
Short communication

An e�cient and orderly implementation of bypass
queue under bursty tra�c

Joe Shang-Chieh Wu, Ying-Dar Lin *

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsuch Rd.,

Hsinchu, Taiwan

Received 10 February 1998; received in revised form 15 April 1998; accepted 20 August 1998

Abstract

Sharma and Pinnu proposed an implementation of bypass queue by many FIFOs; unfor-

tunately, the detailed procedure paid little attention to maintaining cell sequence, which is an

important feature in ATM network. In this paper, we propose an improved architecture which

guarantees cell sequence integrity and describe its related operating procedures. Ó 1998

Elsevier Science B.V. All rights reserved.

Keywords: Bypass queue; Cell sequence integrity; Head of line blocking; Switches

1. Introduction

Sharma and Pinnu [1] described a smart implementation of the bypass queue [2,3].
In Ref. [1], each input port maintains many FIFOs to simulate the operation of the
bypass queue. For each input port, when a new cell arrives, its destined output port
number is compared with that of the previous incoming cell. If they are the same, the
new cell is put in the same FIFO in which the previous one was put. If they are
di�erent, the new cell is put in the next FIFO.

Unfortunately, the above procedure paid little attention to maintaining cell se-
quence integrity [4], an important feature in ATM networks, for each input ATM
virtual channel. The following scenario, associated with a sequence of graphs in
Fig. 1(a)±(g), demonstrates the condition assuming the number of FIFO queues to
be 3 for a given input port.
1. All FIFOs are empty originally, as shown in Fig. 1a.
2. Four cells, for output port A arrives, are put in FIFO 0, as shown in Fig. 1(b).

Parallel Computing 24 (1998) 2143±2148

* Corresponding author. E-mail: ydlin@cis.nctu.edu.tw

0167-8191/98/$ ± see front matter Ó 1998 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 8) 0 0 0 8 8 - X

3. Three cells, for output port B arrives, are put in FIFO 1.
4. Two cells, for output port C arrives, are put in FIFO 2.
5. Two cells, for output port D arrives, are put in FIFO 0.
6. Three cells, for output port E arrives, are put in FIFO 1.
7. Four cells, for output port X arrives, are put in FIFO 2, as shown in Fig. 1(c).
8. One cell, for output port E, is put in FIFO 0 using the round-robin method sug-

gested in Ref. [1], as shown in Fig. 1(d).
9. The input port is informed of the availability of output port A, and four cells in

FIFO 0 leave the input port, as shown in Fig. 1(e).
10. The input port is informed of the availability of output port D, and two cells in

FIFO 0 leave the input port, as shown in Fig. 1(f).
11. The input port is informed of the availability of output port E, and one cell in

FIFO 0 leaves the input port, as shown in Fig. 1(g). But the earlier cells for output
port E are still in FIFO 1!
The inability to di�erentiate the sequence for incoming cells is the primary reason

for this condition. To re-sequence cells in the output ports by hardware is a simple
solution, but, if possible, an economical approach should be investigated to prevent
re-sequencing.

In Section 2, we present our new hardware architecture. We describe the hard-
ware overhead in Section 3, the operating procedures in Section 4, and show an
example in Section 5. Conclusion is given in Section 6.

Fig. 1. (a) Each input port, (b) Scenario 1, (c) Scenario 2, (d) Scenario 3, (e) Scenario 4, (f) Scenario 5, (g)

Scenario 6.

2144 J. Shang-Chieh Wu, Ying-Dar Lin / Parallel Computing 24 (1998) 2143±2148

2. Architecture

The architecture for each input queue is composed of three major parts: the Input
Controller, FIFO queues and HOL Controller, as shown in Fig. 2(a)±(c), respec-
tively. The major di�erence from Ref. [1] is the addition of registers and counters.
For a given input queue, we add extra counters at Input Controller, and extra
registers at HOL Controller. The number of registers and the number of counters are
both the same as the number of output ports in this switch. Furthermore, for each
entry in these FIFOs, we also need one more ®eld for the stamp value for the cor-
responding cell.

When each incoming cell enters Input Controller, the current value of the
counter corresponding to the cell's output port is stamped on the cell. When each

Fig. 2. (a) Input Controller for a given input port, (b) HOL Controller for a given output port, (c) Each

entry in FIFO queues.

J. Shang-Chieh Wu, Ying-Dar Lin / Parallel Computing 24 (1998) 2143±2148 2145

cell leaves HOL controller, the stamp is removed. The detailed operation is given in
Section 3.

3. Hardware overhead

The extra hardware includes counters, registers and modi®ed FIFOs. For
an N ´ N switch, we need totally N2 counters and N2 registers. The size for them is
log2 W bits if the switch has W FIFOs in each input port.

