
CIRCUITS SYSTEMS SIGNAL PROCESS
VOL. 18, NO. 4, 1999, Pe. 377-393

REAL-TIME FFT ALGORITHM
APPLIED TO ON-LINE SPECTRAL
ANALYSIS*

Pei-Chen Lo 1 and Yu-Yun Lee 1

Abstract. On-Iine running spectral analysis is of considerable interest in many electro-
physiological signals, such as the EEG (electroencephalograph). This paper presents a new
method of implementing the fast Fourier transform (PTT) algorithm. Our "real-time FFT
algorithm" efficiently utilizes computer time to perform the FFT computation while data
acquisition proceeds so that local butterfly modules are built using the data points that are
already available. The real-time FFT algorithm is developed using the decimation-in-time
split-radix FFF (DIT sr-FFT) butterfly structure. In order to demonstate the synchronization
ability of the proposed algorithm, the authors develop a method of evaluating the number of
arithmetic operations that it requires. Both the derivation and the experimental result show
that the real-time FFT algorithm is superior to the conventional whole-block FP-T algo-
rithm in synchronizing with the data acquisition process. Given that the FPT size N = 2 r ,

real-time implementation of the FFT algorithm requires only 2/r the computational time
required by the whole-block Fur algorithm.

1. Introduction and motivation

In an EEG, the rhythmicity provides a means of quantitatively describing the EEG
records [5]. The development of an FFT algorithm [4] has made the running spec-
tral analysis of long-term EEG records practical. For example, the compressed
spectra method [2] based on the short-time Fourier transform (SqTT) provides
a visual interpretation of the time-varying frequency characteristics. The STPT
has been widely used in commercially available EEG machines to analyze the
frequency spectra of multichannel EEGs. On-line processing of digital EEG sig-
nals is helpful for intensive-care monitoring and diagnostic reference in clinics.
In many applications we very often require the real-time display of the EEG fre-

* Received May 21, 1998; revised October 29, 1998. This work was supported by the National
Science Council of Taiwan, Republic of China, under grant NSC87-2213-E-009-128.

1Department of Electrical and Control Engineering, National Chiao Tung University, 1001
Ta Hsueh Road, Hsinchu, 30050 Taiwan, Republic of China. E-mail:pcto@cc.nctu.edu.tw

378 Lo AND LEE

quency spectra. As a result of advances in digital technology and instrumentation,
some EEG instruments have more than 100 recording channels [8]. To develop an
algorithm capable of performing real-time, multichannel frequency analysis, one
needs to efficiently utilize the computer time and also improve the computational
efficiency.

Since the development of the radix-2 FFT proposed by Cooley and Tukey [41,
many FFT algorithms have been rapidly developed and implemented using both
software and hardware approaches [2], [3], [6], [7], [10], [13]-[18], [20]. Of these,
the split-radix FFT (sr-FVl?) algorithm derived by Duharnel and Hollmann [6], [7]
has a simpler structure and better computational efficiency. The work of Duhamel
and Hollmann has been further discussed and extended in [14], [16], [18], [20].

In fact, both the conventional Cooley-Tukey FFT algorithm and the Duhamel-
Hollmann sr-FFT algorithm were developed to start building a butterfly structure
for the FFT computation only after all the data points had been collected. Hence,
we refer to this algorithm type as the "whole-block FFT algorithm." If we try to
design the real-time STFT algorithm in this manner, most of the processing time
is wasted on acquiring the entire epoch of the (multichannel) EEG because of the
low sampling rate (200 Hz).

The processing time could be further reduced if we simultaneously build some
local butterfly structures (to be called the "butterfly modules" or simply the "mod-
ules") while the data acquisition (//O process) is still under way. These local but-
terry modules perform the decomposed smaller-size FFT computation. The goal
is to finish building as many butterfly modules as possible with the data points
available. The authors recently presented the idea of how to implement a real-time

algorithm, based on the sr-FFT butterfly structure, for a complex data array
[9]. In this paper, we explore the symmetrical property of the discrete Fourier
transform (DFT), given that the input data are real, to further reduce the number
of complex arithmetic operations in the real-time FFT algorithm. We also present
our experimental results of analyzing the time span of constructing the local but-
terry modules on a sample-to- sample scale. The performance of the algorithm is
measured by the degree of synchronization of the data acquisition and the Fourier
analysis.

