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Abstract

Large-scale, shared-memory multiprocessors have non-uniform memory access (NUMA) costs. The high communication cost
dominates the source of matrix computations’ execution. Memory contention and remote memory access are two major commu-
nication overheads on large-scale NUMA multiprocessors. However, previous experiments and discussions focus either on reducing
the number of remote memory accesses or on alleviating memory contention overhead. In this paper, we propose a simple but
effective processor allocation policy, called rectangular processor allocation, to alleviate both overheads at the same time. The policy
divides the matrix elements into a certain number of rectangular blocks, and assigns each processor to compute the results of one
rectangular block. This methodology may reduce a lot of unnecessary memory accesses to the memory modules. After running many
matrix computations under a realistic memory system simulator, we confirmed that at least one-fourth of the communication
overhead may be reduced. Therefore, we conclude that rectangular processor allocation policy performs better than other popular
policies, and that the combination of rectangular processor allocation policy with software interleaving data allocation policy is a

better choice to alleviate communication overhead. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

Parallel matrix computations are often used to solve
linear algebra, numeric analysis, and graph problems on
shared-memory multiprocessors, and the execution of
these computations is one of the best ways to evaluate the
performance of multiprocessors (Markatos and LeBlanc,
1994; Polychronopoulos and Kuck, 1987; Tzen and Ni,
1993; Wang et al., 1997). Under traditional multipro-
cessors such as BBN Butterfly I and Sequent Balance
8000, because the cost of memory access is lower than
that of computation, the communication effect can be
ignored. Therefore, in executing the computations, the
main considerations are load balancing and synchroni-
zation overhead (Markatos and LeBlanc, 1992). Load
balancing means that the workload of every available
processor must be as even as possible, without leaving
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any processor idle. Synchronization operation overhead
results from the processors’ simultaneous accesses to a
set of shared variables which contain the indices of it-
erations (Tzen and Ni, 1993; Wang and Chang, 1995).

Modern shared-memory multiprocessors have rela-
tively high and non-uniform memory access (NUMA)
costs, and the new architecture is an important trend in
the development of high performance computer. Much
effort has been done to develop large-scale shared-
memory NUMA architectures both in academy and in
industrial research departments. Toronto HECTOR
(Vranesic et al., 1991) and NUMAchine (Vranesic et al.,
1995), MIT Alewife (Agarwal et al., 1995), and Stanford
Dash (Lenoski et al., 1992) are some examples. The high
communication cost dominates the source of parallel
matrix computations’ execution (Markatos and Le-
Blanc, 1992, 1994; Wang and Chang, 1995). The high
communication cost results in two main overheads, re-
mote memory access and memory contention, and they
reduce the performance of parallel applications on large-
scale shared-memory NUMA multiprocessors.

The most important feature of shared-memory
NUMA machines is that the memory modules, which
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share one addressing space, are distributed to all nodes.
In the system, a memory reference request may be in the
cache, in the local memory module, or in the remote
memory module. Many compiler loop scheduling tech-
niques such as affinity scheduling algorithm (AFS) and
modified AFS (MAFS) have been proposed to reduce
the number of remote memory accesses without incur-
ring load imbalance and synchronization overhead
(Markatos and LeBlanc, 1994; Wang and Chang, 1995).
The goal of these algorithms is to alleviate remote
memory access overhead.

Memory contention occurs when multiple processors
access the same memory module simultaneously (Har-
zallah and Sevcik, 1993), especially when all processors
must access the same data just modified by a single
processor (Bianchini et al., 1994). Memory contention
increases the cost of individual memory access. Bian-
chini et al. (1994) proposed one particular software so-
lution called software interleaving for data allocation,
and they confirmed their idea by running some matrix
computations on the simulator.

The experiments and discussions described above
focus either on reducing the number of remote memory
accesses or on alleviating memory contention overhead.
However, both overheads always occur together and
they affect each other in large-scale NUMA multipro-
cessors. In this paper, we propose an effective processor
allocation methodology, called rectangular processor
allocation policy, to alleviate both communication
overheads simultaneously. The methodology may
achieve good performance for some matrix computa-
tions under many popular data allocation policies in
large-scale NUMA multiprocessors.

