Target Tracking With Glint Noise
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In tracking targets, there can be an uncertainty associated
with the measurements in addition to their inaccuracy, which
is usually modeled by additive Gaussian noise. However, the
Gaussian modeling of the noise may not be true. Noise can be
non-Gaussian. The non-Gaussian noise arising in a radar system
is known as glint noise. The distribution of glint noise is long
tailed and will seriously affect the tracking performance. A new
algorithm is developed here which can significantly improve the
tracking performance when the glint noise is present.
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. INTRODUCTION

The Kalman filter is widely used in the tracking
problem. It can optimally estimate the target motion
from noisy radar data. The optimality of the Kalman
filter is based on the assumption of the Gaussian noise.
If the assumption is violated, the Kalman filter is no
longer the optimal filter.

In a radar system, due to the target glint, the
measurement noise may present non-Gaussian
behavior. This is referred to as the glint noise. A
typical glint noise record is shown in Fig. 1 [6]. From
the figure, we can clearly see the non-Gaussian nature
of the noise. The spiky character manifests itself in the
long-tailed distribution. It is well known that the least
square estimate can be seriously degraded when the
observation noise is non-Gaussian [26]. Unfortunately,
very few results has been reported regarding this
problem and the standard Kalman filter is continuously
used in tracking applications. Hewer, Martin, and Zeh
[6] treat the glint noise as the mixture of a Gaussian
noise and outliers. Consequently, they employ robust
estimation techniques to preprocess (clean) the
radar data. Here, we use a different approach. We
assume that the glint noise can be modeled by some
non-Gaussian distribution. We then seek an optimal
filter for the non-Gaussian noise.

There have been a number of researchers who
consider the problem of the Kalman filtering in
non-Gaussian environment [8-18]. One of the most
effective schemes is proposed by Masreliez [11,12).
He introduced a nonlinear score function as the
correction term in the state estimate and the results
are often nearly optimal. While this approach seems
promising, it encounters the difficulty of implementing
the convolution operation involved in the evaluation
of the score function. This precludes the practical
applications of the method.

The score function implementation problem is
recently solved by Wu and Kundu [19]. The method
employs an adaptive normal expansion to expand the
score function and truncates the higher order terms in
the expanded series. Consequently, the score function
can be approximated by a few central moments of the
observation prediction density. The normal expansion
is made adaptive by using the concept of conjugate
recentering and the saddle point method. It is shown
that the approximation is satisfactory and the method is
simple and practically feasible. We employ this method
in the tracking problem.

The approach developed in [19] is easy to
implement for the scalar observation. However, the
radar observation is often not scalar. We can tackle
this problem by using a spherical modeling of the
target [1, 2). The state is formulated as the range, the
elevation and the bearing angle of the target. After
the model linearization, the linear state equations
are obtained. Since the state now is defined in the
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Fig. 1.

spherical coordinate, the observation are decoupled
into three sets of independent components. By doing
so, the scalar score function approximation scheme
can be applied. Spherical modeling can be made more
attractive by some simplification. In this case, the state
equations are further decoupled into three channels.
Thus, three Kalman filters of smaller dimension can
be run in parallel and the computational complexity
is greatly reduced. However, since the target model
is linearized in spherical coordinate, dynamic error
will occur [5]. We use a simple scheme to solve the
problem. Simulations show that by using this scheme,
the tracking performance is almost as good as that in
the rectangular modeling.

The organization of the paper is as follows.
In Section II, the Masreliez’s approach is briefly
reviewed. The implementation of the score function
is described in Section III. Tracking with glint noise
is then considered in Section IV using the algorithms
described in Sections II and IIL In Section V, we
present some simulation results and the conclusion is
drawn in Section VL.

Il. SCORE FUNCTION APPROACH

A. General Filtering Problem

The general filter problem can be formulated as
the estimation of the state given all the past history of
the observation. Consider a linear system described as
follows:

@)
@

Xe41 = Prxi +wi
Zp = Hyxp + v
where x; is the state vector, w; and v, represent
white noise sequences and are assumed to be mutually
independent. The basic problem is to estimate the
state x; from the noisy observation (zy,...,2). The

probability density of the state conditioned on all the
available observation data is called the a posteriori
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density. If this density is known, an estimation for
any type of performance criterion can be found.
Thus, the estimation problem can be viewed as the
problem of determining the a posteriori density. In
addition, one is frequently interested in performing
the filtering recursively. The recursive determination
of the a posteriori density is generally referred to

as the Bayesian approach. Denote f(-) as a density
and Z* = {zy,21,...,2; }. The Bayesian approach is
described by the following relations [8].

