
Signal Processing 71 (1998) 291—299

Real-time implementation of the split-radix FFT —
An algorithm to efficiently construct local butterfly modules

Pei-Chen Lo*, Yu-Yun Lee

Department of Electrical and Control Engineering, National Chiao Tung University, Taiwan, People+s Republic of China

Received 16 April 1998; received in revised form 13 August 1998

Abstract

This paper presents a new technique of real-time Fourier spectral analysis based on the decimation-in-time split-radix
fast-Fourier-transform (DIT sr-FFT) butterfly structure. The new algorithm (to be called the ‘real-time FFT algorithm’),
designed in a multi-tasking environment, efficiently utilizes the computer time. It simultaneously constructs the sr-FFT
butterfly structure while the data acquisition proceeds. Hence, it provides a practical, useful approach to analyzing the
on-line, time-varying Fourier spectra for the multi-channel electrophysiological signals. The authors propose a strategy
of identifying the local butterfly sub-structures (modules) ready to be constructed when only a portion of the input data
array is available. In addition, we develop an alternative way to analyze the computational complexity of the real-time
FFT algorithm. To evaluate the efficiency of the algorithm, we calculate the number of complex arithmetic operations
required to complete the rest butterfly sub-structures upon receipt of the last data point. The result shows that the
efficiency of the algorithm increases with N (the FFT size). (1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Beitrag stellt eine neue Methode für die Echtzeit Fourier Spektralanalyse basierend auf der decimation-in-time
split radix fast-Fourier-transform (DIT sr-FFT) Butterfly-Struktur vor. Der neue Algorithmus (im folgenden Echtzeit-
FFT-Algorithmus genannt) eignet sich zur Anwendung in Multi-tasking Umgebungen und macht auf effiziente Weise
von der verfügbaren Rechenzeit Gebrauch. Das vorgeschlagene Verfahren konstruiert die sr-FFT-Butterfly-Struktur
während die Datenaufnahme erfolgt. Die besprochene Methode eignet sich daher besonders zur Echtzeitanalyse der
zeitvarianten Fourierspektren von elektrophysiologischen Mehrkanalsignalen. Die Autoren schlagen eine Methode für
die Ermittlung der lokalen Butterfly-Substrukturen (Module) vor, die bereits konstruiert werden können wenn erst ein
Teil der zu verarbeitenden Daten vorhanden ist. Weiters wird ein alternatives Verfahren zur Analyse des Rechenaufwandes
des Echtzeit FFT-Algorithmus vorgeschlagen. Um die Effizienz des Algorithmus zu bewerten wird die Anzahl der
komplexwertigen arithmetischen Operationen bestimmt, die nach Empfang des letzten Datenpunktes nötig sind um die
restlichen Butterfly-Substrukturen zu vervollständigen. Dieses Resultat zeigt, da{ die Effizienz des Algorithmus mit
N (FFT-Grö{e) steigt. (1998 Elsevier Science B.V. All rights reserved.

*Corresponding author. Tel.: #886 3 573 1667; fax: #886 3 571 5998; e-mail: pclo@cc.nctu.edu.tw.

0165-1684/98/$19.00 (1998 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 - 1 6 8 4 (9 8) 0 0 1 5 2 - 2

Résumé

Cet article présente une technique nouvelle pour l’analyse spectrale de Fourier en temps réel basée sur la structure
papillon de la transformation de Fourier rapide de type décimation temporelle split-radix (DIT sr-FFT). Cet algorithme
nouveau (appelé “algorithme FFT en temps réel”) conc7 u pour un environment multi-tâches, utilise de manière efficiente le
temps de calcul. Il construit simultanément la structure papillon du sr-FFT tandis que l’acquistion des données se
poursuit. De ce fait, il conduit à une approche pratique et utile pour l’analyse en temps réel de spectres de Fourier variant
dans le temps de signaux électrophysiologiques multicanaux. Les auteurs proposent une stratégie d’identification des
sous structures (modules) papillon locales prêtes à être construites lorsque seule une portion du réseau de données
entrantes est disponible. De plus, nous développons une voie alternative pour l’analyse de la complexité en calcul de
l’algorithme de FFT en temps réel. Pour évaluer l’efficacité de l’algorithme, nous calculons le nombre d’opérations
arithmétiques complexes requises pour compléter les sous-structures papillon restantes après réception de la dernière
donnée. Ce résultat montre que l’efficacité de l’algorithme croı̂t avec N (la taille de la FFT). (1998 Elsevier Science B.V.
All rights reserved.