Our motivation is that under matrix computations, if
we do not pay attention to processor allocation policies,
a processor may access a large area of widespread
matrix elements just for computing the results of a
rather small number of matrix elements. If an applica-
tion is run with a fixed number of processors under
different processor allocation policies, the total number
of memory reference requests for each processor may be
about the same. However, these memory reference re-
quests may be in the cache, in the local memory mod-
ule, or in the remote memory module. Our processor
allocation policy may reduce the number of matrix el-
ements needed by each processor because we may in-
crease the number of elements which are repeatedly
referenced by the same processor. In this way, the
possibility of memory requests in the cache is also in-
creased.

Rectangular processor allocation policy divides the
matrix elements into a certain number of rectangular
blocks, and assigns each processor to compute the re-
sults of one rectangular block. As we know, row major
allocation policy, the most popular processor alloca-
tion policy, assigns a single processor to compute the

results of several consecutive entire rows of matrix. But
rectangular processor allocation policy assigns one
processor to compute the results of a rectangular block
of matrix elements. Compared with row major pro-
cessor allocation policy, rectangular allocation may
reduce the total number of matrix elements needed by
each processor and increase the cache hit ratios. High
cache hit ratios may reduce the memory references to
the memory modules, so the number of remote mem-
ory accesses and memory contention overhead will be
reduced.

To simulate a NUMA environment, we use an on-
line, execution-driven simulator to simulate a large-scale
NUMA multiprocessor with up to 128 nodes. The
simulator consists of two parts: Mint (Veenstra and
Fowler, 1994) and a NUMA machine memory system
simulator. Mint calls the memory system simulator on
each memory reference, and the memory simulator de-
cides whether the reference is in the cache, in the local
memory module, or in the remote memory module. To
simulate a NUMA environment more realistically and
to capture the communication overheads correctly, we
need a realistic memory system simulator. So we modify
and enhance the simple cache simulator provided by
Mint (Veenstra and Fowler, 1994). The simple cache
simulator is a demonstration of user-provided system
simulator, but the cache size of the simple cache simu-
lator is infinite, and the coherent protocol is only bus-
based. In our modified memory system simulator, each
node has a single processor and a finite-size cache which
uses directory-based and write-invalidate protocol. The
simulator also considers the latency of memory con-
tention and the delays of local and remote memory ac-
cesses.

We use all-pairs shortest paths, transitive closure, and
Gaussian elimination as matrix applications. First of all,
we classify the sources of communication overhead for
various data allocation policies under row major pro-
cessor allocation policy. Then, our simulating results
show that under some popular data allocation policies,
at least one-fourth of the communication overheads are
removed when rectangular processor allocation policy is
applied. Therefore, we conclude that under rectangular
processor allocation policy, we may achieve better per-
formance, and that the combination of rectangular
processor allocation with software interleaving data al-
location policy is a better way to alleviate communica-
tion overhead.

The rest of this paper is organized as follows: In
Section 2, we analyze the effects of both overheads
with many matrix computations. Because they often
occur together, they must be considered at the same
time. In Section 3, rectangular processor allocation
policy is illustrated and some simulation results are
presented. At last, the conclusion of the paper is given in
Section 4.
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2. The sources of communication overhead

Remote memory access and memory contention are
two major sources of communication overhead on large-
scale NUMA machines. In this section, we will show
that they substantially reduce the performance of matrix
computations on large-scale NUMA multiprocessors,
and that because they often occur together, we must
consider them at the same time. First we introduce the
experimental environments and the benchmarks we use.
And then we analyze the effects of both overheads by
running various matrix applications under many popu-
lar data allocation policies.

Our study is to explore the communication overheads
under various parameters, so simulation is appropriate
for our experiments (Veenstra and Fowler, 1994). As is
described in the previous section, we use a memory
system simulator to simulate the shared-memory refer-
ences realistically. In the experiment, we simulate a
large-scale shared-memory NUMA multiprocessors
with up to 128 nodes. Each node has a 64 k bytes four
way associative cache with 32-byte cache line, and 16 M
bytes local memory. The choice of four way associative
cache may reduce conflict cache misses (Hennessy and
Patterson, 1990). We use 32-byte cache line throughout
the experiment; the reason is that large cache line may
cause too much false sharing, and that small cache line
may increase the number of network transactions re-
quired to load data into the cache. For most bench-
marks, we may achieve good performance when 32-byte
cache line is used (Dubnicki, 1993). We assume that it
takes 10 cycles to access the local memory (Hennessy
and Patterson, 1990), and assume that one memory
module can only process one request at a time. There-
fore, if a request arrives when the module is busy, it will
be rejected and must be reissued. As to the network
latency, we have two assumptions. First we assume there
to be 36 cycles of network latency, and this assumption
is similar to that made by Bianchini et al. (1994). If a
memory access is in the local memory, it takes 10 cycles
to complete its work. If a memory access is in the remote
memory, it takes 82 cycles to complete its work, but in
case the access is rejected, 72 cycles will be wasted. The
ratio of remote to local memory access is about 8, and
this ratio is conservative for most modern NUMA ma-
chines. Secondly, we assume there to be 72 cycles of
network latency. In this case a remote access takes 154
cycles, and 144 cycles are wasted if the access is rejected.
The ratio of remote to local memory access is about 15 —
a more general assumption.