2. DIT sr-FFT for real input data

A local butterfly module in the DIT sr-FFT structure looks like a horizontally
reversed "L?' The array size N is an integer power of 2, N = 2 r, where the positive
integer r indicates the number of decomposed stages in the DIT sr-FFT butterfly
structure. Consider a local butterfly module at the (r - j)th stage. As illustrated in
Figure 1, the module performing an L-point DFT G[k], where L = 2 r - j , involves
one L.point DYT block, two L_point DFT blocks, and one L_point non-DVr block.
The L-point DFT G[k] of data array g[n] is decomposed into one ~-point

REAL-'rIME ~ ALGORITHM 379

o

GTL/4-k]

a[k+L/4l

G[L/2-k]

non-DFT block

stage-(r-j-2) stage-(r-j-l)

DFT block

stage-(r-j)

Figure 1. A local L-shaped butterfly module performing an L-point sr-FFT at the (r - j)th
stage.

DFT G2n [k] = DFT {g[2n]} and two ~-point DFTs, G4n+] [k] = DFT {g[4n + 1]}
and Gnn+3[k] = DFT {g[4n + 3]}, with the twiddle factors

L - I
= = w (2 m + l) k G[k] Zg[n]W~k Zg[2m]W2mk + Z g[2m + 1],, L

n=0 m=0 m=0

~-1 ~--1 ~-1
= l l W (4m+l)k _1._ .-}- 3]W(L 4m+3)k E g[2m]W~mk + ~-, g[4m + j r Z g[4m ,

m=0 m=0 m=0
(2.1)

- j ~
where WL = e L and 0 < k < (L - I) [12]. The first term is the ~-point DFT
of the even-indexed data points in the gin] array:

G2n[k] = E g[2n]W~lC ' (2.2)
n=0

where 0 < k < (~ - 1). The last two terms in (2.1)represent the ~-point DFTs,
G4n+] [k] and Gan+3[k], with the twiddle factors

380 Lo Ar~O LEE

7}-1 7}-i
E g[4n + 1]W(L 4n+Dk = W k ~_~ g[4n + 1]WnL k

7:
n=O n=O

= W~. G4n+l[k], and

7}-1
(2.3)

(2.8)

~_, g[4n + 3]WL (4n+3)k = W3L k Z g[4n + 31W2J
n=O n=O 4

= W 3k" G4n+3[k], (2.4)

where 0 < k < (7} - 1). Hence, the algorithm is a mixture of the radix~2 and
radix-4 DIT FiaTs.

In most applications, the input data are real. For a real sequence x[n], the
N-piont DFT X [k] possesses the complex-conjugated symmetrical property

X [(- k)) N] = X [N - k] = X * [k] , 1 < k < (N - 1) , (2.5)

where ((--k))N denotes the circular operation on the discrete frequency variable
k [12]. The symmetrical property, which halves the number of arithmetic opera-
tions, can be applied to each decomposed local DFT block to reduce the complex
arithmetic operations. Thus, to compute the L-piont DFT, (2.1) can be reduced
in two ways. First, consider the -~-point DFTs multiplied by the twiddle factors
in (2.3) and (2.4). If the multiplications W~. �9 Gan+l[k] and W 3k �9 G4n+3[k] for

3U
1 < k < (-~) are computed, it follows that W~'. G4n+l[k'] and W~ �9 G4n+3[k] for
(-~ + 1) < k' < (-~ - 1) can be obtained by applying the symmetrical property.
That is,

WkL/.a4n+l[k/]=W~L-k. G 4 n + l [L - k]

L
-= W~WL k "G*4n+l[k] =- - j (W k "G4n+l[k])* , (2.6)

3(k] w3k'.G4n+3[k:]-= W L . G4n+3 [z -

(.:3), "= W 7 WL3k . G]n+3[k] ..= j k . G4n+3[k] , (2.7)

where 1 < k < (-~ - 1) and k' = ~ - k. Note that G2n[k] in (2.2) is defined

for 0 < k < (~ - 1), and G4n+l[k] and Gnn+3[k] are defined for 0 < k <
(~ - 1). The complete G[k] can be obtained by using the periodic property. Thus,
by implementing the symmetrical property in (2.6) and (2.7), equation (2.1) for
computing the first ~-point DFr values becomes

