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New generalization of process capability
index Cpk
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and
2
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SUMMARY The process capability index Cpk has been widely used in manufacturing

industry to provide numerical measures of process potential and performance. As noted by

many quality control researchers and practitioners, C pk is yield-based and is independent

of the target T. This fails to account for process centering with symmetric tolerances, and

presents an even greater problem with asymmetric tolerances. To overcome the problem,

several generalizations of Cpk have been proposed to handle processes with asymmetric

tolerances. Unfortunately, these generalizations understate or overstate the process capabil-

ity in many cases, so re¯ ect the process potential and performance inaccurately. In this

paper, we ® rst introduce a new index C "pk , which is shown to be superior to the existing

generalizations of Cpk . We then investigate the statistical properties of the natural estimator

of C"pk , assuming that the process is normally distributed.

1 Introduction

Process capability indices (PCIs), the purpose of which is to provide numerical

measures of whether or not the ability of a manufacturing process meets a preset

level of production tolerance, have received considerable research attention in

recent years. Examples include Boyles (1991, 1994), Chan et al. (1988), Choi and

Owen (1990), Franklin and Wasserman (1992), Johnson et al. (1994), Kane

(1986), Kushler and Hurley (1992), Pearn and Chen (1996), Pearn et al. (1992)

and many others. Most research work, however, has focused on developing and

investigating PCIs for processes with symmetric tolerances.
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802 W. L. Pearn & K. S. Chen

A process is said to have a symmetric tolerance if the target value T is the

midpoint of the speci® cation interval (LSL , USL), i.e. T 5 M 5 (USL + LSL) /2,

where USL and LSL are the upper and the lower speci® cation limits. Among

various capability indices that have been introduced, Cpk de® ned as

Cpk 5
d 2 ½ l 2 M ½

3 r
(1)

where l is the process mean, r is the process standard deviation and

d 5 (USL 2 LSL) /2, has been the most widely used index in manufacturing indus-

try, providing unitless measures of process potential and performance. However,

as noted by many quality control researchers and practitioners, C pk is essentially a

measure of process yield and is independent of T. In fact, we can calculate the

process yield as

2 U (3Cpk ) 2 1 < %Yield< U (3C pk )

if the process is normally distributed, where U (´) is the cumulative function for the

standard normal distribution. Consequently, C pk fails to account for process

centering with symmetric tolerances, and encounters an even greater problem with

asymmetric tolerances.

We consider the following example with asymmetric tolerance (LSL, T, USL),

where T 5 [3(USL) + (LSL)] /4. For processes A and B with l A 5 T , l B 5 LSL + d /2

and r A 5 r B 5 d /6, both result in C pk 5 1. The expected proportions non-conforming

are the same for both processes (approximately 0.135%). We note that process A

is on target, but process B is far away from its target. In fact, we have

l A 2 l B 5 T 2 l B 5 d . Clearly, Cpk fails to distinguish between on-target and oþ -

target processes in this case.

To overcome the problem, several generalizations of Cpk Ð including C*pk , CÂ pk and

Spk Ð have been proposed to handle processes with asymmetric tolerances. Unfortu-

nately, these generalizations understate or overstate the process capability in many

cases, particularly for cases where the preset production tolerances are asymmetric.

Therefore, they re¯ ect the process potential and performance inaccurately. In this

paper, we ® rst review the existing generalizations of C pk and then propose a new

index, which we refer to as C"pk . The proposed new index C "pk is compared with the

existing generalizations of Cpk in terms of some process characteristics considered

by Boyles (1994), Choi and Owen (1990) and Pearn et al. (1992). The results

indicate that the proposed new index C"pk is superior to the existing generalizations

of C pk . In addition, we investigate the statistical properties of the natural estimator

of C"pk , assuming that the process is normally distributed.

2 Existing generalizations of Cpk

The ® rst generalization proposed for processes with asymmetric tolerances shifts

one of the two speci® cation limits, so that the new (shifted) speci® cation limits are

symmetric to the target value (see Chan et al., 1988; Kane, 1986). In other words,

the proposal replaces the original speci® cation limits (T 2 D l , T + D u ) with the

new symmetric limits (unjusti® ed sometimes) T 6 d *, where d * 5 min{D l, Du } ,

D u 5 USL 2 T and D l 5 T 2 LSL, and then applies the standard de® nition of Cpk .
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Generalization of process capability index Cpk 803

The generalization may be written as

C*pk 5
d * 2 ½ l 2 T ½

3 r
(2)

We note that this generalization can understate the process capability, by restricting

the process to a proper subset of the actual speci® cation range, as observed by

Boyles (1994). For example, consider a process with l 5 T 2 d /2 5 M and r 5 d /3,

where the target value is T 5 [3(USL) + (LSL)] /4. For this process, we have C*pk

5 0. However, the expected proportion non-conforming is approximately 0.27%.