Our matrix applications consist of the following three
parallel programs: all-pairs shortest paths, transitive
closure, and Gaussian elimination.

The first problem is to compute the all-pairs shortest
paths of a graph with 512 vertices, and the graph is
represented by a 512 x 512 matrix 4. A[#][/] is the length

of the shortest path from vertex i to vertex j for all
0<i< 512 and 0<j < 512. The pseudo code of this
problem is shown as follows:
for (k=0; k < 512; k++)
parallel for (i=0; i < 512, i++)
for (j=0;j < 512; j++)
A[i][j] = min{A[i][/], A[i] k] + A[k][j]}

Each element in the matrix occupies 2 bytes, so each
cache line may hold 16 elements. It takes 512 phases to
complete the work, and we use barrier synchronization
among different phases. The matrix is statically parti-
tioned into several parts, and each part is assigned to
one processor. Here we use static scheduling algorithm
and the most popular processor allocation policy — row
major allocation policy. In this policy each processor
computes the results of a fixed number of entire rows.
For example, as the number of processors is 64, each
processor computes the results of 8 entire consecutive
rows.

The second problem is to compute the transitive
closure of a graph with 512 vertices. The graph is rep-
resented by a 512 x 512 matrix A. For all 0<i < 512
and 0<j < 512, A[i][j] is | if there exists a path from
vertex i to vertex j, otherwise 4(i, ) is 0, and the possi-
bilities of both cases are equal. The pseudo code to solve
the problem is shown as follows:

for (k=0; k < 512; k++)
parallel for (i=0; i < 512, i++)
for (j=0;j < 512; j++)
if A[i][k] = A[k][j] =" 1’ then A[i][;] ="l

Each element in the matrix occupies 1 byte, so each
cache line can hold 32 elements. It also takes 512 phases
to complete the work, and we use barrier synchroniza-
tion among different phases. The processor allocation
policy is the same as the first problem, so we do not state
more details.

The third problem is to perform Gaussian elimination
of a 512 x 512 matrix A. The algorithm can be stated as
follows:

for (j=0; j < 512; j++)
parallel for (i=j + 1; i < 512, i++)

{

tmp = Ali][;1/A[j]l]]

for (k=j; k < 512; k++)
Ali|[k] = A[i][k] — tmp = A[j][K]

Each element in the matrix occupies 4 bytes, so each
cache line can only hold 8 elements. It also takes 512
phases to complete the work, and we use barrier syn-
chronization among different phases. Again the proces-
sor allocation policy is the same as the first problem, so
we do not state more details.

These problems share the same characteristics: The
first one is that the iterations in the parallel loop are all
independent. The second characteristic is that during the
ith phase, all processors compete for the ith memory
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module, and most of the memory accesses are remote
ones.

We simulate three types of data allocation policies —
row major, column major, and software interleaving.
Row major ( Row) assigns one entire row to the memory
module of a processor. Column major (Column), on the
other hand, assigns each element of a row to a different
memory module. Software interleaving, proposed by
Bianchini et al. (1994), divides each row of the matrix
into several cache blocks, and maps the cache blocks of
a single row into different memory modules.

We use Ep. as the ideal execution time of matrix
computation. In this case, we assume that all cache-miss
memory requests are in the local memory module and
that no memory contention occurs. Then the perfor-
mance reduction, resulting from remote memory access,
is defined as follows:

(Eremole - Efree)/Efree ( 1 )

Eemote 18 the execution time when no memory contention
occurs but remote memory access delay is considered in
the simulation. The performance reduction, resulting
from memory contention, is defined as follows:

(Ereal - Eremote)/Efree (2)
E... 1s the real execution time when both remote mem-
ory access delay and memory contention overhead are
considered.