G[1] through G I L l :

G[k] = O2n[k] "{" (WkL �9 G4n+l[k] -Jr- W3L k ' G4n+3[k]) ,

REAL-TIME ~ ALGORITHM 381

O[~] O~"[~ ~1
-~ (W~L-k.a4n+l IZ-k]--~-W3(~-k) .a4n+3 iZ-~]) ,

= G 2 n [4 - k] - j (W k . G 4 n + l [k] - W 3 L k . G 4 n + 3 [k]) * ,

o ~ (~ _ ~) , ~.~

a Ik+ Z] -~- a2n Ik[-Z] -j(wk.a4n+l[k]- w3k'G4nw3[k]),
1 ~ (~) ~0~

G [~ - + 1] throughG[L-1] :

Notice that computing G[0] and G [L] involves totally three real additions:

G [0] ~--- aEn [0] + (a4n + 1 [0] -[- a4n+3 [0]) (2.12)

G [L] = G 2 n [O] - (G 4 n + l [O] + G 4 n + 3 [O]) �9 (2.13)

The remaining half of the DFT values G[k] for (~ + t) < k _< (L - 1) can be
obtained from the complex conjugation of G[k], 1 < k < (~ - 1):

382 Lo ANO LEE

t o.g I4

- G * [L - k] , l < k < (L - 1) ,

G [~] through G[L - 1]:

(2.14)

according to the complex-conjugated symmetrical property.
Figure I shows the local butterfly module following the computations of equa-

tions (2.8) through (2.13). The four output sets compute the ilrst half of the DFF
samples G[0] through G [~], from which the rest of the DVI" samples G [~ + 1]
through G[L - 11 can be derived using (2.14) and (2.15). The shaded regions
of the Figure represent the DFT blocks: that is, the connecting branches in the
regions are able to accomplish the local DFT computation. The blank region at the
(r - j - 1)th stage represents the non-DFT block.

3. Real-time implementation of DIT sr-FFT

3.1, Construction o f the on-line butterfly modules.

The conventional FFT, designed to obtain a complete frequency-band spectrum,
makes an inherent assumption that the input and output sequences have the same
array size. However, two situations often encountered are: (1) only a narrow fre-
quency band of the Fourier spectrum is of interest, and (2) the input data array
consists of many zero-valued data points due to zero- padding. To reduce un-
necessary arithmetic operations in these situations, a number of "pruned FFT"
algorithms have been introduced [1], [10], [111, [131, [14], [17], [19]. Pruning is
a modification of the complete butterfly structure. Input pruning removes those
branches connected to the zero-valued input; output pruning removes those con-
nected to the unattended output samples. Inspired by the input pruning scheme, the
authors developed the real-time FFT algorithm, which builds the on-line butterfly
modules based on the DIT sr-FFT structure.

When performing the on-line Fourier analysis of the multichannel EEG, one
can take advantage of the low sampling rate and efficiently utilize the computer
time. The EEG is usually sampled at 200 Hz. To analyze and display the on-line,

REAL-TIME ~ ALGORITHM 383

running Fourier spectra using a 512-piont DFT, one would spend more than 2.5
seconds on acquiring the digital EEG data. The efficient algorithm presented in
this paper utilizes the data points available to construct the local butterfly modules
while the input data array is still not completely filled up. In Section 4 we will show
that the real-time implementation of the Fb-T algorithm provides better synchro-
nization capability than the conventional whole-block implementation. The more
substantial improvement is observed especially for a larger number of recording
channels and a larger FFT size.

To better illustrate how the algorithm works, the complete 16-piont DIT sr-FFT
structure is considered, without implementing the symmetrical property. Figure 2
displays the complete butterfly structure for X{k] = DFT {x[n]}. Consider the
four blocks at the second stage. The shaded regions indicate the DFT blocks; the
blank region represents the non-DFT block. Further decomposition in the non-DFT
block at the second stage results in two length-2 DFTs at the first stage, directly
connected to the input data array.

1st stage 2nd stage 3rd stage 4th stage

Figure 2. The signal flow graph of a 16-point DIT sr-FFT structure.