Therefore, the index C*pk understates the capability of the process in this case.

Obviously, if Du 5 D l , then the speci® cation tolerance becomes symmetric and the

generalization de® ned in equation (2) reduces to C pk de® ned in equation (1).

The second generalization proposed for processes with asymmetric tolerances

shifts both speci® cation limits to obtain one that is symmetric (Franklin & Wasser-

man, 1992; Kushler & Hurley, 1992). In other words, the proposal replaces

the original speci® cation limits (T 2 D l, T + Du ) with the new symmetric limits

(unjusti ® ed sometimes) T 6 (D l + D u ) /2, and then applies the standard de® nition

of Cpk . With this generalization, the index de® ned in equation (1) can be rewritten as

CÂ pk 5
d 2 ½ l 2 T ½

3 r
(3)

This approach can either understate or overstate the process capability, depending

on the position of l relative to T, as noted by Boyles (1994). For example, consider

the following two processes A and B with l A 5 T 2 d , r A 5 d /6, l B 5 T + 3d /4,

r B 5 d /12 and T 5 [3(USL) + (LSL)] /4. For process A, we have CÂ pk 5 0. However,

the expected proportion non-conforming is approximately 0.135%. Thus, CÂ pk

understates the process capability in this case. In contrast, the index value given to

process B is CÂ pk 5 1. However, the expected proportions non-conforming is approxi-

mately 99.865%. Obviously, CÂ pk overstates the process capability in this case. We

note that, if Du 5 D l , then the speci® cation tolerance becomes symmetric and the

generalization de® ned in equation (3) reduces to C pk de® ned in equation (1).

Boyles (1994) de® ned a smooth function

S(x, y) 5
U

2 1[ U (x) /2 + U ( y) /2]

3

where U (x) is the cumulative function of the standard normal distribution. Based

on this smooth function, Boyles (1994) considered a generalization of Cpk de® ned as

Spk 5 S ((USL 2 l ) / r , ( l 2 LSL) / r )

which can be rewritten as

Spk 5
1

3
U

2 1 {U [ (USL 2 l ) / r ]

2
+ U [ ( l 2 LSL) / r ]

2 } (4)

We note that, given Spk 5 c , we can calculate the process yield as

U ((USL 2 l ) / r ) 2 U ((LSL 2 l ) / r ) 5 2 U (3c) 2 1

for arbitrary values of c. Therefore, Spk represents the actual process yield, unlike

C pk , which is only approximately related to the process yield (see Boyles, 1994).
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804 W. L. Pearn & K. S. Chen

However, we point out that, for a ® xed standard deviation r , Spk obtains the

maximal values not at l 5 T but at l 5 M 5 (USL + LSL) /2, which may re¯ ect the

process capability inaccurately in some cases.

For example, consider the following case with asymmetric tolerance

(LSL, T, USL) 5 (26, 50, 58). Assume that we have two processes A and B with

l A 5 T 5 50 and l B 5 34, respectively, and standard deviation r A 5 r B 5 8. It is easy

to verify that the Spk values for processes A and B are the same (0.468), so both

processes have the same yield. While process A is on target, process B is severely

o þ target.

3 New generalization C "pk

In this section, we propose a new generalization of Cpk for processes with asymmetric

tolerances, which we refer to as C"pk . The design of the new index C"pk is based on

the following criteria by Boyles (1994), Choi and Owen (1990) and Pearn et al.

(1992) in analyzing and comparing the existing capability indices: (a) process yield;

(b) process centering; (c) other process characteristics.

The new index C "pk may be de® ned as

C"pk 5
d * 2 A*

3 r
(5)

where

A* 5 max{d *( l 2 T ) /Du , d *(T 2 l ) /D l}

Obviously, if T 5 M (symmetric tolerance), then A* 5 ½ l 2 T ½ and C"pk reduces to

the basic index Cpk de® ned in equation (1).