Keywords: Split-radix FFT; Multi-channel electrophysiological signal processing; Real-time frequency analysis; Local
butterfly sub-structure

1. Introduction

On-line, real-time processing of digital elec-
trophysiological signals provides a helpful tool for
intensive-care monitoring and diagnostic reference
in clinics. In electroencephalograph (EEG), the
rhythmicity gives a means of quantitatively describ-
ing EEG records. EEG frequencies are conveniently
classified into four ranges: delta (f(4 Hz), theta
(4 Hz)f(8 Hz), alpha (8 Hz)f)13 Hz) and
beta (13 Hz(f), which constitute the elementary
patterns of EEG signals [5]. We very often require
the real-time display of the frequency spectra of
EEG in clinical application. In general, total number
of recording channels employed in clinical applica-
tion ranges from 8 to 19 channels. With the advance
in digital technology and instrumentation, some
EEG instruments even have 256 recording channels.
To develop the algorithm capable of performing
the real-time, multi-channel frequency analysis, one
needs to efficiently utilize the computer time in
addition to improving the computational efficiency.

Since the radix-2 FFT proposed by Cooley and
Tukey [4], a variety of the FFT algorithms have
been rapidly developed and implemented with soft-
ware and hardware approaches [1—3,6—8,12—17,
19,20]. For example, the split-radix FFT (sr-FFT)
algorithm derived by Duhamel and Hollmann [6,7]
has a simple structure and an explicit theoretical
basis. Their idea has been further discussed and

extended in [13,15,17,19]. The FFT algorithm made
classical spectral analysis practical. Short-time
Fourier transform (STFT) based on FFT has been
widely used in the commercially available EEG
machine to characterize the time-varying frequency
spectra of EEG. However, the STFT even based on
FFT still requires processing time several orders of
magnitude greater than real time. Most of the
processing time has been wasted on acquiring
the entire epoch of a (multi-channel) signal or for
the I/O access to the storage medium when design-
ing the real-time STFT algorithm based on the
conventional FFT algorithm. That is, the digital
computer is totally devoted to the data acquisition
task without handling any arithmetic operation.
Only after the entire epoch for STFT analysis is
collected, the algorithm starts building the butterfly
structure for the FFT computation. The conven-
tional Cooley—Tukey FFT algorithm and the
Duhamel—Hollmann sr-FFT algorithm [6,7] were
both developed in this manner.

As a matter of fact, the computational time could
be further reduced if we simultaneously build some
local butterfly structures (to be called the ‘butterfly
sub-structures’ or the ‘butterfly modules’) while the
data acquisition (I/O process) is still under way.
The idea is to finish building as many the butterfly
sub-structures as possible with the data points on
hand. This approach of implementing the FFT
algorithm is to be called ‘the real-time FFT

292 P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291–299

algorithm’. To make the real-time technique practi-
cable, one requires that: (1) the butterfly modules at
a given stage can be constructed from one or more
butterfly modules at the previous stage, and (2)
a large portion of the butterfly modules can be
constructed without the last few points of the in-
put array. Most well-known FFT computation
schemes (e.g., the radix-2, radix-4, prime-factor, and
split-radix FFTs) satisfy these two requirements.
Among them, the sr-FFT algorithm takes advantage
of the mixed radix design [6,7]. As illustrated in the
following section, the sr-FFT algorithm is a mixture
of the radix-2 and radix-4 FFTs. Hence, it has the
advantage of better computational efficiency of the
radix-4 FFT, but yet it does not require the FFT
size to be an integer power of 4. This paper presents
the real-time FFT algorithm, based on the sr-FFT
butterfly structure, which builds the on-line butterfly
sub-structures utilizing the portion of the input
data array available. In addition, the authors devel-
op an alternative way to analyze the computational
complexity, which is adopted to evaluate the effi-
ciency of the real-time FFT algorithm.