384 Lo ANt~ LEE

The signal flow graphs in Figure 3 are used to illustrate the progress of the 16-
point sr-FFT butterfly structure when the data points collected are x[i],
i = 0 12 (Figure 3a) and 0 14 (Figure 3 b). According to the DIT
FFT algorithm, the input sequenceis arranged in bit-reversed order to obtain a
normal-order output sequence for in-place computation. Hence, in Figure 3 the
input data array is arranged, from the top downwards, in bit-reversed order at the
input stage of the DIT sr-FFT structure. Note that the array index i in Figure 3 is
expressed in normal bit order, that is, the actual order of the collected input se-~
quence. The solid lines represent the accomplished computational branches. The
dashed lines indicate that the signal-flow branches are not constructed because the
last few data points have not been collected. Obviously, the first butterfly module

1st stage 2nd stage 3rd stage 4th stage

x[0]~x[12] are collected
: accomplished branches

............... : unaccomplished branches

Figure 3a. The signal flow graphs showing the accomplished modules and computational
branches upon receipt of x[0] through x[12].

REAL-TIME FFT ALGORITHM 385

1st stage 2nd stage 3rd stage 4th stage

x[0]~x[14] are collected ~ " accomplished branches
............. : unaccomplished branches

Figure 3b. The signal flow graphs showing the accomplished modules and computational
branches upon receipt of x [0] through x [14], for an FFT size of 16.

is constructed when the (N + (.~ + 1))th point (x[12] in Figure 3a) is available,
or when the construction of signal=flow branches proceeds to the second stage be
cause the 4-point DFT is the basic (smallest-sized) butterfly module according
to the DIT sr-FFT structure. Notice that the last block at each stage cannot be
accomplished until the last point x [N - 1] is collected (Figure 3b). Then one
question arises: Given that the nth (ff + ff + 1 < n < N - 1) position of the
input data array is filled, which butterfly modules can be built? In the following
section the authors propose a strategy of identifying these butterfly modules and
directing the growth of signal-flow branches.

386 Lo AND LEE

3.2. Sequence of constructing local butterfly modules.

Consider an N-point DFF where N = 2 r. The indexes of input data array are
expressed in binary form (r-bit): x [0 . . . 0] through x[1... 1]. The array indexes
that we refer to in this section are all designated in the normal order. Let the first
bit represent the least significant bit. There are r stages in the DIT sr-FFT butterfly
structure, including the first stage, at which no butterfly module is constructed.

Figure 4 displays the status of the last four stages. The shaded regions represent
the DF r blocks. The blank regions are the non-DFT blocks, which require further
decomposition into two half-length DFTs. At any given stage, a DFT block is
constructed from the results of one DFT and one non-DFF block at the previous
stage, whereas a non-DFT block is constructed from the results of two DFF blocks
at the previous stage. Figure 4 shows that, to complete the first block (a DFT block)
at the ith stage, one must have at least collected the input data point x[n], where
n >_ 2 r-1 q- 2 r-2 q- .-. h- 2 r-i. That is, the last (higher-significant) i bits of the
array index must be 1. For example, the top DFT block of the second stage of a
16-point sr-bFF can be completed when x[1100] is collected.

(r-3)th stage (r-2)th stage (r-1)th stage (r)th stage

Figure 4. The DFF (shaded) and non-DFT (blank) blocks partitioning the last four stages
of an r-stage DIT sr-FFT butterfly structure.

The authors also observed a straightforward regulation for the real-time FFI"
algorithm to identify the butterfly modules ready to be constructed. Consider the
array index nb (in binary format) at the (r - j) th stage. If the j th bit of nb is
0, one cannot move to the (r - j + l)th stage. On the other hand, construction
of the butterfly module can further proceed to the next higher stage if the j th
bits is 1 at the (r - j) th stage. As indicated in Figure 4, we can accomplish the
top DFF block at the (r - 1)th stage after the second block (non-DFT) at the
(r - 2)th stage is accomplished upon receipt of x[1 . . . 1110]. In other words,
the appearance of x [1 . . . 11[0] enables the algorithm to construct the (2r-2)th