We can show that C "pk < Spk for any level c and all values of l . Thus, given a

process with capability C "pk 5 c, the fraction non-conforming is guaranteed to be no

greater than that of a process with Spk 5 c ; it is 2[1 2 U (3c)] if the process is

normally distributed. Further, given C"pk > c, the bounds on ½ l 2 T ½ may be calcu-

lated as T 2 D l< l < T + Du . In developing the new index C "pk , we replaced d and

½ l 2 T ½ in equation (1) by d * and A* respectively. This replacement ensures that

the new index C "pk obtains the maximal values at l 5 T, regardless of whether the

preset speci® cation tolerances are symmetric or asymmetric. For processes with

asymmetric tolerances, the corresponding loss function is also asymmetric to T.

We take into account the asymmetry of the loss function by adding the factors

d * /D u and 2 d * /D l to l 2 T, according to whether l is greater or less than T.

The factors d * /Du and 2 d * /D l ensure that, if there are two processes A and B

with l A> T and l B< T satisfying ( l A 2 T )/D u 5 (T 2 l B ) /D l , then the index values

given to processes A and B must be the same. It is easy to verify that, if the process

is on the speci® cation limits ( l 5 LSL or l 5 USL), then C "pk 5 0. In contrast, if

LSL < l < USL, then we have C "pk > 0.

To compare the new index with the existing indices, we consider the following

example with speci® cations (LSL, T, USL) 5 (10, 40, 50). Since Du 5 USL 2 T 5 10

and D l 5 T 2 LSL 5 30, the process has an asymmetric tolerance. Table 1 displays

the values of the ® ve indices, Cpk , C*pk , CÂ pk , Spk and C"pk for various values of l with

a ® xed standard deviation r 5 10 /3. In Table 1, we note that Cpk and Spk are

maximized by l 5 M 5 30, and the two indices give the same index values to

processes A and B, satisfying l A 2 M 5 M 2 l B . Thus, for l A 5 40 and l B 5 20, the
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Generalization of process capability index Cpk 805

TABLE 1. Comparison between the ® ve indices for various values of l and ® xed

r 5 10 /3, with (LSL, T, USL) 5 (10, 40, 50)

l Cpk C *pk CÂ pk Spk C"pk

10 0.000 0.000 0.000 0.225 0.000

11 0.100 0.000 0.000 0.291 0.033

12 0.200 0.000 0.000 0.364 0.067

13 0.300 0.000 0.000 0.443 0.100

14 0.400 0.000 0.000 0.525 0.133

15 0.500 0.000 0.000 0.611 0.167

16 0.600 0.000 0.000 0.699 0.200

17 0.700 0.000 0.000 0.789 0.233

18 0.800 0.000 0.000 0.881 0.267

19 0.900 0.000 0.000 0.974 0.300

20 1.000 0.000 0.000 1.068 0.333

21 1.100 0.000 0.100 0.163 0.367

22 1.200 0.000 0.200 1.259 0.400

23 1.300 0.000 0.300 1.355 0.433

24 1.400 0.000 0.400 1.451 0.467

25 1.500 0.000 0.500 1.548 0.500

26 1.600 0.000 0.600 1.646 0.533

27 1.700 0.000 0.700 1.743 0.567

28 1.800 0.000 0.800 1.841 0.600

29 1.900 0.000 0.900 1.938 0.633

30 2.000 0.000 1.000 2.000 0.667

31 1.900 0.100 1.100 1.938 0.700

32 1.800 0.200 1.200 1.841 0.733

33 1.700 0.300 1.300 1.743 0.767

34 1.600 0.400 1.400 1.646 0.800

35 1.500 0.500 1.500 1.548 0.833

36 1.400 0.600 1.600 1.451 0.867

37 1.300 0.700 1.700 1.355 0.900

38 1.200 0.800 1.800 1.259 0.933

39 1.100 0.900 1.900 1.163 0.967

40 1.000 1.000 2.000 1.068 1.000

41 0.900 0.900 1.900 0.974 0.900

42 0.800 0.800 1.800 0.881 0.800

43 0.700 0.700 1.700 0.789 0.700

44 0.600 0.600 1.600 0.699 0.600

45 0.500 0.500 1.500 0.611 0.500

46 0.400 0.400 1.400 0.525 0.400

47 0.300 0.300 1.300 0.443 0.300

48 0.200 0.200 1.200 0.364 0.200

49 0.100 0.100 1.100 0.291 0.100

50 0.000 0.000 1.000 0.225 0.000

process yields (approximately 99.865%) and the index values are all the same for

both processes. While process A is on target, process B is severely o þ target. For

C *pk , the index values given to processes with l < T are too low. In fact, we have

C *pk 5 0 for all l < 30. We note that, for l 5 30, the process yield is approximately

100%. Clearly, C*pk understates the process capability in this case. Similarly, the

index CÂ pk understates the process capability for l < 30 and overstates it for l > 30.