N iCAVARDICAED)
f(xk |Zk) b f(zk |Zk—l)

fln | ZF = / Femt | Z57YF (o | xe_1)dres

@

where the normalizing constant f(zx | Z¥=1) is given by

&)

f|ZY = / Fu | 5 (@ | ) dxe. (5)

The f(zx | xx) in (3) is determined by the obscrvation
noise density f(vi) and (2). Similarly, f(xz | Xx-1)

in (4) is determined by the state noise density f(wi)
and (1). Theoretically, knowing these densities, we can
determine the a posteriori density f(x; | Z*). However,
it is generally impossible to carry out the integration
in (4) for every instant. Consequently, the a posteriori
density cannot be determined for most applications.
There is only one exception, i.€., when the initial state
and all the noise sequences are Gaussian. In this case,
(3) and (4) are reduced to the standard Kalman filter
equations, namely

2 =T + M Hy(HiMiH + Re) (2 — Hi%i)  (6)

P, = My — My H{(H. Mi H. + Ry)""H, M, Q)
Tr+1 = Picki 3
Mis1 = 0 Ped + QO ®

where f(xi | Z¥~1) ~ N (%, Mi), f(xk | ZF) ~
N(ﬁk,Pk), E{Wij} = Qkékj and E{Vij} = Rkékj-
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B. Score Function Approach

In this section we briefly review the Masreliez’s
algorithm. Consider a linear system described
in (1) and (2). The variables w; and v; can be
non-Gaussian. The density of z; conditioned on the
prior observations is denoted by f(z | Z¥~1). We
name f(z | Z*~1) the observation prediction density
and assume that it is twice differentiable. Similarly,
f(xx | Z¥-1) is the density of x; conditioned on prior
observations and is named the state prediction density.
The filtering problem is to estimate the state vector
X from the noisy observations Z*. Assuming that
f(xe | Z¥"1) is a Gaussian density with mean X,
and covariance matrix M,, Masreliez has shown that
the minimum variance state estimation £, and its
covariance matrix P, = E{(x; — £ )(xx — )" | Z¥}
can be recursively calculated as follows [12]:

X=X+ MkH,:gk(Zk) (10)
P = My, — MyH: Gy (z) Hi My (1)
Te41 = il (12)
Mis1 = ox Ped + Qs (13)

where g (-) is a column vector with components:

k—1
tantanh == | L&D e 22y
(14
and Gy (z;) is a matrix with elements
{Gr(z)}ij = ezl (15)

0(z);

The function g (-) is called the score function of
f(ze | ZF1). Itis gi () that suggests how to modify
the Kalman filter in the non-Gaussian noise. Assuming
that w; is Gaussian and v, is non-Gaussian, we can see
that the score function g(-) operating on the residual
2z — Hi Xy will deemphasize the influence of large
residuals when the observation prediction density is
long tailed, and, on the other hand, emphasize the
large residuals when the observation density is short
tailed. This is intuitively appealing. It is easy to check
that the filter is reduced to the standard Kalman filter
if the initial state, wy, and v, (for all ks) are Gaussian.

The following procedure summarizes the
implementation of the filter.

Step 0: Assume that at stage k — 1, £;_; and P,_;
are known.

Step 1: Calculate M, = Px-1Pr-19}_1 + Qr-1.

Step 2: Approximate the state prediction density
f(xx | Z¥=1) by a Gaussian distribution with mean
X; = ¢r_1%x—-1 and covariance matrix M,.

Step 3: Find the observation prediction density
f(zx | Z*=1) by convolving f(Hyx; | Z*-1) with f,, ().
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Srep 4: Find gi(zi) and Gr (k).

Step 5: Apply (10) and (11) to find £; and Py.

Step 6: Let k — k + 1 and start all over from
step 1.

