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Abstract. Suppose G is a graph and T is a set of non-negative integers that contains 0.
A T-coloring of G is an assignment of a non-negative integer f �x� to each vertex x of G
such that j f �x� ÿ f �y�j B T whenever xy A E�G�. The edge span of a T-coloring f is the
maximum value of j f �x� ÿ f �y�j over all edges xy, and the T-edge span of a graph G is the
minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of
the d th power C d

n of the n-cycle Cn for T � f0; 1; 2; . . . ; k ÿ 1g. In particular, we ®nd the
exact value of the T-edge span of C d

n for n1 0 or 1 (mod d � 1), and lower and upper
bounds for other cases.

1. Introduction

T-colorings were introduced by Hale [3] in connection with the channel assignment

problem in communications. In this problem, there are n transmitters x1; x2; . . . ; xn

situated in a region. We wish to assign to each transmitter x a frequency f �x�.
Some of the transmitters interfere because of proximity, meteorological, or other
reasons. To avoid interference, two interfering transmitters must be assigned fre-
quencies such that the absolute di¨erence of their frequencies does not belong to
the forbidden set T of non-negative integers and T contains 0. The objective is to
make a frequency assignment that is e½cient according to certain criteria, while
satisfying the above constraint.

To formulate the channel assignment problem graph-theoretically, we con-
struct a graph G in which V�G� � fx1; x2; . . . ; xng, and there is an edge between
transmitters xi and x j if and only if they interfere. Given graph G and a set T of
non-negative integers and T contains 0, a T-coloring of G is a function f from
V�G� to the set of non-negative integers such that

xy A E�G� implies j f �x� ÿ f �y�j B T :

For the case when T � f0g, T-coloring is the ordinary vertex coloring.
In channel assignments, the objective is to allocate the channels e½ciently.

From the T-coloring standpoint, three criteria are important for measuring the
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e½ciency: ®rst, the order of a T-coloring, which is the number of di¨erent colors
used in f; second, the span of f, which is the maximum of j f �x� ÿ f �y�j over
all vertices x and y; and third, the edge span of f, which is the maximum of
j f �x� ÿ f �y�j over all edges xy. Given T and G, the T-chromatic number wT�G� is
the minimum order of a T-coloring of G, the T-span spT�G� is the minimum span
of a T-coloring of G, and the T-edge span espT�G� is the minimum edge span of a
T-coloring of G.

Cozzens and Roberts [1] showed that the T-chromatic number wT�G� is equal
to the chromatic number w�G�, which is the minimum number of colors needed to
color the vertices of G so that adjacent vertices have di¨erent colors. The param-
eter T-span of graphs has been studied extensively; for a good survey, see [6]; for
recent results, see [2, 5, 7]. However, comparing to T-spans, there are relatively
fewer known results about T-edge spans of graphs, see [1, 4].

Cozzens and Roberts [1] raised the problem of computing T-edge spans of
non-perfect graphs when T � f0; 1; 2; . . . ; k ÿ 1g. Liu [4] studied this problem for
odd cycles. In this article, we consider C d

n , the dth power of the n-cycle Cn. The
graph C d

n has the vertex set V�C d
n � � fv0; v1; . . . ; vnÿ1g and the edge set

E�C d
n � � 6

0UiUnÿ1
fviv j : j � i � 1; i � 2; . . . ; i � dg;

where the index j for v j is taken modulo n. We ®nd the exact value of espT �C d
n � for

n1 0 or 1 (mod d � 1), and lower and upper bounds for other cases.

2. Previous results

In this section, we quote some known results about T-spans and T-edge spans,
some of which will be used in Section 3.

The clique number o�G� of G is the maximum order of a clique (complete

graph), a set of pairwise adjacent vertices. A complete graph of order n is denoted
by Kn. The n-cycle is the graph Cn with vertex set V�Cn� � fv0; v1; . . . ; vnÿ1g and
edge set E�Cn� � fv0v1; v1v2; . . . ; vnÿ2vnÿ1; vnÿ1v0g. Note that C 1

n is Cn.
The following are some known results on T-spans and T-edge spans.

Theorem 1. (Cozzens and Roberts [1]) The following statements hold for all graphs
G and sets T.

(1) w�G� ÿ 1U espT �G�U spT�G�.
(2) spT �KoG��U espT�G�U spT�G�U spT�Kw�G��.
(3) If T is �k ÿ 1�-initial, i.e., T � f0; 1; . . . ; k ÿ 1gUS where S contains no multi-

ple of k, then spT�G� � spT�Kw�G�� � k�w�G� ÿ 1�.
Theorem 2. (Liu [4]) For any odd cycle Cn and T � f0; 1; . . . ; k ÿ 1g;
espT �Cn� � �n� 1�k

nÿ 1

� �
.