For each entry in all FIFOs, we also need extra space, log 2 W bits, for stamping.
The corresponding overhead, in percentage, is, if the size for each FIFO is L,

N � W � L� 1
8
�log2 W �

N � W � L� 53
� 100%:

For an 8 ´ 8 switch, with 16 FIFOs in each input port and 16 entries for each
FIFO, the incurred overhead in FIFOs is 0.94%. For 64 counters and 64 registers, we
need just 4 bits for each of them.

4. Procedures

For each incoming cell, the modi®ed sequence of steps, based on Sharma's
method [1], taken by the input controller is as follows.
1. Increment the counter, associated with output port of the current incoming cell, in

module W fashion.
2. Add a stamp, with the value of corresponding counter, to the cell.
3. Compare the output port of current cell with the output port of previous cell.
4. If both are equal, then go to step 5, else, go to step 6.
5. Check the status of the input queue pointed to by the input pointer. If the bu�er is

not full, then place the current cell in that queue, else go to step 6.
6. Increment the input pointer in module W fashion.
7. Repeat steps 5 and 6 till an empty input queue is found or the number of queues

searched is equal to W.
8. If step 7 fails (i.e. none of the input queues is found empty), decrement the cor-

responding counter in module W fashion, and discard the cell.
The sequence of steps taken by the HOL controller in each time slot is as follows.

1. Find a candidate cell by examining W cells from the head of line of each queue. If
failed, then this input port does nothing in this time slot.

2. Update the corresponding register with the value of time stamp in the candidate
cell.

3. Strip the stamp o� the candidate cell, and send it out.
The candidate cell must meet the following two requirements.

1. The output port is available.
2. The stamp value must be the same as the increment of the value of corresponding

register in module W fashion.

2146 J. Shang-Chieh Wu, Ying-Dar Lin / Parallel Computing 24 (1998) 2143±2148

Fig. 3. (a) New Architecture, (b) New Scenario 1, (c) New Scenario 2, (d) New Scenario 3, (e) New

Scenario 4, (f) New Scenario 5, (g) New Scenario 6.

J. Shang-Chieh Wu, Ying-Dar Lin / Parallel Computing 24 (1998) 2143±2148 2147

5. An example

The following scenario, combined with sequences of graphs in Fig. 3(a)±(g),
shows an example for maintaining cell sequence integrity if the number of FIFO
queues is 3 for a given input port.
1. Originally, all FIFOs are empty, the values of all registers are reset to 1, and the

values of all counters are also reset to 0, as shown in Fig. 3(a).
2. Four cells, for output port A arrives, are put in the FIFO 0, as shown in Fig. 3(b).
3. Three cells, for output port B arrives, are put in FIFO 1.
4. Two cells, for output port C arrives, are put in FIFO 2.
5. Two cells, for output port D arrives, are put in FIFO 0.
6. Three cells, for output port E arrives, are put in FIFO 1.
7. Four cells, for output port X arrives, are put in FIFO 2, as shown in Fig. 3(c).
8. One cell, for output port E, is put in FIFO 0 using the round-robin method sug-

gested in Ref. [1], as shown in Fig. 3(d).
9. The input port is informed of the availability of output port A, and four cells in

the FIFO 0 leave the input port, as shown in Fig. 3(e).
10. The input port is informed of the availability of output port D, and two cells in

the FIFO 0 leave the input port, as shown in Fig. 3(f).
11. The input port is informed of the availability of output port E, but the cell in the

FIFO 0 is blocked due to the incorrect stamp value, as shown in Fig. 3(g).
It is clear that the sequence integrity is maintained by the co-operation of registers

and counters.

6. Conclusion

The values of registers and counters show signi®cant information. Each register,
whose maximum value is W, shows the stamp value of the next incoming cell at HOL
Controller; however, each counter, whose maximum value is also W, shows that of
the last leaving cell at Input Controller.

We o�er a modi®ed implementation, with FIFO queues, of the bypass queue. The
architecture does maintain the cell sequence integrity and the related overhead is
small.

References

[1] N.K. Sharma, M.R. Pinnu, An e�cient implementation of bypass queue under bursty tra�c, Parallel

Computing 23 (1997) 777±781.

[2] M. Karol, M. Hluchyj, Input versus output queueing in a space division switch, IEEE Trans.

Commun. COM- 35 (1987) 1347±1356.

[3] M. Hluchyj, M. Karol, Queuing in high-performance packet switching, IEEE J. Sel. Areas Commun. 6

(1987) 1587±1596.

[4] R. H�andel, M.N. Huber, S. Schr�oder, ATM Networks Concepts, Protocols, Applications, Addison-

Wesley, 1994, p. 21.

2148 J. Shang-Chieh Wu, Ying-Dar Lin / Parallel Computing 24 (1998) 2143±2148

