiable function W (x ) 
such that 

(i) - a ( x )  + �89 (x) WT (x) = O; 

(ii) - c ( x )  + d(x)J~br ( x )Wf  (x) = O; 

(iii) W(x) > O, W(O) = O. 

Proof. 
result. 

Replacing (J, J ' )  in Theorem 4 by ( - J ,  - J ' )  leads immediately to this 
[] 

Corollary 2. Let G be a conjugate (J, J~)-expansive system. Then 

1 ft0 tl (yT (t)Jy(t) -- uT (t)J'u(t)) dt >_ O. 

Proof. Replacing (J, J ' )  in Corollary 1 by ( - J ,  - J ' )  gives this result. [] 

4. The state-space formulas for deriving H ~ controllers 

We now propose an alternative method for designing nonlinear Hoo controllers. 
This method is based on the combination of the chain-scattering matrix description 
(CSMD) with the (J, J')-lossless and conjugate (J, J~)-expansive properties. 
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From equation (1), let P = N M -  ~ be a normalized right-coprime factorization, 
as in linear system theory, thus giving 

where 

M ~--- 

s = A(x)  + B ( x ) F ( x )  + B(x)Ua(x)  w t 

= C(x)  .-}- D ( x ) F ( x )  .-}- D(x)Ua(x)  Lw' 

[z,] 
Jc = A(x )  + B ( x ) f ( x )  + B(x)Ua(x)  w' 

Z t 

B(x )  = [BI (x )  B2(x)] ,  
[ O e 7  F O 7 

b(x) 0 C2(x) A 

F F1(x)l [ Ua,,(x) U~,=(x) l 
F(x) = [ FE(x) ] ,  U~(x) = Ua=,(x) U~:=(x)]' 

One further defines G1 and G2 as 

";] 
Yc = A(x) + B(x)F(x) + B(x)Ua(x) L L, 

= c1 x) + F:(x)J + 0 0 U,,(x) w' 

| .ic = Z ( x ) +  B(x)F(x)+B(x)Ua(x)[L~,]  

~ [ [~]~ = [~I~]+[ ~ 'o][~x~l+[ o ~ x ~  ~x~ 'o]~o~[L',] 
(6) 

Obviously, the singular nonlinear H ~176 setup of Figure 2 is thus transformed into 
the CSMD as shown in Figure 3. 

Z t ~) 

II 

Figure 3, Transformation of closed-loop system from modified system to CSMD. 
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4.1. The state feedback gain F(x). 

To derive the state feedback gain, first one rewrites G1 in equation (6) as 

Ez'] 
2 = A ( x )  + B ( x ) g a ( x )  W' 

= d(x) + b(x)Ua(x) w' 

From Assumptions 1 through 3 and Theorem 3, G 1 will be a (J, J1)-lossless system 
if 

onec oo    a,X, E ~ /0] = 
(ii) there exists a C 2 nonnegative differentiable function V(x) (with V(0) = 0) 

that is locally defined in a neighborhood of the origin and that satisfies the 
Hamilton-Jacobi equation 

such that 

~ ^ 

Vx(X)~(x) + ~C(x)J C(x) = o 

Vx (x)8(x)Ua (x) + dr  (x)J b(X)Ua (x) = o. (7) 

From [1], [16], [17] and equation (6), one knows that, if the Jacobian matrix of the 
Hamiltonian flow associated with G~JG1 (with z ~ = 0 and w ~ = 0) at equilibrium 
belongs to dom(Ric), then the corresponding Riccati equation has a solution. 
This also implies that there is a V(x) so that fi,(x) = A(x) + B(x)F(x) is locally 
asymptotically stable in the neighborhood of the origin. 

By direct computation, we obtain such a Jacobian matrix as 

A B1B 1 B2 B 2 
- c 1 T c 1  -- ' 

and the corresponding Riccati equation is given by 

A T X + X A + X B 1 B T X - 4 X B 2 B T x + c T c I = O .  (8) 
E z 

From Hewer [5], the existence of a solution to this game Riccati equation is related 
to the standard filter Riccati equation (FARE) A Z + ZA T _ ZC~" C1Z + ~ B2 B f  = 

0 and the bounded real Riccati equation (BRRE) (A - ZC~C1)W + W(A - 
C~ C1 Z) r - WCI r C1W - B1B~ = 0. However, from Lemma 3 in Doyle et al. 
[4], because Assumption A provides the existence of a solution to the FARE and 
BRRE, the solution for equation (8) thus exists. 
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Now, we derive the state feedback gain F(x) from equation (7), which gives 
US: 

Vx(x)e(x)Ua(x) + CT (x)J D(x)Ua(x) = 0; 

> Vx(x)e(x) + Cr(x)JD(x) = 0; 

Vx(x)B(x) + C x) + b ( x ) f ( x )  J b ( x )  = 0; 

Vx(x)B(x) + [0 CT(x) 0] JD(x) + Fr(x)Dr(x)JD(x) = 0; 

--~ Br(x)Vf (x) + Dr(x)J  Ca x) + Dr(x)Jb(x)f(x) = O; 

F(x) = -R -~ (x)BT(x)Vf (x); 

I Fl(x)l  BT(x)VT(x) 1' 
F2(x)J t = --~B~(x)Vf(x) 

Ei F--lml 0 ] and/~(x) = �9 where R(x) = DT(X)JD(x) = L o , I 

4.2. Local disturbance attenuation by measurement feedback. 

In nonlinear systems, state x of the plant is difficult to measure direcdy from 
output y. The actual message for designing the output-feedback controller is thus 
difficult to obtain. Hence, it is natural to replace x by some estimate ~ provided 
by proper auxiliary dynamics. One then seeks an appropriate nonlinear system 1:I 
constructed by this estimate state ~ such that l:IG2 satisfies the conjugate (J, J~)- 
expansive properties. 