First we analyze the overhead for all-pairs shortest
paths problem when row major processor allocation
policy is applied under various data allocation policies.
We use two ratios (8 and 15) of remote to local memory
access. Figs. 1 and 2 show the performance reduction
resulting from memory contention and remote memory
access with 64 and 128 processors.

Among these data allocation policies, row major
suffers the highest overhead because of memory con-
tention. The reason is that during each phase, all pro-
cessors must compete for the data of the same row. As
the number of processors and the ratio of remote to

local memory access increase, the overhead of memory
contention is increased. For example, when the number
of processors is 128 and the ratio of remote to local
memory access is 15, it suffers 0.48 performance reduc-
tion resulting from memory contention.

On the other hand, column major policy suffers most
overhead because of remote memory access. This policy
reduces the memory contention, but causes higher cache
miss ratio resulting from the false sharing of cache lines.
Thus the number of accesses to memory modules is in-
creased and this leads to higher possibility of remote
memory access. The overhead increases as the ratio of
remote to local memory reference gets larger. Software
interleaving allocation performs better than the other
two policies; however, the overhead is still large.

In the same way we may analyze the communication
costs under transitive closure and Gaussian elimination.
Figs. 3 and 4 present the overheads of transitive closure.
Figs. 5 and 6 present the overheads of Gaussian elimi-
nation. Transitive closure performs similarly to all-pairs
shortest paths problem, but the reduction of perfor-
mance is not so significant and the differences between
various data allocation policies are less obvious. The
reason is that each cache line contains more elements in
transitive closure than in all-pairs shortest paths. So in
transitive closure, the cache miss ratios are smaller. Thus
the memory access traffic of transitive closure is lighter
than that of all-pairs shortest paths. Again row major
policy suffers more memory contention and column
major policy suffers more remote memory access.

On the other hand, the performance reduction under
Guassian elimination is much larger than under the
other two problems. Even when the ratios of remote to
local memory access is only 8 and the number of pro-
cessors is 64, the performance reductions are high. The
reason is that in this application, the cache line holds less
data and the data updating frequency is too high. So the
cache miss ratios are much larger than those of the other
two problems, and the memory traffic is very busy.

| Memory contention

[J Remote memory access

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Performance reduction

Row Column Software
R=8 interleaving

Row Column Software
R=15 interleaving

Data allocation policy and remote to local memory access ratio(R)

Fig. 1. The sources of overhead under all-pairs shortest paths with 64 processors.
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[ | Memory contention [ Remote mMemory access

Performance reduction

Row Column Software Row Column Software
=8 interleaving R=15 interleaving

Data allocation policy and remote to local memory access ratio(R)

Fig. 2. The sources of overhead under all-pairs shortest paths with 128 processors.
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Fig. 3. The sources of overhead under transitive closure with 64 processors.
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Fig. 4. The sources of overhead under transitive closure with 128 processors.
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Fig. 6. The sources of overhead under Gaussian elimination with 128 processors.

We may summarize that memory contention and re-
mote memory reference not only occur together but also
substantially reduce the performance of parallel matrix
applications on NUMA multiprocessors. The effects
may differ for various data allocation policies. In the
next section, we will argue that the overheads may be
alleviated by allocating processors to compute matrices
elements in a simple but effective way.

3. Alleviating the communication overheads by rectangu-
lar processor allocation

In this section, we illustrate rectangular processor
allocation policy in detail. Then we show the effect of
this policy by running many matrix computations under
various combinations of processor allocation policies
with data allocation policies.

First, we give a simple example to illustrate the im-
portance of processor allocation assignment. In many
matrix computations, to compute the result of an ele-
ment of a matrix, it is possible to reference many other
rows or/and columns. Take the computation of the all-

pairs shortest paths of a matrix 4 as an example. To

compute the result of A4;, the entire 1st row and the

entire 1st column of matrix 4 must be referenced, where

Ay; is the element in row k and column j of matrix A4.

Now we consider the following two processor allocation

policies for the computation of A4:

1. Processor i computes the results of the ith row of ma-
trix A.

2. Processor i computes the results of the left half of
both ith and the (i + 1)th rows of matrix 4, and pro-
cessor (i + 1) computes the right half of the two rows,
where i is an odd number.