The procedure outlined above is straightforward
in principle. However, the convolution operation in
step 3 is difficult to implement in general except for
very simple cases. Also, in step 4, the differentiation
operations involved in the evaluation of the score
function and its derivative are not trivial.

lll. EVALUATION OF SCORE FUNCTION

In this section, we describe an adaptive method
to evaluate the score function using the concept of
normal expansion, conjugate density and the saddle
point method. We assume that all the distribution
are univariate. But, the idea developed here can be
extended to multivariate ones also.

A. Adaptive Normal Approximation of Distribution

Assume that f(x) is a continuous density funtion.
The polynomial p,(x) is called the orthogonal
polynomial associated with the distribution f(x) if
Pa(x) is a polynomial of degree n, the coefficient of
x"* is positive and p,(x) satisfies the orthogonality
conditions

1, if m=n
0, if m#gEn’
(16)

/_:O Pm(x)Pa(x)f (x)dx = {

It has been shown that [25] under certain regularity
conditions a distribution can be expanded by a
family of orthogonal polynomials and its associated
distribution. The most popular orthogonal polynomials
may be the Hermite polynomials which are associated
with the normal distribution. The Hermite polynomial
H,(-) is defined as

a " - n —x?
(a—x) e = (-1 H,(e™" % (1)
Then, we have
Hy(x) =1, Hi(x)=x, Hy(x)=x*-1,
o(x) 1(x) 2(x) 1)
Hy(x)=x>-3x, Hyx)=x*-6x2+3,....

Let g(-) be a distribution with zero mean and unit
variance and M(r) be its moment generating function
(MGF). The normal expansion is then described as
follows [21].

) = o(){ 1+ Zhisca) + o) + B (o)

2
+(_/’%Op3)ﬁ'ﬁ(x)+...} (19)
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where p, is the standardized cumulant which is
defined as K(0)/K®@(0) where K(T) = In[M (T)]
and K™ (.) denotes the nth derivative of K(:). An
approximation is made by retaining several terms
in the expanded series given by (19). This is called
the normal approximation. Since the series expands
the distribution at its mean, if the distribution being
approximated is close to a Gaussian one, we expect
that the error is smaller around the mean. Based on
this observation, we develop an adaptive scheme which
will enhance the approximation accuracy.

The basic idea is to use a low-order expansion
at each point of the distribution rather than to use
a high-order expansion for the whole distribution at
a single point. Suppose that we want to approximate
the distribution at a point, say, xo. We first transform
the original distribution to a distribution which has its
mean at xo. Then, we apply the normal approximation
on the transformed distribution and evaluate it at xg.
Since the normal approximation is good around the
mean, this approach yields a better result than the
straightforward normal approximation. The procedure
for the transformation is called recentering [22] and the
transformed distribution is called the conjugate density
[23]. We now formally state the definition.

Definition. A density g(z) is called the conjugate
density of f(x) at a point x, if there are constants o
and T such that

1) Z=x-Xxg (20)

2) g(z) = ae™ f(z + xq) (21)
+00 +00

3) /_ g(z)=1; ./; zg(z)dz = 0. (22)

If, for the time being, we assume that the conjugate
density is known, g(z) can be normalized and
expanded as in (19).

so=zo(2) (145 (2)

Pespr (Z) 4.,

ar (U) ¥ } @)
where o, and p,; are the standard deviation and the
ith standardized cumulant of g(z), respectively. From
condition 2, we know that f(z + x9) = o~ le~T*g(2).
Then, f(x0) = a~1g(0).

+

g0) = %)) {1+ 3pz4— 75(pz6 +10p3) + - }.
(24)

If the distribution doesn’t deviate too much from
Gaussianity, only the first term in the series provides
good approximation, ie.,

fx0) = a~'g(0)~ 2O, @5)

ao,
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In order to use (25), we have to find the conjugate
density. This is carried out as follows. Let the MGF of
f(x) be M(T) and K(T) = In[M(T)]. Then,

M(T) = KO =/ T fydx. (26)

-0

+

Let T be real. Multiplying both sides of (26) by e~T*,
changing the variable x to s where s = x — xg, and
differentiating both sides with respect to T', we have

+00
(K'(T) — x0)eX®D-T» = / seT* f (s + xo)ds.

-0

(27
Now, if we choose Ty and « such that
K'(Ty)—x0=0 (28)
+00
1/a = / eTf(s + xg)ds = eKTo)=Toxs
e (29
then
+o0
/ ae™ f(s +xp)ds =1 (30)
+00
f sae®*f(s + xo)ds = 0. (31)

Hence, g(s) = ae®™ f(s + xo) is the conjugate density.