2. Duhamel—Hollmann DIT sr-FFT

According to the advantages mentioned in the
previous section, the DIT sr-FFT is employed.
The DIT sr-FFT structure has a horizontally rever-
sed ‘L’ shape. Considering the convenient case of
N an integer power of 2 (N"2r), an N-point DFT
X[k] of data array x[n] is decomposed into one
N/2-point DFT X

2n
[k] and two N/4-point DFTs

X
4n`1

[k] and X
4n`3

[k]. Thus, the N-point DFT
becomes:

X[k]"
N~1
+
n/0

x[n]¼nk
N

"

(N@2)~1
+

m/0

x[2m]¼2mk
N

#

(N@2)~1
+

m/0

x[2m#1]¼(2m`1)k
N

"

(N@2)~1
+

m/0

x[2m]¼2mk
N

#

(N@4)~1
+

m/0

x [4m#1]¼(4m`1)k
N

#

(N@4)~1
+

m/0

x[4m#3]¼(4m`3)k
N

, (1)

where ¼
N
"e~j2n@N and 0)k)(N!1) [11]. The

first term is the N/2-point DFT of the even-indexed
data points in x[n] array:

X
2n

[k]"
(N@2)~1

+
n/0

x[2n]¼nk
N@2

, (2)

where 0)k)(N/2!1). The last two terms in
Eq. (1) represent the N/4-point DFTs X

4n`1
[k]

and X
4n`3

[k] with the twiddle factors:

(N@4)~1
+
n/0

x[4n#1]¼(4n`1)k
N

"¼k
N

(N@4)~1
+
n/0

x[4n#1]¼nk
N@4

"¼k
N
X

4n`1
[k] (3)

and

(N@4)~1
+
n/0

x[4n#3]¼(4n`3)k
N

"¼3k
N

(N@4)~1
+
n/0

x[4n#3]¼nk
N@4

"¼3k
N

X
4n`3

[k], (4)

where 0)k)(N/4!1). Hence, the algorithm is
a mixture of the radix-2 and radix-4 DIT-FFTs.

Fig. 1 illustrates a local butterfly-structured mod-
ule performing an ¸-point DFT at the (r!j)th
stage (¸"2r~j). The ¸-point DFT G[k] is decom-
posed into one ¸/2-point DFT G

2n
[k] at the

(r!j!1)th stage and two ¸/4-point DFTs
G

4n`1
[k] and G

4n`3
[k] at the (r!j!2)th stage.

Note that G
2n

[k] is defined for 0)k)(¸/2!1),
and G

4n`1
[k] and G

4n`3
[k] are defined for

0)k)(¸/4!1). Thus the ¸-point DFT can be
derived using the periodic property of the DFT as
below:

G[k]"G
2n

[k]#(¼k
L
G

4n`1
[k]#¼3k

L
G

4n`3
[k]),

(5)

P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291—299 293

Fig. 1. A butterfly-structured module performing an L-point
sr-FFT.

G[k#¸/4]"G
2n

[k#¸/4]#¼k`L@4
L

G
4n`1

[k]

#¼3(k`L@4)
L

G
4n`3

[k],

"G
2n

[k#¸/4]!j(¼k
L
G

4n`1
[k]

!¼3k
L

G
4n`3

[k]), (6)

G[k#¸/2]"G
2n

[k]#¼k`L@2
L

G
4n`1

[k]

#¼3(k`L@2)
L

G
4n`3

[k],

"G
2n

[k]!(¼k
L
G

4n`1
[k]

#¼3k
L

G
4n`3

[k]), (7)

G[k#3¸/4]"G
2n

[k#¸/4]#¼k`3L@4
L

G
4n`1

[k]

#¼3(k`3L@4)
L

G
4n`3

[k],

"G
2n

[k#¸/4]#j(¼k
L
G

4n`1
[k]

!¼3k
L

G
4n`3

[k]), (8)

where 0)k)(¸/4!1).
To better illustrate the structural property of the

sr-FFT, Fig. 2 displays the complete butterfly struc-
ture for the 16-point DIT sr-FFT. Consider the
four blocks at the second stage. The shaded regions
indicate that the connecting branches in the regions
are able to accomplish the local 22-point DFT.
These regions will be called the ‘DFT blocks’ later.
The blank region at the second stage, on the other
hand, indicates the output values are not the correct
DFT values. Therefore, the blank region represents
the ‘non-DFT block’. Further decomposition into
two length-2 arrays is performed in the non-DFT
block at the second stage.