In fact, for l 5 50, the process yield is approximately 50%, but CÂ pk 5 1.

Further, the new index C "pk has taken into account the asymmetry of the loss

function. Thus, given two processes A and B with l A> T and l B< T , satisfying

( l A 2 T ) /D u 5 (T 2 l B)/D l , the (new) index values given to processes A and B are
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806 W. L. Pearn & K. S. Chen

TABLE 2. Corresponding index values for processes that satisfy ( l A 2 T ) /

Du 5 (T 2 l B )/D l

l Cpk C*pk CÂ pk Spk C"pk

37 1.300 0.700 1.700 1.355 0.900

41 0.900 0.900 1.900 0.974 0.900

34 1.600 0.400 1.400 1.646 0.800

42 0.800 0.800 1.800 0.881 0.800

31 1.900 0.100 1.100 1.938 0.700

43 0.700 0.700 1.700 0.789 0.700

28 1.800 0.000 0.800 1.841 0.600

44 0.600 0.600 1.600 0.699 0.600

25 1.500 0.000 0.500 1.548 0.500

45 0.500 0.500 1.500 0.611 0.500

22 1.200 0.000 0.200 1.259 0.400

46 0.400 0.400 1.400 0.525 0.400

19 0.900 0.000 0.000 0.974 0.300

47 0.300 0.300 1.300 0.443 0.300

16 0.600 0.000 0.000 0.699 0.200

48 0.200 0.200 1.200 0.364 0.200

13 0.300 0.000 0.000 0.443 0.100

49 0.100 0.100 1.100 0.291 0.100

10 0.000 0.000 0.000 0.225 0.000

50 0.000 0.000 1.000 0.225 0.000

the same. Table 2 is a summary of the processes (taken from Table 1) that

satisfy ( l A 2 T ) /Du 5 (T 2 l B)/D l . For example, consider processes A and B with

l A 5 41> T and l B 5 37< T. Clearly, we have ( l A 2 T )/Du 5 1 /10 and (T 2 l B)/

D l 5 3 /30 5 1 /10. Checking Table 2 for the index values that correspond to l A 5 41

and l B 5 37, we have C "pk 5 0.900 for both processes A and B. However, the values

of Cpk and Spk given to process B are considerably higher than those given to

process A, and the values of C*pk and CÂ pk given to process B are lower than those

given to process A.

4 Estimation of C "pk

To estimate the new index C"pk , we consider the natural estimator which can be

de® ned as

CÃ "pk 5
d * 2 AÃ *

3S

where

AÃ * 5 max{d *(XÅ 2 T ) /Du , d *(T 2 XÅ ) /D l}
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Generalization of process capability index Cpk 807

and

XÅ 5 ( R
n

i 5 1

x i)/ n

S 5 [(n 2 1) 2 1

R
n

i 5 1

(x i 2 XÅ )2]1 /2

are conventional estimators of l and r which may be obtained from a process that

is demonstrably stable (well in control). In the case where the production tolerance

is symmetric (i.e. T 5 M ), AÃ * may be simpli ® ed as ½ XÅ 2 T ½ and the estimator CÃ "pk

is reduced to

CÃ pk 5 min{(USL 2 XÅ ) /3S, (XÅ 2 LSL) /3S}

i.e. the natural estimator of C pk discussed by Kotz et al. (1993). Therefore, we may

view the estimator CÃ "pk as a direct extension of CÃ pk . Assume that the process is

normally distributed. Then, the estimator CÃ "pk can be rewritten as

CÃ "pk 5
f

1 /2

3
K

2 1 /2[d *

r
2

d *

n
1 /2 max{ Z

Du

,
2 Z

D l }]
where K 5 fS

2 / r 2 is distributed as v
2
f , and Z 5 n

1 /2 (XÅ 2 T) / r is distributed as

N( d , 1), with f 5 n 2 1 and d 5 n
1 /2 ( l 2 T) / r . Further, since XÅ and S

2 are mutually

independent, Z and K are also mutually independent. To obtain the expected value

and variance of CÃ "pk , we ® rst calculate the following:

E (max{ Z

D u

,
2 Z

D l }) 5 ( 1

D u

+
1

D l) 1

(2 p )1 /2
exp( 2

d
2

2 )
+ max{ d

D u

,
2 d

D l }[1 2 2 U ( 2 ½ d ½ )] + ( d

Du

2
d

D l) U ( 2 ½ d ½ )

E (max2{ Z

D u

,
2 Z

D l }) 5
1

2 ( 1

D
2
u

+
1

D
2
l ) + ( d

2

D
2
u

+
d

2

D
2
l ) U ( 2 ½ d ½ )

+ ( 1

D
2
u

2
1

D
2
l ) { d

(2 p )1 /2 exp( 2
d

2

2 ) +
d

2 ½ d ½
[1 2 2 U ( 2 ½ d ½ )]}

+ max2{ d

D u

,
2 d

D l }[1 2 2 U ( 2 ½ d ½ )]

Therefore, the rth moment (about zero) of CÃ "pk may be obtained as

E(CÃ "pk )r
5

f
r /2

3 r E(K
2 r /2) R

r

j 5 0 (r

j) (d *

r )j ( 2 d *

n
1 /2 )r 2 j

E (max{ Z

Du

,
2 Z

D l })r 2 j
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808 W. L. Pearn & K. S. Chen

Hence, we have

E(CÃ "pk ) 5 {C"pk 2
1

6 ( d *

D u

+ d *

D l) ( 2

n p )1 /2

exp( 2
d

2

2 )
2

1

3 ( d *

Du

2
d *

D l) ( l 2 T

r ) U ( 2 ½ d ½ )

+
2

3
max{(d *

Du) ( l 2 T

r ), (d *

D l) (T 2 l

r )} U ( 2 ½ d ½ )}b
2 1
f

Var(CÃ "pk ) 5
f 2 2

f ((C"pk )2 +
4

9 (d *

r ) max{( d *

Du) ( l 2 T

r ), (d *

D l) (T 2 l

r )} U ( 2 ½ d ½ )

2
1

9 (d *

r ) (d *

Du

+ d *

D l) ( 2

n p )1 /2

exp( 2
d

2

2 ) + 1

18n[( d *

D u)2

+ (d *

D l)2]
+

1

9[(d *

Du)2

+ (d *

D l)2]( l 2 T

r )2

U ( 2 ½ d ½ )

2
2

9 ( d *

Du

2
d *

D l) (d *

r ) ( l 2 T

r ) U ( 2 ½ d ½ )

2
2

9
max2{( d *

Du) ( l 2 T

r ), (d *

D l) (T 2 l

r )} U ( 2 ½ d ½ )

+ 1

9n[(d *

Du)2

2 (d *

D l)2]{ d

(2 p )1 /2
exp( 2

d
2

2 )
+

d

2 ½ d ½
[1 2 2 U ( 2 ½ d ½ )]}) 2 [E (CÃ "pk ) ] 2

In the case where the production tolerance is symmetric (T 5 M ), we have

E(CÃ "pk ) 5 [Cpk 2
1

3 ( 2

n p )1 /2

exp( 2
d

2

2 ) +
2

3

½ l 2 T ½
r

U ( 2 ½ d ½ )]b
2 1
f

5 E(CÃ pk )

Var(CÃ "pk ) 5
f 2 2

f [(Cpk )2 + 4

9 (d *

r ) ½ l 2 T ½
r

U ( 2 ½ d ½ ) + 1

9n

2
2

9 (d *

r ) ( 2

n p )1 /2

exp( 2
d

2

2 )]2 [E(CÃ pk ) ] 2
5 Var(CÃ pk )

The results are the same as those calculated by Kotz et al. (1993).
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Generalization of process capability index Cpk 809