REAL-TIME EFT ALGORITHM 387

block (from the top) of the first stage, the (2r-3)th block of the second stage, and
so on, continuing up to the (2~ block (the first block) of the (r - 1)th stage.
Alternatively speaking, the number of consecutive bit l's, nbitl, counted from
the most significant bit position (the leftmost bit position) determines the task to
be performed upon receipt of x[nb]. If nbitl is an even number, the algorithm
constructs the butterfly modules as follows: non-DFT (first stage) ~ DFT (second
stage) -+ . . . --+ non-DFT ((nbitl - 1)th stage) -+ DFT ((nbitl)th stage). If
nbitl is an odd number, the algorithm performs the module construction: DFT
(first stage) --~ non-DFT (second stage) ~ . . . --+ non-DFT ((nbitl - 1)th stage)
--+ DFT ((nbitl)th stage). That is, the first stage performs the non-DFT (DFT)
block construction if nbitl is an even (odd) number. Consequently, the guideline
directs the real-time FFT algorithm to correctly construct the succeeding butterfly
modules.

Next we evaluate the computational complexity of the real-time FFT algorithm
and compare the synchronous capability of both the real-time and whole-block
FFT algorithms.

4. Comparison of efficiency of real-time and whole-block
implementations of FFT

The computational complexity of the sr-FFT algorithm has been discussed in detail
in [6], [7], [9], [17]. The authors previously developed an alternative method of
analyzing the number of complex multiplications and additions, for a complex
input data array, based on the number of DFT blocks at each stage [9]. When
adapted for the real input data array, equations (2.8) through (2.15) can be applied.

Consider an N(= 2r)-point DIT sr-FFT of a real input data array. As a result of
implementing (2.8) through (2.15), the number of complex additions in an L-point
DFT block (Figure 1) is -~ instead of -~ without implementing the symmetrical
property [9]. Three real additions are required to compute G[0] and G [~]. From
the derivation in the Appendix, the total number of complex additions Ntotal (ADDc)
is

(2 2) 1 r , Ntotal(ADDc) = - N - 5 (- 1) r > 2 (4.1)

and the total number of real additions Ntotal(ADDr) is

{ !~N - ~, for r odd
Ntotal(ADDr) = ~ N - 4, for r even (4.2)

To complete a local L-point DFT block, the number of complex multiplications is
~. The total number of complex multiplications Nto~(MULc) is

(6 Ntotal(MULc) = - N - = (-1) r . (4.3)

388 Lo AND LEE

To demonstrate the synchronization ability of the real-time FFT algorithm, we
calculate the number of arithmetic operations left to be completed upon receipt
of the last point x [2 r - I]. Because the EEG is sampled at a low rate (200Hz),
many computations can be performed before collecting the last data point. By
real-time implementation of the FFT algorithm, only the last block of each stage
is not constructed before x [2 r - 1] is collected.

Note that if r is an odd number, the last block of the first stage is a DFT block;
otherwise, it is a non-DFT block. In addition, the last block is a DFT block at
every other stage. Let r be an odd number. The number of complex multiplications
involved in completing the last block of each stage is: 0 (the first stage), 21 (the
third stage), 23 (the fifth stage), and so on, continuing to 2 r-2 (the rth stage). Thus,
the total nqmber of complex multiplications Nlast(MULc) is

Nlast(MULc) = 0 + 21 + 23 +-oo + 2 r-2 = N 2 for r odd. (4.4)
3 3 '

If r is an even number, the number of complex multiplications is: 22 (the fourth
stage), and so on, continuing to 2 r-2 (the rth stage). The total number becomes

Nlast(MULc) = 2 2 + 2 4 q - ' " -t- 2 r-2 - N 4 3 3 ' for r even. (4.5)

Similarly, the number of complex additions involved in completing the last
block of each stage is: 3 �9 21 (the third stage), 3 �9 2 3 (the fifth stage) and so on,
continuing to 3- 2 r-2 (the rth stage) for an odd-numbered r. Thus, the total number
of complex additions N~ast(ADDc) is

Nlast(ADDc) = 3 �9 2 + 3 . 2 3 + . . . + 3 . 2 r-2 = N - 2, for r odd. (4.6)

For an even-numbered r, the number of complex additions is: 1 (the second stage),
3- 2 2 (the fourth stage), and so on, continuing to 3 . 2 r-2 (the rth stage). The total
number becomes