The solution of K'(T) — xo = 0 is referred to as
the saddle point of e~T*M(T). It is shown in [20]
that under some regularity condition a unique real
saddle point exists. Once the conjugate density is
found, its moments can also be found. This is done
by differentiating (26) n times and using (28), (29).
Denote the nth moment of g(z) by 4., then

o = KOTy). (32)

The relation of moments and cumulants (denoted
by k.,) can be found in [24]. In particular, we have
Kz = phz 0 fOr n=1,2,3.

The MGT of a distribution is nothing but the
Laplace transform of the distribution. One of the most
important properties of Laplace transform is that the
convolution in time domain or spatial domain can be
transformed into multiplication in frequency domain.
This property is directly applicable to the MGFs.
This is also the key concept that we can avoid the
convolution operation in the estimation of the score
function as required in Masreliez’s approach.

B. Adaptive Normal Approximation of Score
Functions

The distribution approximation technique discussed
above can also be extended to find the approximation
of score function. The idea is to find the expansion
of f(-) and f'() via the conjugate recentering. From
that, we find the expansion of f'(-)/f(:) and truncate
it to obtain the approximation. Here, we make the
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assumption that f’(-) possesses a series expansion

and therfore can be obtained by a term-by-term
differentiation of f(-). First, we construct the conjugate
density g(z) at xy and expressed f(x) in terms of g(z).

f(x) = f(z+x0) =a~le"Tg(2). (33)
Then
f'(x) = ~Toa~le~g(2) + a~le"Tog (z)
(G4
ro ., 8o
f(x) x=xg g(Z) z=0. (35)

The expansion of g(z) using (23) is given by
_ 1 z Pz3
so=9(z) 15 (2)
Pz 4H

ran(2) s ). oo
Then

- 2 (2) () )
+ /ﬁ::iay5 (02__2) +} 37

0
g0) = ¢( €0 (14 Lpua— (pes+1002) +---} (38)
O = —% {4pe3—dous + ). (39)
Hence,
gO _ _p3_ 1
g(o) =%, o, \8 {3 (pzs — 3p23p:4) + -+ } - (40)
Retaining the first term in (40), we obtain the
approximation of the score funtion.
['(xo) Pz3 2}
T = Ty— % To— ) (41)

Here Ty is obtained from (28). To implement
Masreliez’s filter, we also need the derivative of the
score function. This is done in the following manner.
The relationship between x and T is established
through the equation K’(T) = x. Thus,

Kn)eT = @)
aTr 1
b ot (43)

Taking the derivative of the score function (41) with
respect to x, we obtain

(7). -5 -G o)

~ _i 1+ Hza _ /"’3,3
a2 26 ot |’

T=T

(44

In the above derivation, we assume that the
distribution under consideration is univariate. It
turns out that the score function approximation
scheme is simple and computationally efficient.
It is not difficult to extend the result to the
multivariate distributions. However, in this case, the
approximation formula becomes very complicated. The
computational complexity is then greatly increased.
The observation distributions in a radar system are
usually multivariate. In the following section, we
model the target dynamics in a spherical coordinate.
This makes the observation distributions univariate.
Thus, the efficient scalar score function approximation
scheme can be applied.

IV. TRACKING WITH GLINT NOISE

A. Non-Gaussian Glint Noise

As we have seen in Fig. 1, the glint noise is clearly
non-Gaussian and long tailed. Now, the problem is
how to model it. Borden and Mumford [27] consider
the distribution of the glint as a student’s ¢ distribution
with two degrees of freedom and develop a method to
produce glint-like signals. From the empirical studies,
Hewer, Martin, and Zeh [6] argue that the glint can
be modeled as a mixture of a Gaussian noise and
outliers. Their results are based on the analysis of
normal QQ-plots of glint noise records. Indeed, from
[6, Fig. 2], we can see that the QQ-plot is fairly linear
around the origin. This indicates that the distribution
is Gaussian-like around its mean. But, in the tail
region, the plot deviates the linearity and indicates a
non-Gaussian long-tailed character. The data in the
tail region is essentially associated with the glint spikes
and are considered to be outliers. They are modeled
as a Gaussian noise with large variance. This leads
to the Gaussian-mixture noise model. Although this
model is simple, it is not suitable for our use. It is easy
to see that the score function of the Gaussain mixture
is not robust. The score function of a Gaussian mixture
increases without bound as the observation goes to
infinity. Here, we remedy this problem by modeling the
glint as a mixture of a Gaussian and a Laplacian noise,
ie.,