TABLE 3. Moments of CÃ "pk

Results for the following values of ( l 2 T ) / r

2 3.0 2 1.5 0.0 0.5 1.0

d * / r EV Var EV Var EV Var EV Var EV Var

n 5 10

2 0.365 0.011 0.547 0.024 0.668 0.037 0.543 0.034 0.365 0.024

3 0.729 0.041 0.912 0.063 1.033 0.083 0.908 0.073 0.729 0.054

4 1.094 0.090 1.277 0.122 1.398 0.148 1.273 0.132 1.094 0.103

5 1.459 0.159 1.641 0.200 1.762 0.233 1.638 0.210 1.459 0.171

n 5 20

2 0.347 0.004 0.521 0.009 0.653 0.014 0.520 0.014 0.347 0.010

3 0.695 0.015 0.868 0.023 1.000 0.032 0.868 0.028 0.695 0.021

4 1.042 0.033 1.215 0.045 1.348 0.056 1.215 0.050 1.042 0.039

5 1.389 0.058 1.563 0.074 1.695 0.087 1.562 0.079 1.389 0.064

n 5 30

2 0.342 0.003 0.513 0.005 0.651 0.009 0.513 0.009 0.342 0.006

3 0.685 0.009 0.856 0.014 0.994 0.020 0.856 0.018 0.685 0.013

4 1.027 0.020 1.198 0.027 1.336 0.034 1.198 0.031 1.027 0.024

5 1.369 0.035 1.540 0.045 1.678 0.054 1.540 0.048 1.369 0.039

n 5 40

2 0.340 0.002 0.510 0.004 0.651 0.007 0.510 0.006 0.340 0.004

3 0.680 0.007 0.850 0.010 0.991 0.014 0.850 0.013 0.680 0.009

4 1.020 0.014 1.190 0.020 1.331 0.025 1.190 0.022 1.020 0.017

5 1.360 0.025 1.530 0.032 1.671 0.039 1.530 0.035 1.360 0.028

n 5 50

2 0.339 0.001 0.508 0.003 0.652 0.005 0.508 0.005 0.339 0.004

3 0.677 0.005 0.846 0.008 0.990 0.011 0.846 0.010 0.677 0.007

4 1.016 0.011 1.185 0.015 1.329 0.020 1.185 0.017 1.016 0.013

5 1.354 0.020 1.523 0.025 1.667 0.030 1.523 0.027 1.354 0.022

n 5 60

2 0.338 0.001 0.506 0.002 0.652 0.004 0.506 0.004 0.338 0.003

3 0.675 0.004 0.844 0.006 0.990 0.009 0.844 0.008 0.675 0.006

4 1.013 0.009 1.182 0.013 1.327 0.016 1.182 0.014 1.013 0.011

5 1.351 0.016 1.519 0.021 1.665 0.025 1.519 0.022 1.351 0.018

Note: EV, expected value.

Some numerical values of E(CÃ "pk ) and Var(CÃ "pk ) are presented in Table 3. The

readers are encouraged to examine the column that corresponds to l 5 T most

carefully. Corresponding values of C"pk are presented in Table 4. We note that CÃ "pk

is a biased estimator of C"pk . The resultant bias is positive for all cases shown in

Table 3 for which l ¹ T. When l 5 T, the bias is positive for n 5 10 but becomes

negative for larger values of n. (For d * / r 5 2.0, it is negative for all n > 20; for d * /

r 5 3.0, it is negative for all n > 30; for d * / r 5 4.0, it is negative for all n > 40; for

d * / r 5 5.0, it is negative for all n > 60.) As n becomes very large, the bias becomes

0. This is explored in more detail in Table 5, which presents the values of E(CÃ "pk )

for ( l 2 T) / r 5 0 and d * / r 5 3. We note that, in this case, the `theoretical’ value

of C"pk is 1.
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TABLE 4. Values of C"pk

Results for the following values of ( l 2 T ) / r

d * / r 2 3.0 2 1.5 0.0 0.5 1.0

2.0 0.333 0.500 0.667 0.500 0.333

3.0 0.667 0.833 1.000 0.833 0.667

4.0 1.000 1.167 1.333 1.167 1.000

5.0 1.333 1.500 1.667 1.500 1.333

TABLE 5. Values of E(CÃ "pk ) for l 5 T and d * / r 5 3, corresponding to C"pk

5 1 for a series of increasing values of n

Sample size n E(CÃ "pk ) Sample size n E(CÃ "pk )

10 1.033 750 0.995

20 1.000 1 200 0.996

30 0.994 2 120 0.997

40 0.991 4 420 0.998

50 0.990 12 960 0.999

150 0.992 122 740 1.000

490 0.994
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