Fig. 7 shows the areas of data elements to be accessed
and the areas to be computed for processor i under both
policies. It shows that in order to compute the results of
the same-sized data elements, in the first policy, we must
reference the whole matrix of 4. But in the second
policy, we only need to reference about half. The reason
is that the data elements’ reusability in the second policy
is larger than that in the first one.

We use an effective processor allocation policy, called
rectangular processor allocation policy, to alleviate the
communication bottlenecks for many matrix applica-
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The area of data elements to be accessed

: The area of data elements to be computed

Matrix A

. N

| SHis oHC)

(1) Policy 1

Matrix A

¢

000000
0000000000 /

000000
000000

N\

(2) Policy 2

Fig. 7. The data elements to be computed and the areas to be accessed for two possible processor allocation policies under all-pairs shortest paths.

tions. Rectangular processor allocation policy divides
matrix into a certain number of same-sized rectangular
blocks, and each processor computes the result of one
block. The idea of dividing matrix into a certain number
of rectangular blocks is similar to the software inter-
leaving (Bianchini et al., 1994), used in data allocation
and is also similar to the tiling technique, used in loop
and data transformation (Ramanujam and Sa-
dayappan, 1990). But we use this technique in the as-
signment of processor allocation. As we know, row
major processor allocation policy, the most popular
processor allocation policy, assigns several consecutive
entire rows to each processor, and each processor
computes the results of these rows. But rectangular

processor allocation policy assigns each processor to
compute the results of a rectangular block of elements.
The width (the number of elements) of a rectangular
block is the multiple of a cache line size. Fig. 8 shows
the areas of data elements to be accessed when we
compute the same-sized data under both processor al-
location policies for all-pairs shortest paths and transi-
tive closure problems. We may give an investigation of
the areas of data elements to be accessed for both pol-
icies under these two problems:

If the rank of the matrix is N, and there are P
available processors:
1. Under row major allocation policy, for each proces-

sor, the total size of elements to be accessed is N X N.

: The area of data elements to be accessed.

: The area of data elements to be computed.

Matrix A

; >

. 7
(1) Row major processor

allocation policy

Matrix A

/ N
o
o

(2) Rectangular processor
allocation policy

Fig. 8. The data elements to be computed and the areas to be accessed for row major and rectangular allocation policies under all-pairs shortest paths

and transitive closure.
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2. If the width (the number of elements) of the rectangu-
lar block to be computed is w and w is the multiple of

a cache line size, then the total size of the data ele-

ments to be accessed for each processor is

N x N x (pl + p2 — 1)/P under rectangular proces-

sor allocation policy, where pl = N/w, and p2= P/

pl. Obviously, as pl = p2, the data elements to be ac-

cessed is minimized, N x N x (2 x /P —1)/P.

As for Gaussian elimination, the distributions of the
data elements to be accessed for both policies are a little
different from those of transitive closure and all-pairs
shortest paths problems. Nevertheless, the total areas of
data elements to be accessed under rectangular proces-
sor allocation policy are quite smaller than those under
row major processor allocation policy. Fig. 9 shows an
example of the data elements to be accessed under both
processor allocation policies with same-sized elements to
be computed.

To compare the performance of both processor al-
location policies, the matrix applications are run for
both processor allocation policies under the same sim-
ulating environments as in the second section. Table 1
shows the execution times under both processor allo-

cation policies with 64 and 128 processors for all-pairs
shortest paths problem. It shows that when rectangular
processor allocation policy is used, the execution times in
this policy are shorter than those in row major processor
allocation policy under any data allocation policy.

To confirm the result of Table 1, we collect the cache
miss ratios and analyze the sources of communication
overheads for both processor allocation policies. Ta-
ble 2 shows the cache miss ratios for both processor
allocation policies under various data allocation poli-
cies. It shows that under rectangular processor alloca-
tion policy, the miss ratios are only about one-fourth of
those under row major processor allocation policy.
Figs. 10 and 11 show the overheads resulting from
memory contention and remote memory reference with
64 and 128 processors under various ratios of remote to
local memory reference. They show that under any data
allocation policy, rectangular processor allocation poli-
cy always performs better than row major processor
allocation policy. In most cases, it reduces about a half
overheads of row major processor allocation policy.
Among those combinations, software interleaving data
allocation policy and rectangular processor allocation

# .The area of data elements to be accessed.

ZZI :The area of data elements to be computed.

