layered infinite regions for which multilayer PMLs are needed.
It turns out that it can be used to solve scattering problems
due to buried objects, with very good numerical perfor-
mances.
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ABSTRACT: In this paper, the method of first-order perturbation is
proposed to investigate the plane-wave scattering by dielectric gratings
with a small modulation index at oblique incidence. Under the assump-
tion of small perturbation, the cross coupling between the fields of the
polarizations (TE and TM) due to the oblique incidence can be repre-
sented by the TE and TM transmission lines fed by distributed current
and (or) voltage sources, respectively. The results show good agreement
with that obtained by a rigorous formulation. © 1998 John Wiley &
Sons, Inc. Microwave Opt Technol Lett 19: 434—437, 1998.

Key words: dielectric gratings; periodic structure; small perturbation

1. INTRODUCTION

The analysis of plane-wave scattering by dielectric gratings
using a rigorous formulation has been studied well [1] for the
last two decades. Recently, several researchers have em-
ployed the approximate methods successfully. An approxi-
mate solution in terms of boundary diffraction coefficients
was published [2], and the generalization of the boundary
diffraction method for volume gratings was studied [3].

Extensive numerical calculations and complicated physical
pictures are used in rigorous theory. Thus, using the first-order
approximation may make the problem easier to comprehend.
Although much research has been devoted to exploring the
approximate method for the scattering of a plane wave by
dielectric gratings, little attention has been paid to the condi-
tion of oblique plane-wave incidence.

This paper extends our previous work [4], plane-wave
scattering by unslanted holographic gratings at principal-plane
incidence, to that of the general condition of oblique plane-
wave incidence. Thus, it becomes necessary to consider the
three-dimensional (3-D) boundary-value problem which re-
quires the simultaneous presence of mixed polarization.

The transmission-line network is used to model the origi-
nal structure. The cross coupling between the fields of the
two polarizations (TE and TM) due to the oblique incidence
can be decoupled and represented by the TE and TM trans-
mission-line networks, under the assumption of small pertur-
bation. We observed that it approaches the results obtained
from rigorous treatments while retaining the simplicity of
perturbation methods. Moreover, this approach provides a
description of the electromagnetic fields in terms of two
transverse transmission-line networks, which bring consider-
able physical insight into the overall behavior concerning the
dielectric gratings.

2. STATEMENT OF PROBLEM AND

BACKGROUND INFORMATION

The scattering of a plane wave by a periodic dielectric layer is
depicted in Figure 1. A plane wave is obliquely incident at an
arbitrary elevation angle of 6;,. and at an azimuthal angle
i, upon a dielectric grating, which is shown in Figure 2.
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Figure 1

The grating vector is in the x-direction, with period a. And
the grating layer is bound by two different media with ¢, and
&,

In the grating region (0 <z <¢), the periodic relative
dielectric constant is expandable in a Fourier series of the

form

~ 2
s() = e+ T e cos(n%x) 1)

n=1

where ¢, is the average dielectric constant of the periodic
media.

In the spherical coordinate system, the incident plane
wave is characterized by the propagation constant k,, the
elevation angle 6,,., and the azimuth angle ¢,,.. The x- and
y-components of the propagation constants must be the same
everywhere, but not the z-component.

Due to the spatial periodicity in the x-direction, all of the
space harmonics are generally excited in the structure. The
propagation constant of the nth space harmonic in the x-

Airg,

=0

i . 7
e(x)=e(x+a) j

Substrate €

(m=0)

Structure configuration of a dielectric grating and propagation vector in spherical and rectangular coordinate system

direction is related to that of the incident wave by

2
k.,,=k,+n—, forn=0,+1,+2,+3,.... (2)
a

In addition, in the uniform region (&, and &), each space
harmonic propagates independently as a plane wave. The
propagation characteristics of each plane wave can be investi-
gated readily through the dispersion relation

kO = (k§e; — k] — K}

xn

)1/2 (3)

where i = a or s denotes the air or substrate region.

As soon as the parameters of the incident plane wave and
geometric structure of the grating are specified, the trans-
verse propagation vector of each space harmonic should be
determined readily. In each uniform region, the propagated
direction can be easily obtained, but the amplitude must be
determined by a 3-D boundary-value problem, to be ex-
plained in the next section.

Y,na Y"na
®o-P ®-o-P
v eo-P viez@Peo-P
®-o-P ®-o-P
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TE ™

Figure 2 Equivalent transmission line with current and voltage source
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3. METHOD OF ANALYSIS

A. Representations of Fields. The relative dielectric constants
can be represented by the summation of unperturbed and
perturbed terms in the form

e(x) = g, + £,(x) 4

where ¢, characterizes a uniform unperturbed structure, and
&,(x) characterizes a periodic perturbation:

2 0>z
&, = { Eave> t>z>0 Q)
& z=t

Substitution of (4) into the Maxwell equations leads to
VXH=jws,e,E+]J (6)
where

J =jws,s,E. (7

We could regard the term J as the equivalent periodic
current source, which is immersed in the uniform medium ¢,,.
Also, it may be decomposed into the transverse and longitu-
dinal components represented by ¢ and z, respectively.