fi(x) = (1= e)fs(x) +efi(x)

where f;(-), fo(-), and fi(-) represent the glint, the
Gaussian, and the Laplacian distribution, respectively,
and ¢ is a small positive number less than one. The
variance of f;(-) is larger than that of f;(x). One

can show that the score function of this distribution
is robust. It is also interesting to note that this score
function is very similar to some of the psi-function

in the robust M-estimator. In fact, the score

function does do the similar work as the psi-function
does.
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B. System Model

Assume that the dynamics of a maneuvering target
in the rectangular coordinate is described by the
following differential equations.

I = —ax +we(t) +uL(t) 45)
J=—ay +wy(t)+uy) (46)
E=—az+w(t)+u(t) 47

where « is the viscous drag coefficient, wy(), wy(?),
and w(f) are the driving noise, and u,(t), uy(r), and
u.(t) are some deterministic inputs. Let us assume
that the driving noise and the inputs are piecewisely
constant. Representing the differential equations as a
set of state equations and discretizing them, we obtain

X1 = ox + T(we + ) (48)
where

Xt = (Xks Xk Vier Vies Zes 21 ) (49)
1 J 41 0 O

4 0
n

/

D
0

0

(50)

o o o o

(o]

S = O O O ©
=

o= e [ e A e B e}
o ©
(=R -

o]

p2 0

p 0

r=|? P 1)
0 p5b O

0 0 p2

0 0 pb

[T 2 =

with wi a zero mean Gaussian driving noise vector and
u; a deterministic input vector at sampling instant k. It
can be shown that

n=Q1-e"N)/a

pi=eT (52)
p2=(e*T —1+aT)/a? (53)
pr=(1-eN)/a (54)

where T is the sampling interval. The observation
equations are described as

re =\Jxi+yt+2Z+v; (55)
by =tan~! (i—k> + v,’: (56)

k
-1 Zr

2. 2
e
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e = sin +vi 7

T

where v, = (v}, v&, vf) is the observation noise, 7
represents range, and e and b, represent elevation
and bearing measurements, respectively. Here, we
assume that v, is the glint noise and is non-Gaussian.
It is readily seen that radar observations are obtained
in the spherical coordinate while the target dynamics
are described in the rectangular coordinate. In order
to apply Kalman filter, the nonlinear relations must
be linearized. Expanding the nonlinear functions in
the observation equation using the Taylor series and
truncating high-order terms, we obtain a set of linear
observation equations.

Zy = Hyxp + vy (58)

where zx = (rx,be,ex)’ and

H, =
( i3 0 Yk 0 3 0
r Lg” Tk
k9 X 9 0 0
x;+yi i +ye
—XkZk — Y2k V xl% + yl%
2

> [2 42 2 /2 42 r
\'k\/xk"')’k ’k\/;‘k*')’k k

9

The application of an extended Kalman filter is
adequate if the observation is Gaussian. Unfortunately,
the glint noise is non-Gaussian. Here, we propose to
apply the score function based filtering scheme as
described in Section II and III to tackle the problem.
As we mentioned in Section III, the score function
approximation scheme is most efficient for univariate
densities. However, the distribution of the observation
in (58) is multivariate. Thus, the filtering in the
rectangular coordinate is not appropriate for our
purpose.

If the state can be defined in the spherical
coordinate, the three components of the observation
will become independent. However, modeling target
dynamics in spherical coordinates (r,b,e) usually
involves the simultaneous solution of three very
complex nonlinear differential equations. One way
to overcome this problem is to linearize the target
dynamics. This enables us to obtain the linear state
equations in terms of 7, 7, b, b, e, and e. If, in
addition, some simplifying assumption is made, the
target model can be reduced to three independent
channels. This method is proposed by Gholson and
Moose in [1] and is called the approximate spherical
modeling. Using this modeling, we cannot only
apply the score function algorithm but also achieve
computational saving. It is described in [1] that the
new state equations of the spherical modeling are as
follows.
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Range Channel: Simulations show that by using the spherical modeling
and only performing the state prediction in the

(r) = (1 Pl) (r) + (Pz g) (u, +w,) rectangular coordinate, the result is almost as good
k+1 k

7 0 pi/ \# P as that in the rectangular modeling.