Fig. 2. The signal flow graph of a 16-point DIT sr-FFT structure.

3. Strategy of building the on-line butterfly
sub-structures

The DFT basically transforms one data array
into another data array of the same size. The
conventional FFT, designed to obtain the complete
frequency-band spectrum, hence makes an inherent
assumption that the input and output sequences
have the same array size. However, two situations
often encountered are: (1) only a narrow frequency
band of the Fourier spectrum is of interest, and (2)
the input data array consists of many zero-valued
data points due to zero-padding. To reduce the
unnecessary arithmetic operations, a number of
‘pruned FFT’ algorithms were introduced [2,9,10,
12,13,16,18]. Pruning is a modification of the com-
plete butterfly structure by removing those branches
connected to the zero-valued input (input pruning)
or to the unattended output samples (output prun-
ing). The trimming of the L-shaped butterfly struc-
ture results in further reduction in the number of
arithmetic operations.

The EEG is usually sampled at 200 Hz. To ana-
lyze and display the on-line, running Fourier spectra
using 512-point DFT, one would spend more than
2.5 s on doing nothing except acquiring the digital
EEG data. Inspired by the input pruning scheme,
the authors developed the real-time FFT algorithm
which builds the on-line butterfly sub-structures
based on the DIT sr-FFT structure. The efficient
algorithm presented in this paper utilizes the data

294 P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291–299

Fig. 3. The signal flow graphs showing the accomplished butterfly sub-structures upon receipt of: (a) the first 9 points, (b) the first 13
points, (c) the first 14 points, and (d) the first 15 points (assume the 16-point FFT).

points available to construct the local L-shaped
butterfly modules while the EEG recording system
is still acquiring the digital EEG data. In Section 5,
we will show that, before the last data point comes
in, the algorithm is able to accomplish more than
one-half DIT sr-FFT structure when r'4 (r: num-
ber of stages of the sr-FFT butterfly structure).
Moreover, the accomplished portion increases with
N (the FFT size, N"2r).

To describe how the algorithm works, the 16-
point DIT sr-FFT structure in Fig. 2 is considered.
The signal flow graphs in Fig. 3 are used to illustrate
the progress of the 16-point sr-FFT butterfly struc-
ture given that the data points collected are x[i],

i"0—8 (Fig. 3a), 0—12 (Fig. 3b), 0—13 (Fig. 3c), and
0—14 (Fig. 3d). The solid lines represent those com-
putational branches already accomplished. The
dashed lines indicate that the signal-flow branches
are not formed because the last few data points are
not received. Obviously, the first butterfly sub-
structure is constructed when the (N/2#1)th point
(x[8] in Fig. 3a) is available. That is, the algorithm
starts building the butterfly sub-structures only
when more than one half data points are collected.
Note that the last block at each stage cannot be
accomplished until the last point x[N!1] is col-
lected (Fig. 3d). Then one question arises: given
that the nth (N/2#1)n)N!1) position of the

P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291—299 295

input data array is filled, which butterfly sub-
structures (modules) can be built? In the following,
the authors propose a strategy of identifying these
butterfly modules.

4. Identification of butterfly modules ready
to be constructed

Consider an N-point DFT where N"2r. The
indexes of input data array are expressed in binary
form (r-bit): x[020]&x[121]. Let the first bit
represent the least significant bit. There are r stages
in the sr-FFT (reversed L-shaped) butterfly struc-
ture. According to the DIT FFT algorithm, the
input sequence is arranged in the bit-reversed order
to obtain a normal-ordered output sequence for
in-place computation. Fig. 4 displays the status of
the last four stages. The shaded regions represent
the DFT blocks. The blank regions are the non-
DFT blocks which require further decomposition
into two half-length DFTs. At any given stage,
a DFT block is constructed from the results of one
DFT and one non-DFT blocks at the previous
stage, whereas a non-DFT block is constructed
from the results of two DFT blocks at the previous
stage. Fig. 4 shows that, to complete at least one
(DFT or non-DFT) block at the ith stage, one must
have at least collected the input data point x[n],
where n*2r~1#2r~2#2#2r~i. That is, the
last (higher-significant) i bits of the array index
must be ‘1’. For example, the top DFT block of the
second stage of a 16-point sr-FFT can be completed
when x[1100] is collected. In addition, the authors