Figure 1 shows an example of Cn with T � f0; 1; 2g for which wT�C7� �
3 < espT�C7� � 4 < spT�C7� � 6. These values follow from Theorems 1 and 2.
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3. Edge spans for powers of n-cycles

This section gives results for T-edge spans of C d
n for the �k ÿ 1�-initial set

T � f0; 1; 2; . . . ; k ÿ 1g.
We note that C d

n GKn for d V
n

2

j k
and espT�Kn� � spT�Kn� � k�nÿ 1�.

Therefore, throughout this article we consider C d
n only for d U

n

2

j k
ÿ 1 and

assume n � m�d � 1� � r, where mV 2 and 0U rU d. Our main results are as
follows. First, we give an upper bound and a lower bound for espT�C d

n � (Theorem
4), both of them imply the exact value of esp�C d

n � when r � 0 (Theorem 5). We
then give a better upper bound when gcd�n; d � 1� � 1 (Theorem 6) and a better
lower bound when rV 1 (Theorem 7), both of them imply the exact value when
r � 1 (Theorem 8).

Lemma 3. If n � m�d � 1� � r with mV 2 and 0U rU d, then w�C d
n � � d � 1 and

w�C d
n � �

n

m

l m
� d � 1� r

m

l m
.

Proof. It is easy to see that o�C d
n � � d � 1 since d � 1U

n

2

j k
; and w�C d

n �V
n

m

l m
since any independent set of C d

n contains at most m vertices. Letting ni � nÿ i

m

� �
,

we have

n �
Xmÿ1
i�0

ni:

Color the n vertices of C d
n as 1; 2; . . . ; n0; 1; 2; . . . ; n1; 1; 2; . . . ; n2; . . . ; 1; 2; . . . ; nmÿ1.

This coloring is a proper vertex coloring since each
nÿ i

m
V

nÿm� 1

m
� d � r� 1

m

and so
nÿ i

m

� �
V d � 1. Hence w�C d

n �U
n

m

l m
. r

Theorem 4. If n � m�d � 1� � r with mV 2 and 0U rU d, then dk U

espT �C d
n �U spT �C d

n � � dk � r

m

l m
k.

Proof. The theorem follows from Theorem 1 and Lemma 3. r

Fig. 1. C7 with T � f0; 1; 2g
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Theorem 5. If n � m�d � 1� with mV 2, then espT�C d
n � � spT �C d

n � � dk.

Proof. The theorem follows from Theorem 4 as r � 0. r

Theorem 6. Suppose n � m�d � 1� � r with mV 2 and 0U rU d. If

gcd�n; d � 1� � 1, then espT�C d
n �U dk � rk

m

� �
.

Proof. Since gcd�n; d � 1� � 1; d � 1 is a generator of Zn using modulo n

addition, i.e., ji 1 i �d � 1� (mod n) for 0U iU nÿ 1 generates each integer
in f0; 1; . . . ; nÿ 1g exactly once. In other words, we can consider V�C d

n � as
fvj0 ; vj1 ; . . . ; vjnÿ1g. Note that any m circularly consecutive vertices vja�1 ; vja�2 ; . . . ;
vja�m

(with indices a� p considered modulo n) form an independent set in

C d
n . Consequently, vja vjb is not an edge when 0U a < bU nÿ 1 with 1U

minfbÿ a; n� aÿ bgUmÿ 1.
Now, consider the function f on V�C d

n � de®ned by f �vji� �
ik

m

� �
for 0U

i U nÿ 1. We claim that f is a T-coloring. For any edge vja vjb with 0U a <
bU nÿ 1, according to the preceding discussion, minfbÿ a; n� aÿ bgVm, i.e.,
mU bÿ aU nÿm � md � r. Then

j f �vja� ÿ f �vjb�j �
bk

m

� �
ÿ ak

m

� � V
bk

m
ÿ ak �mÿ 1

m
V k ÿ 1� 1

m
;

U
bk �mÿ 1

m
ÿ ak

m
U
�md � r�k

m
� 1ÿ 1

m
;

8>>><>>>:
or

j f �vja� ÿ f �vjb�j
V k;

U dk � rk

m

� �
:

8><>:
Therefore, f is a T-coloring of C d

n and espT �C d
n �U dk � rk

m

� �
. r

Theorem 7. If n � m�d � 1� � r with mV 2 and 1U rU d, then espT �C d
n �V

dk � k

m

� �
.