B

Matrix A

O 0O 00 00 OO
O 0O 00 00 OO
O 0O 00O 00O OO
O 0O 00O 00 OO
O 0O 00O 00O OO
~ /

(1) Row major processor
allocation policy

“000
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o O 0o o0 0\
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o O O o0 O
O O 0O O
O 0 0O O
O 0 0O
O O 0O O
O 0O OO0 OO0 O
O 0O 00 OO0 O
O 0O 00 00O O
/
(2)Rectangular processor

allocation policy

Fig. 9. The data elements to be computed and the areas to be accessed for row major and rectangular allocation policies under Gaussian elimination.

Table 1

The execution times (in millions of cpu cycles) for all-pairs shortest paths under row major and rectangular processor allocation policies

Processor allocation Remote to local memory access ratio =38

Remote to local memory access ratio=15

policy Data allocation policy Data allocation policy
Row major Column major  Software interleaving Row major Column major  Software interleaving
64 processors
Row major 106 102.3 104.2 111.4 108.8 108.9
Rectangular 103.6 99.3 102.3 107.3 103.1 104.6
128 processors
Row major 73.9 58.2 59.2 81.7 65.8 66.3
Rectangular 58.3 56.4 56.1 63.9 62.3 59.0
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The cache miss ratios for all-pairs shortest paths under row major and rectangular processor allocation policies

Processor allocation policy

Data allocation policy

Row major (%) Column major (%) Software interleaving (%)
64 processors
Row major 0.26 0.58 0.26
Rectangular 0.08 0.09 0.08
128 processors
Row major 0.52 1.19 0.52
Rectangular 0.14 0.12 0.13

Data allocation policy:

Row major

Column major

B Memory contention Remote memory access

Software interleaving

0.18 +
0.16 +
0.14 +
012 1

Performance reduction

Column major

P

Row major Software

interleaving

Column major
T Row major = Software
: interleaving

Row Rect. Row Rect. Row Rect. Row Rect. Row Rect. Row Rect.

R=8 R=15
Processorallocation policy and remote to local memory access
ratio(R)

Fig. 10. The sources of overhead for all-pairs shortest paths under row major (Row) and rectangular (Rect.) processor allocation policies with 64

processors.

Data allocation policy:
Row major

Column major
Software interleaving

Performance reduction

B Memory contention 3 Remote memory access

0.7 -
06 1 Row major
0571 Row major
04 ~ Software
03 Colmn major interleaving
’ Column major  Software o
0.2 interleaving
0.1
0
Row Rect. Row Rect. Row Rect. Row Rect. Row Rect. Row Rect.
R=8 R=15
Processorallocation policy and remote to local memory access
ratio(R)

Fig. 11. The sources of overhead for all-pairs shortest paths under row major (Row) and rectangular (Rect.) processor allocation policies with 128

processors.
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Table 3

The execution times (in millions of cpu cycles) for transitive closure under row major and rectangular processor allocation policies

Processor allocation Remote to local memory access ratio =8

Remote to local memory access ratio =15

policy Data allocation policy Data allocation policy
Row major Column major  Software interleaving Row major Column major  Software interleaving
64 processors
Row major 74.4 77.8 74.4 77.9 82.4 77.9
Rectangular 74.2 76.5 73.9 77.0 79.3 76.3
128 processors
Row major 47.9 432 41.1 51.2 50.0 46.9
Rectangular 40.5 41.5 40.5 45.6 46.4 45.6

policy together reduce the largest amount of communi-
cation overhead. There is about 0.01 overhead of per-
formance reduction resulting from the extra loop
control under rectangular processor allocation policy,
and the effect is slight.

In the same way, we may experiment with the results
of transitive closure and Gaussian elimination. Tables 3
and 4 show the execution times for these two problems
under both processor allocation policies. Once again, we
collect the cache miss ratios and analyze the sources of
communication cost for transitive closure and Gaussian
elimination. The results of cache miss ratios are shown
in Tables 5 and 6, and the overheads are shown in
Figs. 12-15. Again in the case of transitive closure
problem, rectangular processor allocation policy per-
forms better than row major processor allocation policy
as in the case of all-pairs shortest paths problem. The
rectangular policy reduces about one-fourth to half the