(60) Since the approximate spherical modeling
L =1+ vi. (61) decouples the system into three independent channels.
. In the following, we summarize the implementation
Elevation Channel: of the score function for one channel only. Let x; be

e 1 p; e p2/di O the state z'md z is @e observation of one channel in
; = , )L, (ue +w.)  the spherical coordinate. We assume that the MGF
€/psr N0 py/\&/, \p3/dy O

of f(v;) is known. Since f(x;|Z*~!) is Gaussian with
(62)  known mean and variance, the MGF of f(Hyxx|Z*-1)
(63) can be easily found. Let the MGF of f(v,) and

f(Hiexi|ZF1) be M,(T) and M, (T), tespectively.

1) Find the MGF of f(z¢|Z*1): Since

b (1 p\ /b p2/dr 0 f(z:|Z*¥~1) is obtained from the convolution of
b/ e ) (5 . * ( 0) W+ We)  f(vy) and f(Hiexi|Z¥7), the MGF of f(z|Z*1) is

zZp = e + v,

Bearing Channel:

0 pj A/d
A P/ o MDMT).
(64 2) Find the conjugate density of
2 =b+v} (65) f(z|Z¥1) ar zi: Let K(T) = In(M,(T)M,(T)). The
conjugate density of f(z;|Z*~!) at z, is constructed
where dy =Ty, dy = COSE, Uy = Uy, Wy = Wy, U, = as g(s) = aze™ f(s + z;) where Tj, is chosen as the
Uz, We = Wy, Up = Uy, and wp, = w)y. Here X saddle point of {M,(T)M,(T)e~T=}, ie., K'(Tz) —
represents the one step prediction of x at instant 2 =0, and 1/a; as {M, (T) M, (Ti)e T},
& — 1. Thus, we obtain three independent channels 3) Find the second, the third, and the fourth
with scalar observations. Now the ﬁltering can be moment of g(s): 03, Hs,3, and 5,4 CAN be found by

processed in parallel with smaller dimensionality. The
computation is then simplified and the score function o2 =KOM);  pez=KOTi);  poe = KOT)

of the observation prediction density can be efficiently (69)
implemented.

Although the approximate spherical modeling where KT denotes the ith derivative of K(T).
is simple, there is one problem. It has been shown 4) Approximate the score function of f(zi|Z*~1)
[5] that the linearization of the target dynamics will and its derivative:
lead to large dynamic errors. Here, we use a simple
algorithm which can significantly reduce the error. [ (| ZF 1) fhs3
Observing the Kalman equations descibed in (6)-(9), IR TCAVZ) ~Ti + 2‘;2 (70)
we find that the Kalman filtering can be divided into g
two parts, namely, filtering and prediction. The target 2
model is only used in the prediction. To reduce the 4 (]i ) =1 14 Bt _ Hs3 (71)
effect of the model lincarization, we can separate the dze \ f o? 20¢  of
operation of filtering and prediction. We can perform ) .
filtering in the spherical coordinate and prediction _ To use this scheme, the MGF of the noise
in the rectangular coordinate. At every stage, we distribution has to_ be known. .If thf: close form of the
transform the state from the spherical coordinate to MGF does not exist, some estimation method has to
the rectangular coordinate after filtering. Then, we be applicd. The whole tracking algorithm can now be
perform the prediction in the rectangular coordinate. summarized as follows.

To continue the filtering in next stage, the state is

transformeq back to the sp her{cal coordinate. The described above for three channels (the state are
transformation from the spherical to the rectangular defined in the spherical coordinate),

coordinate is described in the following equations. 2) Use (10)—(13) to accomplish the filtering for
three channels.
3) Transform all the states to the rectangular
Yk = rycosegsinby (67)  coordinate using (66)-(68).
4) Predict the state in the next stage using (1).
5) Transform the states to the spherical coordinate
and the transformation from the rcctangular coordinate  using (55)-(57).
to the spherical coordinate is described in (55)-(57). 6) Go to step 1).