Fig. 4. The DFT (shaded) and non-DFT (blank) blocks par-
titioning the last four stages of an r-stage sr-FFT butterfly
structure.

observed a straightforward regulation for the real-
time FFT algorithm to identify the butterfly mod-
ules ready to be constructed. Consider the array
index n

"
(in binary format) at the (r!j)th stage. If

the jth bit of n
"

is ‘0’, one cannot move to the
(r!j#1)th stage. On the other hand, construction
of the butterfly module can further proceed to the
next higher stage, given that the jth bit is ‘1’ at the
(r!j)th stage. As indicated in Fig. 4, we can ac-
complish the top DFT block at the (r!1)th stage
after the second block (non-DFT) at the (r!2)th
stage is accomplished upon receipt of x[12111

1
0].

In other words, the appearance of x[12111
1

0]
enables the algorithm to construct the (2r~2)th block
(from the top, refer to Fig. 4) of the first stage, the
(2r~3)th block of the second stage,2, up to the
(20)th block (the first block) of the (r!1)th stage.
Consequently, the guideline directs the real-time
FFT algorithm to the correct succeeding butterfly
modules.

5. Evaluation of computational complexity

The computational complexity of the sr-FFT
algorithm has been discussed in detail in [6,7,17].
In this paper, the authors develop an alternative
way to analyze the number of complex multiplica-
tions and additions based on the number of DFT
blocks at each stage.

At the first stage of the DIT sr-FFT butterfly
structure, the algorithm requires 2) 2r~1"N com-
plex additions and no complex multiplication. To
calculate the number of complex arithmetic opera-
tions performed at the (r!j)th stage (0)j)r!2),
we examine the reversed L-shape module shown in
Fig. 1. Note that, to accomplish the ¸-point DFT
(¸*4) at the (r!j)th stage, the structural schema
consists of one ¸/2-point DFT block and one
non-DFT block at the (r!j!1)th stage as well as
two¸/4-point DFT blocks at the (r!j!2)th stage,
where ¸"2r~j"N/2 j. Suppose that G

2n
[k],

G
4n`1

[k], and G
4n`3

[k] have been computed. Ac-
cording to Eq. (5)—(8), computing the ¸-point DFT
G[k] from G

2n
[k], G

4n`1
[k], and G

4n`3
[k] requires

2) (¸/4)"2r~j~1 complex multiplications (due
to the twiddle factors in the non-DFT block)
and 6) (¸/4)"3) 2r~j~1 complex additions.

296 P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291–299

Accordingly, there is no arithmetic operation to be
counted in the non-DFT block. Thus, the total
number of complex multiplications and additions
can be obtained if we know the number of DFT
blocks at each stage. There are 2j blocks at the
(r!j)th stage. Note that the non-DFT blocks at
the (r!j)th stage are decomposed from the DFT
blocks at the (r!j#1)th stage. Hence, the number
of DFT blocks at the (r!j)th stage is

N
r~j

(DFT)"2j!N
r~j`1

(DFT),

j"1,2, r!1, (9)

given that N
r
(DFT)"20"1 for the last stage. It

follows that

N
r~j

(DFT)"
j
+
l/0

(!1)l2j~1

"2j)C
2

3
#

1

3A!
1

2B
j

D. (10)

Then, we obtain the total number of complex
multiplications N

r~j
(MUL

#
) and complex additions

N
r~j

(ADD
#
) at the (r!j)th stage:

N
r~j

(MUL
#
)"2r~j~1)N

r~j
(DFT)

"2r~1)C
2

3
#

1

3A!
1

2B
j

D,
0)j)r!2, (11)

N
r~j

(ADD
#
)"(3) 2r~j~1))N

r~j
(DFT)

"(3) 2r~1))C
2

3
#

1

3A!
1

2B
j

D,
0)j)r!2. (12)

Finally, the total number of complex multiplica-
tions N

505!-
(MUL

#
) is

N
505!-

(MUL
#
)"

r~2
+
j/0

N
r~j

(MUL
#
)

"2r~1)
r~2
+
j/0
C
2

3
#

1

3A!
1

2B
j

D
"

1

3
(r!1)2r#

1

9
2r!