As the perturbed quantities are expected to be small, the
equivalent periodic current source J, and J, may be approxi-
mated by:

Jr zngogp(x)Em (8)
and

J, = jwe,e,(X)E,, 9

Because of periodicity, the electromagnetic fields can be
written as a superposition of the Fourier components with
orthogonally polarized fields (E)-type and H *-type) which
characterize the variation of the electric fields V, and V' and
the magnetic fields I, and I, with TE and TM polarization,
respectively.

.k0‘9n V ( ) f O
. —j—V(2)-d}, ort>z>
Jo(2) = gy 0 (10)
0, elsewhere
and
.k()“;n V(2) f 0
—V,(z2)-d,, ort>z>
Jo(2) = (o T (11
0, elsewhere
nOgnktOktn
—————1)(2), fort >z>0
o ()= T 2gr, B3 220 (1)
0, elsewhere

forn=4+1,+2,+3,....

The single and double primes denote the TE and TM
polarizations, respectively. V,(z) may be obtained by replac-
ing the grating layer with the uniform layer, which has a
relative dielectric constant e,,.. Under the assumption of
small perturbation, every nth space harmonic is independent
of the other harmonics.

B. Boundary-Value Problem. The transverse electric and
magnetic fields across the interface of grating—air and grat-
ing—substrate must satisfy the boundary conditions at z = 0
and z = t. After the transmission-line equation and boundary
conditions are given, the entire problem is then reduced to
the solution of a straightforward problem involving transmis-
sion lines, as shown in Figure 3. Every V) (/) and I, (1)) in
the transmission line can be found by solving the TE and TM
transmission equations fed by the distributed current and
voltage sources via the techniques of a Green’s function for
transmission-line equations [5], and can be written as

. Z)
Vi) = = [Cde (@) o
’ (1 (n
0 Zn,ave + Zn,ave

x [cos k&2 — 2) = j71%, sin k&9 (z — 21
Z/(Ir)
t
+/ dz’ v,’l(";)(z’)—_' S e ;
Z Z/(// + Z/(//

n,ave n,ave

&)
X [cos k&O(z — 2') — ¥, sin k& (z — z’)]
_[Zdz/ 'I(”)(Z/) 1
0 ]n,s }7/(/!) + )‘7/(”)

n,ave n,ave

X [cos K&z —2') — ]}7,[(';‘),6 sin kK&%9(z — z’)]
1
! i} ’
_f dz'];(:/s)(z )—H - P
’ !
z Yn,ave + Yn,ave

x [cos k&¥(z = 2) = V), sin k&2 - 2]
13)

/(”) z ! /(”) ’
I'"(z) = —f dz' v, (z")
0
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n,ave n,ave
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t
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Figure 3 Network representation for point-source-excited transmis-
sion line
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x [cos k&2 = 2) = JZ0 sin K&z — 2]
G
—/tdZ' ,,(,,)(Z,) n,ave
N T
n,ave n,ave

X [cos k®9(z —z') — jf;(:’:vc sin k(2 — z’)]
(14)

where

1/2

k@9 = (ke — k2, — k?) (15)

ave

In (13) and (14), ];1("3 and ¥/ are the distributed current

and voltage sources given in (10)-(12). In addition, Zihm
(Z,, ..) are the input impedance looking to the right (looking
to the left), at any location z' within the line, which is shown
in Figure 3.

The voltage and current solutions can be easily and quickly
obtained by evaluating (13) and (14) with numerical integra-

tion.

4. NUMERICAL RESULTS

In general, the relative dielectric constant of gratings may
vary spatially arbitrarily. For the present paper, we will con-
sider a sinusoidally modulated medium, with the relative
dielectric constant given by

2mx
e(x) = au[l +26 005(7” (16)

where ¢,, 6, and a are the average dielectric constant,
modulation index, and period of the grating. The average
relative dielectric is set to be &, = 1.44, and outside the
grating layer is the air region with the dielectric constant
designated by ¢, = ¢, = 1.

a=tpm 656443 )
013 —

[ tg=im  ¢=53.1301
012 - 50.01
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0.85 0.90 0.95 1.00 1.06 1.10 1.15
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Figure 4 Effect of wavelength on the diffraction efficiency
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Figure 5 Effect of incident azimuth angle on the diffraction effi-
ciency

Figure 4 shows the effect of the wavelength on the
diffraction efficiencies. Figure 5 presents the effect of the
azimuth angle on the diffraction efficiencies. All results in
Figures 4 and 5, obtained easily by the perturbation method,
show good agreement with that obtained by a rigorous formu-
lation.

We have also investigated the effects of incidence with a
TM polarized plane wave.

5. CONCLUSION

A perturbation analysis has been presented for the scattering
of a plane wave by a dielectric grating at oblique incidence.
The transmission-line network representation simplifies the
field analysis considerably, and provides a physical picture of
the polarization conversion. We have shown the approxima-
tion to be valid for a large range of parameters by comparing
them with numerical results obtained by a proposed rigorous
formulation [2].
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