Table 4

overheads compared with row major policy, and the
combination of software interleaving data allocation
policy and rectangular processor allocation policy re-
move more overhead than the others. As for Gaussian
elimination problem, at least half overheads are reduced
under rectangular processor allocation policy, and the
combination of software interleaving data allocation
policy with rectangular processor allocation policy re-
move the largest amount of overhead. But in some
cases, the execution times of rectangular processor al-
location policy are longer than those of row major
processor allocation policy. The reason is that Gaussian
elimination is an example of load imbalance but the
other two problems are examples of load balance.
Compared with row major processor allocation policy,
rectangular processor allocation policy suffers more
performance reduction because of load imbalance.
Combined with more complicated dynamic scheduling

The execution times (in millions of cpu cycles) for Gaussian elimination under row major and rectangular processor allocation policies

Processor allocation Remote to local memory access ratio=38

Remote to local memory access ratio= 15

policy Data allocation policy Data allocation policy
Row major Column major  Software interleaving Row major Column major  Software interleaving
64 processors
Row major 82.0 78.3 39.3 1334 114.0 44.2
Rectangular 71.8 88.9 57.3 90.2 116.6 61.5
128 processors
Row major 114.0 130.7 22.3 215.0 224.2 28.7
Rectangular 52.3 53.3 34.8 74.2 71.9 39.6
Table 5

The cache miss ratios for transitive closure under row major and rectangular processor allocation policies

Processor allocation policy Data allocation policy

Row major (%)

Column major (%) Software interleaving (%)

64 processors
Row major 0.20
Rectangular 0.05

128 processors
Row major 0.39
Rectangular 0.07

0.38 0.20
0.07 0.05
0.64 0.39
0.11 0.07




Table 6
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The cache miss ratios for Gaussian elimination under row major and rectangular processor allocation policies

Processor allocation policy

Data allocation policy

Row major (%) Column major (%) Software interleaving (%)
64 processors
Row major 0.60 16.97 0.60
Rectangular 0.40 7.96 0.40
128 processors
Row major 1.16 81.87 1.16
Rectangular 0.55 8.16 0.55
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Software 4interle::\ving
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Fig. 12. The sources of overhead for transitive closure under row major (Row) and rectangular (Rect.) processor allocation policies with 64 pro-
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Fig. 13. The sources of overhead for transitive closure under row major (Row) and rectangular (Rect.) processor allocation policies with 128
processors.

algorithms, such as AFS (Markatos and LeBlanc, 1994), We may summarize that by using simple but effective
LDS (Li et al., 1993), and MAFS (Wang and Chang, processor allocation policy, we may increase the cache
1995), we may alleviate load imbalance to improve the hit ratios. So both memory contention and remote

performance.

memory reference overheads will be alleviated. And the
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Fig. 14. The sources of overhead for Gaussian elimination under row major (Row) and rectangular (Rect.) processor allocation policies with 64
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Fig. 15. The sources of overhead for Gaussian elimination under row major (Row) and rectangular (Rect.) processor allocation policies with 128

processors.

combination of rectangular processor allocation policy
with software interleaving data allocation policy may
reduce the largest amount of overhead. Thus the per-
formance of multiprocessor will be improved for many
matrix computations.

4. Conclusion

As we know, modern large-scale, shared-memory
multiprocessors have non-uniform memory access costs.
The ratio of memory access cost to computation cost
has increased significantly during these years. So the
communication cost has become the third dimension
and gradually dominates the source of parallel matrix
applications’ execution. Communication cost results in

two main overheads, remote memory access and mem-
ory contention, and they reduce the performance of
matrix computations on NUMA multiprocessors. Be-
cause these two overheads always occur together, nei-
ther of them can be ignored in the development of
parallel environments.

In this paper, we propose a simple but effective pro-
cessor allocation policy to alleviate both communication
overheads at the same time. This methodology may re-
duce a lot of unnecessary accesses to local or remote
modules. By running many matrix operations under a
realistic memory system simulator, we confirm that at
least one-quarter of the communication overhead may be
removed when rectangular processor allocation policy is
applied. Therefore, we conclude that under rectangular
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processor allocation policy, we may achieve better per-
formance under any data allocation policy, and that the
combination of rectangular processor allocation with
software interleaving data allocation policy is a better
choice to alleviate communication overhead.

Since the processor allocation policy plays an im-
portant role in the execution of NUMA multiprocessor,
it is an interesting topic to combine more complicated
loop scheduling algorithms with processor allocation
policies so as to improve the performance of NUMA
environment.
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