
layered infinite regions for which multilayer PMLs are needed.
It turns out that it can be used to solve scattering problems
due to buried objects, with very good numerical perfor-
mances.
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ABSTRACT: In this paper, the method of first-order perturbation is
proposed to in¨estigate the plane-wä e scattering by dielectric gratings
with a small modulation index at oblique incidence. Under the assump-
tion of small perturbation, the cross coupling between the fields of the

( )polarizations TE and TM due to the oblique incidence can be repre-
sented by the TE and TM transmission lines fed by distributed current

( )and or ¨oltage sources, respectï ely. The results show good agreement
with that obtained by a rigorous formulation. Q 1998 John Wiley &
Sons, Inc. Microwave Opt Technol Lett 19: 434]437, 1998.

Key words: dielectric gratings; periodic structure; small perturbation

1. INTRODUCTION

The analysis of plane-wave scattering by dielectric gratings
w xusing a rigorous formulation has been studied well 1 for the

last two decades. Recently, several researchers have em-
ployed the approximate methods successfully. An approxi-
mate solution in terms of boundary diffraction coefficients

w xwas published 2 , and the generalization of the boundary
w xdiffraction method for volume gratings was studied 3 .

Extensive numerical calculations and complicated physical
pictures are used in rigorous theory. Thus, using the first-order
approximation may make the problem easier to comprehend.
Although much research has been devoted to exploring the
approximate method for the scattering of a plane wave by
dielectric gratings, little attention has been paid to the condi-
tion of oblique plane-wave incidence.

w xThis paper extends our previous work 4 , plane-wave
scattering by unslanted holographic gratings at principal-plane
incidence, to that of the general condition of oblique plane-
wave incidence. Thus, it becomes necessary to consider the

Ž .three-dimensional 3-D boundary-value problem which re-
quires the simultaneous presence of mixed polarization.

The transmission-line network is used to model the origi-
nal structure. The cross coupling between the fields of the

Ž .two polarizations TE and TM due to the oblique incidence
can be decoupled and represented by the TE and TM trans-
mission-line networks, under the assumption of small pertur-
bation. We observed that it approaches the results obtained
from rigorous treatments while retaining the simplicity of
perturbation methods. Moreover, this approach provides a
description of the electromagnetic fields in terms of two
transverse transmission-line networks, which bring consider-
able physical insight into the overall behavior concerning the
dielectric gratings.

2. STATEMENT OF PROBLEM AND
BACKGROUND INFORMATION

The scattering of a plane wave by a periodic dielectric layer is
depicted in Figure 1. A plane wave is obliquely incident at an
arbitrary elevation angle of u and at an azimuthal angleinc
f , upon a dielectric grating, which is shown in Figure 2.inc
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Figure 1 Structure configuration of a dielectric grating and propagation vector in spherical and rectangular coordinate system

The grating vector is in the x-direction, with period a. And
the grating layer is bound by two different media with « anda
« .s

Ž .In the grating region 0 F z F t , the periodic relative
dielectric constant is expandable in a Fourier series of the
form

` 2p x
Ž . Ž .« x s « q « cos n 1Ýave n ž /ans1

where « is the average dielectric constant of the periodicave
media.

In the spherical coordinate system, the incident plane
wave is characterized by the propagation constant k , thea
elevation angle u , and the azimuth angle f . The x- andinc inc
y-components of the propagation constants must be the same
everywhere, but not the z-component.

Due to the spatial periodicity in the x-direction, all of the
space harmonics are generally excited in the structure. The
propagation constant of the nth space harmonic in the x-

direction is related to that of the incident wave by

2p
Ž .k s k q n , for n s 0, " 1, " 2, " 3, . . . . 2xn x a

Ž .In addition, in the uniform region « and « , each spacea s
harmonic propagates independently as a plane wave. The
propagation characteristics of each plane wave can be investi-
gated readily through the dispersion relation

1r2Ž i. 2 2 2 Ž .k s k « y k y k 3Ž .z 0 i y x n

where i s a or s denotes the air or substrate region.
As soon as the parameters of the incident plane wave and

geometric structure of the grating are specified, the trans-
verse propagation vector of each space harmonic should be
determined readily. In each uniform region, the propagated
direction can be easily obtained, but the amplitude must be
determined by a 3-D boundary-value problem, to be ex-
plained in the next section.

Figure 2 Equivalent transmission line with current and voltage source
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3. METHOD OF ANALYSIS

A. Representations of Fields. The relative dielectric constants
can be represented by the summation of unperturbed and
perturbed terms in the form

Ž . Ž . Ž .« x s « q « x 4u p

where « characterizes a uniform unperturbed structure, andu
Ž .« x characterizes a periodic perturbation:p

« , 0 G z¡ a~ Ž .« , t G z G 0« s 5aveu ¢« , z G t .s

Ž .Substitution of 4 into the Maxwell equations leads to

Ž .= = H s jv« « E q J 6o u

where

Ž .J s jv« « E. 7o p

We could regard the term J as the equivalent periodic
current source, which is immersed in the uniform medium « .u
Also, it may be decomposed into the transverse and longitu-
dinal components represented by t and z, respectively.

As the perturbed quantities are expected to be small, the
equivalent periodic current source J and J may be approxi-t z
mated by:

Ž . Ž .J f jv« « x E 8t 0 p t u

and

Ž . Ž .J f jv« « x E 9z o p zu.