Nlast(ADDc) = 1 + 3 �9 2 2 + . . . + 3 . 2 r-2 = N - 3, for r even. (4.7)

And the number of real additions Nlast(ADDr) is

-~ - 1, for r even
Nlast(ADDr) (4.8) / ~ + 1 , for r odd

Equations (4.4) through (4.7), compared with (4.1) and (4.3), show that both the
ratios of Nlast(MULc) to Ntotal(MULc) and of Nlast(ADDc) to Ntotal(ADDe) are
approximately proportionate to r e- . That is, after acquiring all the data points, the

extra computational time required by the real-time FFT algoirthm is only 2 the
time required by the conventional whole-bloc algorithm. Hence, the real-time FFT
algorithm offers better synchronization capability, especially for a large N (the
FFT size) when applied to on-line Fourier analysis.

For comparison, the authors experimented with the DIT sr-FFT algorithm im-
plemented in the real-time and whole-block mode. Consider a 512-point DFY. The
real-time sr-FFT algorithm was run on a Pentium 66 and on a 486 DX-100. Table

REAL-TIME EFT ALGORITHM 389

1 lists the average times (the second and the third columns) spent building the
local butterfly modules when x[i], 0 < i < 511, is collected. The data points are
grouped according to the computational time (number of arithmetic operations)
required for construction of the local modules. As discussed in Section 3.1, the
real-time FFT algorithm starts building the first module when x[384] (x [-~ + -~],
or x[110000000]) is collected. Until it collects the x[448] (x[111000000]), the
real-time FFT algorithm cannot proceed to the third stage. The average time spent
on constructing the 4-point butterfly module (group II) is 3.86 lzsec on a Pentium
66 and 5.72/zsec on a 486 DX-100. While acquiring the data points from x[448]
to x[479] (group III), the algorithm is constructing the 8-point butterfly modules at
the third stage, which takes 5.26/zsec (Pentium 66) and 9.62/zsec (486 DX-100)
on an average. The process of constructing the total butterfly modules continues
with collection of each data point. The total time, which is obtained by summing
up the 512 values of average time in the second and the third columns, for the real-
time FFT algorithm to perform the 512-point DFT is 2.06 msec on a Pentinum
66 and 3.83 msec on a 486 DX-100. In the on-line applications, the speed of data
acquisition (i.e., the sampling rate) dominates the entire processing time. Consider
the sampling rate of 200 Hz frequently employed in the EEG data acquisition. It
takes 2.56 see to acquire the 512 data points. However, upon receipt of the last
data point x[511], the real-time algorithm only takes 0.43 msec (Pentium 66) to
complete the rest of the butterfly modules. The conventional whole-block FFF
algorithm takes approximately 2.01 msec on a Pentium 66 and 3.88 msec on a 486
DX-100, in addition to the 2.56 sec required for data acquisition.

Table 1. Computer time spent building local butterfly modules upon receipt of x[i] for FFT
size of 512

Group of data points
collected

Average time
(~tsec)

(Pentium 66)

Average time
(/zsec)

(486DX-100)

Stage in
progress

Size oflocal
module

I : x[0] ~ x[383] 0.57 0.62 1st 2-point

II : x [384] ~ x [447] 3.86 5.72 2nd 4-point

III : x[448] ~ x [479] 5.26 9.62 3rd 8-point

IV : x[480] ~ x[495] 12.33 23.44 4th 16-point

V : x [496] ~ x [503] 23.64 47.93 5th

103.30 50.19 6th VI : x[504] ~ x[507l

32-point

64-point

VII : x[508] ~ x[509] 100.46 210.51 7th 128-point

VIII : xl510] 206.57 433.58 8th 256-point

VIIII : x[511] 432.71 894.68 9th 512-point

390 Lo AND LEE

5. Conclusion

This paper presents a new method of implementing the DiT sr-FFT algorithm in
the real-time mode. The real-time FFT algorithm simultaneously constructs the
local butterfly modules while the data acquisition (signal recording, digitization,
and collection) process is under way. Compared with the conventional whole-
block sr-FFT algorithm, the real-time FFT algorithm synchronizes better with the
real process, especially for the multichannel implementation. The results shown in
Section 4 support the basis of this study. Consider the example of performing the
on-line Fourier analysis (FUr size of 512) of the 64-channel EEG. In addition to
the 2.56 sec required for data acquisition, the whole-block FFT algoirthm causes a
delay of (2.01 msec) x 64 = 128.64 msec on a Pentium 66. This delay is reduced
to (0.43 msec) x 64 = 27.69 msec when using the real-time implementation of
the FFT algorithm.