Proof. Suppose espT�C d
n �U dk � k

m

� �
ÿ 1. Let f be a T-coloring for which

espT �C d
n � � maxfj f �vi� ÿ f �v j�j : viv j A E�C d

n �g. Note that the m� 1 vertices
vi�d�1�; 0U i Um, are pairwise non-adjacent except for v0vm�d�1� A E�C d

n �. Let
ei; j � f �vi�d�1�� ÿ f �vj�d�1�� for 0U i U j Um. Then

k U je0;mj �
Xmÿ1
i�0

ei; i�1

�����
�����U Xmÿ1

i�0
jei; i�1j

and so there exists at least one i such that jei; i�1jV k

m

� �
. In other words, the set

U � fi : jei; i�1jV k

m

� �
and 0U i Umÿ 1g is not empty.
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For any i A U , the d � 2 vertices v j; i�d � 1�U j U �i � 1��d � 1�; are pair-
wise adjacent except that vi�d�1� is not adjacent to v�i�1��d�1�. Sort the d � 2 values
f �v j�; i�d � 1�U j U �i � 1��d � 1�; into b1 U b2 U � � � U bd�2. If fb1; bd�2g0
f f �vi�d�1��; f �v�i�1��d�1��g, then

esp�C d
n �V bd�2 ÿ b1 �

Xd�1
j�1
�bj�1 ÿ b j�V dk � k

m

� �
;

a contradiction. Hence, fb1; bd�2g � f f �vi�d�1��; f �v�i�1��d�1��g and

jei; i�1j � j f �vi�d�1�� ÿ f �v�i�1��d�1��j �
Xd�1
j�1
�bj�1 ÿ b j�V �d � 1�k:

Also,

bd�2 ÿ b2 U esp�C d
n �U dk � k

m

� �
ÿ 1;

bd�1 ÿ b1 U esp�C d
n �U dk � k

m

� �
ÿ 1;

bi�1 ÿ bi V k for 2U iU d and so; bd�1 ÿ b2 V �d ÿ 1�k:

Then jei; i�1j � bd�2 ÿ b1 U �d � 1�k � 2
k

m

� �
ÿ 2. In conclusion,

�d � 1�k U jei; i�1jU �d � 1�k � 2
k

m

� �
ÿ 2 for all i A U :

On the other hand, jei; i�1jU k

m

� �
ÿ 1 for all i B U . Let U be the disjoint union of

U1 and U2 such that jU1jV jU2j and all ei; i�1 in U1 (or U2) are of the same sign.
For the case jU1j > jU2j, we have

espT�C d
n �V jeo;mj �

Xmÿ1
i�0

ei; i�1

�����
�����

V
X
i AU1

jei; i�1j ÿ
X
i AU2

jei; i�1j ÿ
X
i B U

jei; i�1j

V jU1j�d � 1�k ÿ jU2j �d � 1�k � 2
k

m

� �
ÿ 2

� �
ÿ �mÿ jU j� k

m

� �
ÿ 1

� �

� �jU1j ÿ jU2j��d � 1�k � �jU1j ÿ jU2j ÿm� k

m

� �
ÿ 1

� �

V �d � 1�k � �1ÿm� k

m

� �
ÿ 1

� �

> dk � k

m

� �
ÿ 1 since k > m

k

m

� �
ÿ 1

� �� �
;

a contradiction.
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For the case jU1j � jU2j, say Ui � fi1; i2; . . . ; iag for i � 1; 2. Then

k � je0;mj �
Xmÿ1
i�0

ei; i�1

�����
�����

U
Xa

j�1
�e1 j ;1 j�1 � e2 j ;2 j�1�

�����
������X

i B U

jei; i�1j

U
Xa

j�1
�d � 1�k � 2

k

m

� �
ÿ 2ÿ �d � 1�k

� �
�
X
i B U

k

m

� �
ÿ 1

� �

� a 2
k

m

� �
ÿ 2

� �
� �mÿ 2a� k

m

� �
ÿ 1

� �

� m
k

m

� �
ÿ 1

� �
< k;

a contradiction. r

Theorem 8. If n � m�d � 1� � 1 with mV 2, then espT �C d
n � � dk � k

m

� �
.

Proof. The theorem follows from Theorems 6 and 7 and the fact that
gcd�n; d � 1� � 1. r

Note that Theorem 2 is a special case to the above theorem when n is odd and

d � 1. For the case where nV 5 is odd and d � nÿ 3

2
, we have r � 1;m � 2, and

C d
n is isomorphic to the complement Cn of Cn. Thus, we have the following result.

Corollary 9. If nV 5 is odd, then espT �Cn� � �nÿ 2�k
2

� �
.
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