2

9
(!1)r~1

"A
1

3
r!

2

9BN#

2

9
(!1)r (13)

and the total number of complex additions
N

505!-
(ADD

#
) is

N
505!-

(ADD
#
)"N#

r~2
+
j/0

N
r~j

(ADD
#
)

"N#(3) 2r~1))
r~2
+
j/0
C
2

3
#

1

3A!
1

2B
j

D
"Ar#

1

3B) 2r#
2

3
(!1)r

"Ar#
1

3BN#

2

3
(!1)r. (14)

Next, we calculate the number of complex multi-
plications and additions left to be completed upon
receipt of the last point x[2r!1].

Before x[2r!1] is collected, only the last block
of each stage is not constructed. Note that if r is an
odd number, the last block of the first stage is
a DFT block; otherwise, it is a non-DFT block. In
addition, the last block is a DFT block every other
stage. Let r be an odd number. Then, upon receipt
of x[2r!1], the algorithm starts building the last
block (2-point DFT) of the first stage and proceeds
to the last block of the third stage, the fifth stage,2,
up to the rth stage. The number of complex multi-
plications involved in completing the last block of
each stage is: 0 (the first stage), 22 (the third stage),
24 (the fifth stage),2, and 2r~1 (the rth stage).
Thus, the total number of complex multiplications
N

-!45
(MUL

#
) is:

N
-!45

(MUL
#
)"0#22#24#2#2r~1

"

2N

3
!

4

3
, r: odd-numbered. (15)

If r is an even number, the number of complex
multiplications is: 2 (the second stage), 23 (the fourth
stage),2, and 2r~1 (the rth stage). The total number
becomes:

N
-!45

(MUL
#
)"2#23#25#2#2r~1

"

2N

3
!

2

3
, r: even-numbered. (16)

P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291—299 297

Similarly, the number of complex additions in-
volved in completing the last block of each stage is:
2 (the first stage), 3) 22 (the third stage), 3) 24 (the
fifth stage),2, and 3) 2r~1 (the rth stage) for an odd-
numbered r. Thus, the total number of complex
additions N

-!45
(ADD

#
) is

N
-!45

(ADD
#
)"2#3) 22#3) 24#2#3) 2r~1

"2N!2, r: odd-numbered. (17)

For an even-numbered r, the number of complex
additions is: 3)21 (the second stage), 3) 23 (the fourth
stage),2, and 3) 2r~1 (the rth stage). The total
number becomes

N
-!45

(ADD
#
)"3) 21#3) 23#2#3) 2r~1

"2N!2, r: even-numbered. (18)

Eqs. (15)—(18), compared with Eqs. (13) and (14),
show that both the ratios of N

-!45
(MUL

#
) to

N
505!-

(MUL
#
) and of N

-!45
(ADD

#
) to N

505!-
(ADD

#
)

are approximately in proportion to 2/r. In compari-
son with the conventional FFT algorithms, the
real-time FFT algorithm exhibits better efficiency
especially for a large N (the FFT size) when applied
to the on-line Fourier analysis.

The authors compared the computational time
required by the real-time FFT algorithm and the
algorithm provided by Matlab. The real-time FFT
algorithm spent 10 s on computing 1000 times of
the 1024-point FFT (on DX100-486 PC), while the
Matlab spent approximately 12 s on the same task.
Note that the computational time spent on building
the rest butterfly sub-structures upon receipt of the
last data point was approximately 2 s, that is,
one-fifth of the total time required by the entire
process. The result is consistent with our derivation,
i.e., N

-!45
/N

505!-
+2/r (here, r"10).