Notice that, upon receipt of the last data point, the computational time spent on
building the rest of the local butterfly modules is approximately 0.43 msec, that
is, 21% of the total time needed to complete the 512-point sr-FFT. The result is
consistent with our derivation in Section 4, i.e., Nlast/NtotN ~ 2/r (here, r = 9).
This fact shows that increasing the FPT size causes the synchronization capability
of the real-time F Fr algorithm over the Colwentional whole-block FFT algorithm
to become more evident.

Appendix

Given that the FFT size N = 2 r, there are 2J blocks at the (r - j) th stage (Figure 4).
Note that the non-DFT blocks at the (r - j) th stage are decomposed from the DFT
blocks at the (r - j + 1)th stage. Hence, the number of DF-f blocks at the (r - j) th
stage is

Nr-j (DFF) = 2 i - Nr-j+l (DFT), j = I r - 1, (A. 1)

and Nr (DFT) = 2 o = 1 for the last stage. It follows that

J
Nr-j (DFT) = ~ (- i)12 j-1

/=0

E3 '(= 2 j . + g - , j = l r - 1 . (a.2)

Therefore,

N 1
N1 (DFT) ---- -~- + ~ (- 1) r-1 y

N 1 r-2
N2(DFT) = ~ + = (- 1) ,

J

(A.3a)

(A.3b)

REAL-TIME EFT ALGORITHM 391

N l (_ l) r _ 3 N3(DFT) = ~ - ~ + ~ (A.3.c)

N
Nr-I(DFT) = 3 - 2 r-------ff + (-1)1 = 1. (A.3d)

At the first stage of the DIT sr-FFT structure, the algorithm requires 2.2 r - 1 = N
real additions and no complex arithmetic operation. At the second stage, computing
the 4-point DFT block requires two real additions and one complex addition.
According to (A.3b), the algorithm performs

N 3 + ~ (- 1) r - 2 real additions,
N 6 + 1 (_ 1)r-2 complex additions,

and no multiplications.
To calculate the number of arithmetic operations at the (r - j) th stage (0 _<

j < r - 3), we examine the butterfly module in Figure 1. Note that, to accomplish
the L-point DFT (L > 8) at the (r - j) th stage, the structural schema consists of
one L-point DFT block and one non-DFr block at the (r - j - 1)th stage as well

as two L-point Db-T blocks at the (r - j - 2)th stage, where L = 2 r-j = N/2J.
Suppose that G2n[k], G4n+l [k], and G4n+3[k] have been computed. According

to equations (2.8) through (2.15), computing the L-point DFT G [k] from G2n [k],
G4n+l [k], and G4n+3 [k] requires ~ = 2 r-j-2 complex multiplications (because of

the twiddle factors in the non-DFT block) and ~ = 3 .2 r-j-2 complex additions

as well as three real additions for computing G[0] and G [L]. These number
already include the arithmetic operations in the non-DFT block at the (r - j - t)th
stage. Then, at the (r - j) th stage, the total numbers of complex multiplications
Nr-j (MULc), complex additions Nr-j (ADDc), and real additions Nr-j (ADDr)
are calculated as follows:

Nr-j (MULe) = 2 r-j-2. Nr-j (DFT)

= 2 r - 2 " - } - 5 - , O < j < r - - 3 (A.4)

(A'Oc>----

= 3 . 2 r-2 �9 + g -- , O < j < r - - 3 (A.5)

E/1/'1 Nr-j (ADDr) = 3. N~_j(DFr) = 2 i �9 2 + -

= 2 j + 1 + (- 1) j , 0 < j < r - 3 . (A.6)