1) Find the score functions using the procedure

X =TI cose; cosby (66)

Z; =rsineg (68)
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V. SIMULATIONS

In this section, we perform some simulations to
examine the performance of our new scheme. We first
see how well the score function approximation can be.
Specifically, we use a non-Gaussian distribution model
for experiments, namely,

fx) =pfi(x — p) + (1= p)f(x — ).

The subscript of f (i and j) stands for type of
distribution and x for the mean of the distribution.
We only consider the three most common types

of distributions, namely, uniform, Gaussian,

and Laplacian which are denoted by u, g, and /,
respectively. The definitions of these distributions are
given as follows:

(72)

Uniform:
f,.(x):% —m<x<m (73)
Gaussian:
f) = e (74)
Laplacian:
fix) = %e‘lxi/". (75)

Note that the model in (72) can have either one
distribution or a mixture of two distributions.

We show three examples of score function
approximation. The distributions we used results from
the convolution of non-Gaussian distributions with
a Gaussian distribution. This type of distribution
is what we encounter in the filtering problem. The
non-Gaussian distributions are 1) uniform distribution,
2) uniform and Laplacian mixed distribution, and
3) Laplacian and Laplacian mixed distribution. The
Gaussian distribution is assumed to have zero mean
and variance 2. Using the model in (72), we specify
the parameters as follows:

1) p=1li=um=1, (¢?=01).

2) p=09i=um=1j=1I,9=35
pi =pj =0; (02 =02).

3) p=05i=j=1n=n=1,

pi=—pj=3% (0> =1).

The MGF of these distributions and the moments of
their conjugate densities can be found in the Appendix.
Figs. 24 are the plots of the score functions of the
distributions 1)-3). It can be seen clearly that the
approximation scheme is quite satisfactory. It is also
easy to find that the approximation error mainly
concentrates on the area where the slope of the score
function is steep.
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Laplacian convolved with Gaussian distribution.

Next, we examine the tracking performance of
the approximate spherical modeling. We perform
the filtering in the spherical coordinate and the
state prediction in the rectangular coordinate. The
parameters of the simulated systems are listed as
follows.

a=05s5T=05s

O = diag(4 x 10~* km?/s*, 1x 10~* km?/s*,
5x 105 km?/s%)

R =diag(2.5 x 10-3 km?, 1x 10-5 rad?,
1x 1073 rad?)

: , -
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Fig. 6. Speed error in x direction.

U = (-0.15 km/s%, 0.04 km/s?, 0.02 km/s2)y’

Q; =diag(2.4 x 103 km?/s%, 6 x 10~* km?/s*,
6 x 10~* km?/s*)

x; = (10 km, —0.3 km/s, 1 km, 0.06 km/s, 2 km,
0.03 km/s)’

where Q; is the initial estimated state covariance
matrix and x; is the initial estimate of the state. Figs. 5
and 6 show the comparison of the tracking errors
(range and velocity) in x direction for the rectangular
modeling and the approximate spherical modeling. The
error signals are obtained by a subtraction of the true
states from the estimated states. It can be seen from
these figures that the error due to the approximate
spherical approximation is rather small. It also shows
that only the state prediction in rectangular coordinate
is enough.

Finally, we compare the tracking performance
of the linear Kalman filter (extend Kalman filter)
and the nonlinear Kalman filter (the score function
based filter). As we described in Section IV, the
glint measurement noise is assumed to be a mixture
of a Gaussian noise with smaller variance and a
Laplacian noise with larger variance. In our simulation,
the occurrence probability of the Laplacian noise is
assumed to be 0.05. The parameters of the Laplacian
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noise are 5, = 0.05 km, 7, = 0.003 rad, 7. = 0.003 rad.
The parameters of the system are as follows.

a=05/5,T=05s
Q = diag(4 x 10~* km?/s*, 1x 10~ km?/s*,
5% 107% km?/s*)
R = diag(5 x 10~% km?, 4 x 10-7 rad?,
4x 1077 rad?)
U = (-0.15 km/s?, 0.04 km/s?, 0.02 km/s2)
O; = diag(2.4 x 103 km?/s%, 6 x 10~* km?/s*,
6 x 10~ km?*/s%)
x; = (10 km, —0.3 km/s, 1 km, 0.06 km/s, 2 km,
0.03 km/sy

where Q; is the initial state estimate covariance matrix
and x; is the initial estimate of the state. Two cases
are simulated. In the first case, we assume that the
Laplacian noise is ignored for the linear Kalman
filter. Consequently, the variances of the observation
noise are just those of the Gaussian components.