First, rewrite G2 as: [z,] 
= ;~(x) + B(x)Ua(x) w' 

[z,] = ~(x) + b(x)Ua(x) 

and define the system FI given by 

= A(~) + H(~)C(~) + H(~) [ ;  1 
fI := 

I v ] = Uz(~)C(~)+Uz(~)I u7 a yj  
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where ~ is an estimate of x, 

H ( - ) = [ H I ( - )  H2(.)], 0 ( . ) =  C2(') = C2(')+L)( ')FI(-) ' 

and v = L(~r) (L(~r) is a free stable system with [ [L(o ' ) I [L  2 < 1). 

The state-space representation of IrlG2 is therefore given by [ 

g(x) F B( )vo(x) ] z' 

The block diagram of this closed-loop system can be illustrated as in Figure 4. 

,~ . . . . . . . . . . . . .  ~ . . . . . . . . . . .  ] '/~ 

b . . . . . . . . . . . . . . . . . . . . . . . . . .  a 

Z p 

Pigure 4. CSMD for over all closed-loop system. 

Rewrite (IG2 as 

Remark I. 

2e 

I=IG2 := v 

I z' ] -.~ Ae(xe) + Be(xe) to t 

[z] = Ce(xe) + De(xe) to, 

(9) 

From Assumptions 1 through 3 and Theorem 5, IrIG2 will be a 
conjugate (J, J1)-expansive system if 

(i) o n e c h o o s e s U z ( x ) = I O  I 01 such that 

De(xe)J  DT (xe) = Uz(X)[)(X)Ua(X)JUT (x)[)T ( x ) U [  (x) -~ J 

(ii) there exists a C 2 nonnegative function W(xe) = Q(x -~ )  = (x--~)rS(x--~) 
(with W(0) = 0 and S > 0) that is locally defined in a neighborhood of 
(x, ~) = (0, 0) and that satisfies the Hamilton-Jacobi equation WxeAe(xe) -- 
1 W x e n e ( x e ) J B T ( x e ) W T  = 0 such that 

C(xe) - O e ( x e ) J B [ ( x e ) W  T -.~ O. ( 1 0 )  
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From [ 1], [ 16], and [ 17], one has that, if the Jacobian matrix of the HamiltonJan 
flow associated with # G 2 J G ~ *  (with the input being zero) at equilibrium 
belongs to dom(Ric ) ,  then there is a W(xe) = Q(x  - ~) so that Ae(xe) is 
locally, asymptotically stable in a neighborhood of (x, ~) = (0, 0). How- 
ever, Hong and Teng [7] had shown that such a Jacobian matrix belongs to 
dom(Ric )  and has a solution indicated by Z. By direct computation, one can 

IFa=Q l verify that Q(x - ~) = (x - ~)T z - I ( x  -- ~) and 2 -1 = ~ L52jL= o. 

4.2.1. The measurement feedback gain H(~).  Because W(xe) = Q(x - ~) = 
(x - ~ ) r z - l ( x  - ~ ) ,  and then Wxe = [ Wx(xe) W~(Xe) ] = [ Qx - Qx ], one has 
the following derivation for the measurement feedback gain H(~).  Equation (10) 
gives 

[ _ ~ j  = 0  

- (C(x) + C(~)) + D(x)U.(x)JUra(x)(Br(x) - s  r = 0, 

==* - (C(x) + C(~))Qx r + b(x)U~(x)JUra (x)(Br (x) - / ) r ( x ) n r ( ~ ) )  = 0), 

_ O;~(~r(x ) + ~r(~)) + B(x)U.(x)JUr(x) f )r (x)  

- H(~) f (x )U~(x )JU[(x )3r (x )  = O, 

= ~  H (~ )b(x)U.(x)JU'[  (x )b  r 

= _Q-~l(~r(x ) + ~r(~)) + B(x)U.(x)JUr(x)~)r(x),  

[ HI(~) n2(~) ] 

= [ Q2'( f f ( (x)  + c~( t ) )  - B2(x) Q-~(Cr(x) + or(~)) + B~(x)l)r(x) ]R-~, 

w h e r e l ~ = D ( x , U a ( x ) j U T ( x ) [ ) T = [ l ~  O' O ] F ~ I  ? i  1 
- b ( x ) b r ( x ) J = l  o " 

Remark 2. Because v = L(~), where [[L(cr)IlL 2 5 1, and HG2 is conjugate 
(J, J~)-expansive, it immediately follows from Corollary 2 that 

L fo (tlv(t)l] 2 -- IlcI(t)ll2)dt < 0 ==~ (llz'(t)ll 2 - tlw'(t)H2)dt < O. 

Furthermore, by the property in Theorem 3, having G1 be (J, J~)-lossless implies 
that 

j(0"l (]]z'(t)][ - llw'(t)ll2)dt 0 < 

f? (Hz(t)l[ 2 + [Iz(t)li 2 - Ilw(t)ll2)dt <_ 0, 

and then, from Theorem 1, this also means that the original closed-loop system P 
has L2-gain less than or equal to y (y = 1). 
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5. Conclusion 

This  paper  has defined the nonl inear  conjugate  ( J ,  J t ) - toss less  and nonl inear  con- 

juga te  ( J ,  J ' ) - e x p a n s i v e  systems.  Using these ( J ,  j r )  systems, we  have obtained 

a fami ly  o f  s tate-space control lers  for the singular  four-block local  nonl inear  H ~ 

ou tpu t - feedback  control  problem.  As this paper  has proposed,  our approach has 

t ransformed this p rob lem into a s imple  lossless ne twork  problem,  which provides  

deeper  insight  into the synthesis o f  the controllers.  
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