392 Lo AND LEE

Finally, the total number of complex multiplications Ntot~.i(MULc) is

1 = g(r - 2)2 r-1 + 12"-19 - ~ (-1)r-2

the total number of complex additions Ntot~(ADDe) is

N ~ r-3
Ntotal(ADDc) = -~ + (-1) r-2 + Z Nr-j(ADDc)

j=0

= - g + (-0"-~+32 ' -2"E + 7 -
j=O

= (~--~)'2r--3(--1)r-2= (2-~)N-~(-1)r,
(A,8)

and the total number of real additions Ntotal(ADDr) is

"~N ~ r-3
Ntotal(ADDr) = N + + (-1) r-2 + ZNr-j(ADDr)

j=0

4N 2 r_2 r -3[]
= -3- + 5 (-1) + ~ zs+~ + ;_l)s

j=0
r - 3

= 2r--2-b-~(--1)r-2+E(--1)J
j=0

= { !~N -- 5, for r odd ca.9)
~ N 4, forreven

R e f e r e n c e s

[1] S. Barash and Y. Ritov, Logarithmic pruning of FFT frequencies, tEEE Trans. Signal Processling,
41 (3), 1398-1400, 1993.

[2] R.G. Bickford, Computer analysis of background activity, Rdmond, A. (ed.), EEG lnformatics,
Elsevier, Amsterdam, 1977, pp. 215-232.

[3] V. Boriakoff, FFT computation with systolic arrays: A new architecture, IEEE Trans. Circuits
Systems - - II: Analog Digital Signal Process., 41(4), 278-284, 1994.

[4] J.W. Cooley and J. W. Tukey, An algorithm for machine computation of complex Fourier series,
Math. Comp., 19, 297-301, 1965.

REAL-TIME ~ ALGORITHM 393

[5] R. Cooper, J. W. Osselton, and J. C. Shaw, EEG Technology, 3rd ed., Butterworth, Woburn, MA,
1980, Chapter 6.

[6] P. Duhamel, Implementation of "split-radix" FFr algorithms for complex, real and real-symmetric
data, IEEE Trans. Acoust. Speech Signal Process., ASSP-34, 285-295, 1986.

[7] P. Duhamel and H. Hollmann, Split radix FFT algorithm, Electronics Lett., 20(I), 14-16, 1984.
[8] A. Gevins, P. Brickett, B. Costales, J. Le, and B. Reutter, Beyond topographic mapping: Towards

functional-anatomical imaging with 124-channel EEGs and 3-D MRIs, Brain Topography, 3,
53-64, 1990.

[9] E C. Lo and Y. Y. Lee, Real-time implementation of the split-radix FFT - - An algorithm to
efficiently construct local butterfly modules, Signal Processing, submitted.

[10] J. D. Markel, FFT pruning, IEEE Trans. Audio Electroacoust., AU-19(4), 305-311, 1971.
[11] K. Nagai, Pruning the decimation-in-time FFT algorithm with frequency shift, 1EEE Trans.

Acoust. Speech Signal Process., ASSP-34(4), 1008-1010, 1986.
[12] A.V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ, 1989, Chapter 9.
[13] D. E. Panera, S. R. Mani, and S. H. Nawab, STFT computation using pruned FFT algorithms,

IEEE Signal Processing Lett., 1(4), 61~53, 1994.
[14] C. Roche, A split-radix partial input/output fast Fourier transform algorithm, IEEE Trans. Signal

Process., 40(5), 1273-1276, 1992.
[15] I. W. Selesnick and C. S. Bum]s, Automatic generation of prime length FFT programs, IEEE

Trans. Signal Process., 44(1), 14-24, 1996.
[16] A. N. Skodras, Effecient computation of the split-radix FFT, IEEE Proceedings - - F, 139(1),

56-60, 1992.
[17] H.V. Sorensen and C. S. Burrus, Efficient computation of the DFT with only a subset of input or

output points, IEEE Trans. Signal Process., 41(3), 1184-1200, 1993.
[18] H. V. Sorensen, M. T. Heideman, and C. S. Bun'us, On computing the split-radix FFT, IEEE

Trans. Acoust. Speech Signal Process., ASSP-34(1), 152-156, 1986.
[19] 17. V. Sreenivas and P. V. S. Rat, High resolution narrow-band spectra by FFT pruning, IEEE

Trans. Acoust. Speech Signal Process., ASSP-28(2), 254-257, 1980.
[20] P. R. Uniyal, Transforming real-valued sequences: Fast Fourier versus fast Hartley transform

algorithms, IEEE Trans. Signal Process., 42(11), 3249-3254, 1994.