Because of periodicity, the electromagnetic fields can be
written as a superposition of the Fourier components with

Ž Ž z . Ž z . .orthogonally polarized fields E -type and H -type which
characterize the variation of the electric fields V X and V Y andn n
the magnetic fields I X and IY with TE and TM polarization,n n
respectively.

k «¡ 0 n YŽ .yj V z ? a , for t G z G 0X 0 n~Ž . Ž .j z s 102hn , s 0¢
0, elsewhere

and

k «¡ 0 n XŽ .j V z ? a , for t G z G 0Y 0 n~Ž . Ž .j z s 112hn , s 0¢
0, elsewhere

h « k k¡ 0 n t 0 t n Y Ž .j I z , for t G z G 0Y 02~Ž . Ž .¨ z s 122« kn , s u 0¢
0, elsewhere

for n s "1, " 2, " 3, . . . .
The single and double primes denote the TE and TM

Ž .polarizations, respectively. V z may be obtained by replac-0
ing the grating layer with the uniform layer, which has a
relative dielectric constant « . Under the assumption ofave
small perturbation, every nth space harmonic is independent
of the other harmonics.

B. Boundary-Value Problem. The transverse electric and
magnetic fields across the interface of grating]air and grat-
ing]substrate must satisfy the boundary conditions at z s 0
and z s t. After the transmission-line equation and boundary
conditions are given, the entire problem is then reduced to
the solution of a straightforward problem involving transmis-

X Ž Y. X Ž Y.sion lines, as shown in Figure 3. Every V V and I I inn n n n
the transmission line can be found by solving the TE and TM
transmission equations fed by the distributed current and
voltage sources via the techniques of a Green’s function for

w xtransmission-line equations 5 , and can be written as

ª Y.XŽZz n , aveY . Y .XŽ XŽŽ . Ž .V z s y dz9 n z9Hn n , s ª ¤Y. Y .XŽ XŽ0 Z q Zn , ave n , ave

=
ª Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jY sin k z y z9z , n n , ave z , n

¤ Y.XŽZt n , aveY .XŽ Ž .q dz9 n z9H n , s ª ¤Y. Y .XŽ XŽz Z q Zn , ave n , ave

=
¤ Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jY sin k z y z9z , n n , ave z , n

1z Y.XŽ Ž .y dz9 j z9H n , s ª ¤Y. Y .XŽ XŽ0 Y q Yn , ave n , ave

=
ª Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jY sin k z y z9z , n n , ave z , n

1t Y.XŽ Ž .y dz9 j z9H n , s ª ¤Y. Y .XŽ XŽz Y q Yn , ave n , ave

=
¤ Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y JY sin k z y z9z , n n , ave z , n

Ž .13

1zY. Y .XŽ XŽŽ . Ž .I z s y dz9 n z9Hn n , s ª ¤Y. Y .XŽ XŽ0 Z q Zn , ave n , ave

=
ª Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jZ sin k z y z9z , n n , ave z , n

1t Y.XŽ Ž .y dz9 n z9H n , s ª ¤Y. Y .XŽ XŽz Z q Zn , ave n , ave

=
¤ Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jZ sin k z y z9z , n n , ave z , n

ª Y.XŽYz n , aveY .XŽ Ž .y dz9 j z9H n , s ª ¤Y. Y .XŽ XŽ0 Y q Yn , ave n , ave

Figure 3 Network representation for point-source-excited transmis-
sion line
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=
ª Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jZ sin k z y z9z , n n , ave z , n

¤ Y.XŽYt n , aveY .XŽ Ž .y dz9 j z9H n , s ª ¤Y. Y .XŽ XŽz Y q Yn , ave n , ave

=
¤ Y.XŽŽave. Žave.Ž . Ž .cos k z y z9 y jZ sin k z y z9z , n n , ave z , n

Ž .14

where

1r2Žave. 2 2 2 Ž .k s k « y k y k . 15Ž .z , n 0 ave x , n y

Ž . Ž . XŽY . XŽY .In 13 and 14 , j and n are the distributed currentn, s n, s ªŽ . Ž .and voltage sources given in 10 ] 12 . In addition, Zn, ave¤Ž . ŽZ are the input impedance looking to the right lookingn, ave
.to the left , at any location z9 within the line, which is shown

in Figure 3.
The voltage and current solutions can be easily and quickly

Ž . Ž .obtained by evaluating 13 and 14 with numerical integra-
tion.

4. NUMERICAL RESULTS

In general, the relative dielectric constant of gratings may
vary spatially arbitrarily. For the present paper, we will con-
sider a sinusoidally modulated medium, with the relative
dielectric constant given by

2p x
Ž . Ž .« x s « 1 q 2d cos 16u ž /a

where « , d , and a are the average dielectric constant,u
modulation index, and period of the grating. The average
relative dielectric is set to be « s 1.44, and outside theu
grating layer is the air region with the dielectric constant
designated by « s « s 1.a s

Figure 4 Effect of wavelength on the diffraction efficiency

Figure 5 Effect of incident azimuth angle on the diffraction effi-
ciency

Figure 4 shows the effect of the wavelength on the
diffraction efficiencies. Figure 5 presents the effect of the
azimuth angle on the diffraction efficiencies. All results in
Figures 4 and 5, obtained easily by the perturbation method,
show good agreement with that obtained by a rigorous formu-
lation.

We have also investigated the effects of incidence with a
TM polarized plane wave.

5. CONCLUSION

A perturbation analysis has been presented for the scattering
of a plane wave by a dielectric grating at oblique incidence.
The transmission-line network representation simplifies the
field analysis considerably, and provides a physical picture of
the polarization conversion. We have shown the approxima-
tion to be valid for a large range of parameters by comparing
them with numerical results obtained by a proposed rigorous

w xformulation 2 .
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