6. Conclusion

We have introduced a new technique of real-time
implementation of the DIT sr-FFT scheme. The
technique can be applied to any FFT scheme pos-
sessing modular structure with an orderly arrange-
ment of sample points. According to both the
derivation and experimental result, the number of

arithmetic operations left to be accomplished after
collecting all the input data is approximately 2/r of
the total number of arithmetic operations required
for computing an N-point FFT (N"2r). This fact
further shows that the efficiency of the FFT algo-
rithm can be highly improved by utilizing the spare
time of CPU during the I/O process.

References

[1] M.M. Anguh, Quadtree and symmetry in FFT computation
of digital images, IEEE Trans. Signal Process. 45 (12)
(December. 1997) 2896—2899.

[2] S. Barash, Y. Ritov, Logarithmic pruning of FFT frequen-
cies, IEEE Trans. Signal Process. 41 (3) (March 1993)
1398—1400.

[3] V. Boriakoff, FFT computation with systolic arrays, A new
architecture, IEEE Trans. Circuit Systems — II: Analog
Digital Signal Process. 41 (4) (April 1994) 278—284.

[4] J.W. Cooley, J.W. Tukey, An algorithm for machine com-
putation of complex Fourier series, Math. Comput. 19
(1965) 297—301.

[5] R. Cooper, J.W. Osselton, J.C. Shaw, EEG Technol, 3rd
ed., Ch. 6 Butterworth Inc, Woburn, MA, 1980.

[6] P. Duhamel, Implementation of ‘split-radix’ FFT algo-
rithms for complex, real and real-symmetric data, IEEE
Trans. Acoust. Speech Signal Process. ASSP-34, (April
1986) 285—295.

[7] P. Duhamel, H. Hollmann, Split radix FFT algorithm,
Electron. Lett. 20 (1) (January 1984) 14—16.

[8] S. He, M. Torkelson, Computing partial DFT for comb
spectrum evaluation, IEEE Signal Process. Lett. 3 (6) (June
1996), 173—175.

[9] J.D. Markel, FFT pruning, IEEE Trans. Audio Elec-
troacoust. AU-19 (4) (December 1971) 305—311.

[10] K. Nagai, Pruning the decimation-in-time FFT algorithm
with frequency shift, IEEE Trans. Acoust. Speech Signal
Process. ASSP-34 (4) (August 1986) 1008—1010.

[11] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Pro-
cess. Ch. 9, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[12] D.E. Paneras, R. Mani, S.H. Nawab, STFT computation
using pruned FFT algorithms, IEEE Signal Process. Lett.
1 (4) (April 1994) 61—63.

[13] C. Roche, A split-radix partial input/output fast Fourier
transform algorithm, IEEE Trans. Signal Process. 40 (5)
(May 1992) 1273—1276.

[14] I.W. Selesnick, C.S. Burrus, Automatic generation of prime
length FFT programs, IEEE Trans. Signal Process. 44 (1)
(January 1996) 14—24.

[15] A.N. Skodras, Efficient computation of the split-radix FFT,
IEE Proc. 139 (1) (February 1992) 56—60.

[16] H.V. Sorensen, C.S. Burrus, Efficient computation of the
DFT with only a subset of input or output points, IEEE
Trans. Signal Process. 41 (3) (March 1993) 1184—1200.

298 P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291–299

[17] H.V. Sorensen, M.T. Heideman, C.S. Burrus, On computing
the split-radix FFT, IEEE Trans. Acoust. Speech Signal
Process. ASSP-34 (1) (February 1986) 152—156.

[18] T.V. Sreenivas, P.V.S. Rao, High resolution narrow-band
spectra by FFT pruning, IEEE Trans. Acoust. Speech
Signal Process. ASSP-28 (2) (April 1980) 254—257.

[19] P.R. Uniyal, Transforming real-valued sequences:
fast Fourier versus fast Hartley transform algorithms,
IEEE Trans. Signal Process. 42 (11) (November 1994)
3249—3254.

[20] J. You, S.S. Wong, Serial-parallel FFT array processor,
IEEE Trans. Signal Process. 41 (3) (March 1993) 1472—1476.

P.-C. Lo, Y.-Y. Lee / Signal Processing 71 (1998) 291—299 299