In the second case, we include the variance of the
Laplacian noise. Figs. 7 and 8 illustrate the tracking
error (range and velocity) in x direction for the

first case. We can sec that the difference between
the linear Kalman filter and the nonlinear Kalman
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Fig. 10. Speed error in x direction.

filter is significant. In the presence of the Gaussian
noise, the performance of both filters are almost the
same. However, in the presence of the high variance
Laplacian noise, the linear Kalman filter fails. This

is because the linear Kalman filter uses a constant
gain and cannot distinguish two different kinds of
noises. On the contrary, the nonlinear Kalman filter
adaptively changes the gain and is able to estimate the
states nicely. Figs. 9 and 10 show the tracking errors
(range and velocity) in x direction for the second
case. For the linear Kalman filter, the variance of the
Laplacian noisc is included and this results in too much
smoothing in the presence of Gaussian noise. This is
not so obviously shown in Fig. 10. In Fig. 11, we show
the comparison of the velocity tracking. From that, we
can clearly sec the oversmoothing effect. Based on
these results, we conclude that for the non-Gaussian
glint noise, the linear Kalman is insufficient. A more
sophisticated filtering scheme is needed. The nonlinear
algorithm we developed here provides a simple and
feasible way to solve the problem.

VI. CONCLUSION

Conventional tracking algorithms are all based on
an idealized assumption, i.e., Gaussian observation

WU: TARGET TRACKING WITH GLINT NOISE

-0.2746
-0.2808
-0.2870

£ y
-0.3118

+1 Original
O3B0 ¢ inear Kalman
-0.3242 { 0 Nonlinear Kalman
-0.3304
-0.3366 T T T T T T T T T
1 6 n ® 21 25 30 3% 40 45 50
Step
Fig. 11. Target speed in x direction.

noise. In real applications, however, the noise is not
necessarily Gaussian. In those cases, the conventional
algorithms are not sufficient. Due to the target glint,
the observation noise which is referred to as glint
noise in a radar system, is non-Gaussian. In this paper,
we develop a new tracking algorithm based on the
score function approach. The algorithm is a Kalman
type of recursive filtering scheme which can work
nearly optimally with the glint noise. An approximate
spherical modeling is adopted in order to efficiently
use the algorithm. Using this model, we are able to
decouple the target model into three independent
channels and the computational complexity is reduced
dramatically. The main cost of the computation for
the score function approach is on the search of the
saddle point. For a scalar case, this computational
requirement is small. Simulations show that using

the new algorithm the tracking performance is

greatly improved. The scheme developed here can be
extended to some other kind of tracking algorithms
such as multiple model and input estimate, etc.
Research in this direction is now underway.

APPENDIX

1) The Uniform Distribution Convolved with the
Gaussian Distribution:

fOx) = fu(x)* fo(x) (76)
where f,(x) is a zero mean uniform distribution
defined as

1
fu(x)_ m’ -m<x<m (77)

and f,(x) is a zero mean Gaussian distribution defined
as

folx) = \/_Le-x’ﬂ”z, —0 <X < +00. (78)

2o
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Let M(T), M, (T), and M,(T) be the MGFs of f(x), Then,
Ju(x), and f;(x), respectively. Then, 1 -
MT) = MDM(D) = e )

M(T) = M,(T)M,(T) (79) \
+oo K(T) = —In(1 - p°T?% + Z-T? (%0)
M, (T) = / Fu(x)e™ dx 2
- ’ _ ZPZT 2T 91
: K (T) = T:TZT—Z +0 ( )
=g @ ¢ ® 4pT? 22 )
. KOT) = 5= mm + s O (92)
= g Sh(mT) 0) KOy 16T 8T 4T
oo = G-y @ ey T - Ty
My(T) = —— / e~ (112074 T2 gy (93)
- 9645T* 96°T? 124t
@7y = [l i ad
= @}/’ (81) K™(T) (1= 272y + (1— p272) + (1— p212)?
1 ) 9
M) = ﬁsinh(mT)e(“ /2T (82)
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