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Abstract: The authors present quality 
enhancement of sinusoidal transform coders 
(STCs) via the development of parametric 
models. The benefits of the Bark spectrum are 
explored for use in the design of perceptual 
coding of the sine-wave amplitudes. According to 
the results, the proposed approach provides a 
uniform perceptual fit across the spectrum. To 
enhance the accuracy of phase representation, 
noncausal all-pole modelling of the vocal system 
is also discussed. Experimental results indicate 
that the use of the developed new parametric 
models allows the STC to improve the phase 
accuracy as well as the synthetic speech quality. 

1 Introduction 

Developments in sinusoidal transform coder (STC) 
technology have made good quality synthetic speech 
possible at very low data rates [l-31. STCs attempt to 
model speech waveforms as the sum of sinusoids whose 
frequencies, amplitudes, and phases are chosen to make 
the reconstruction a best fit to the original speech. One 
way to encode these parameters at low rates is to 
exploit a minimum-phase harmonic sine-wave speech 
model, in which the sine-wave frequencies are harmoni- 
cally related, and amplitudes are represented in terms 
of cepstral coefficients [2] or all-pole modelling [3]. The 
basic problem with cepstral representation is that the 
modelling accuracy tends to be uniform across all fre- 
quencies and cannot precisely describe the ear’s nonlin- 
ear responses to frequency selectivity and subjective 
loudness. Further improvement can only be gained 
through intelligent exploitation of findings for psycho- 
acoustic studies [4]. This task can be partially achieved 
by warping the frequency axis to give more prominence 
to the perceptually more important frequencies [2, 31. 

In this paper, we attempt to capitalise more fully on 
psycho-acoustic knowledge and develop an amplitude 
coder based on the Bark spectrum [5] ,  instead of based 
on the properties of the sound production mechanism 

As noted elsewhere [2], representing the sine-wave 
amplitudes by cepstral coefficients has certain advan- 
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tages towards quantisation. One advantage is the possi- 
ble elimination of the need to code the phase 
information, by observing that the log magnitude and 
phase of a minimum-phase system satisfy a Hilbert 
transform relationship [6].  Other studies [7, 81, how- 
ever, indicate the inadequacy of the minimum-phase 
assumption for modelling voiced speech. This is 
because glottal pulses tend to have rather slow rising 
edges which are terminated by much sharper trailing 
edges. Recognising this, several refinements of the min- 
imum-phase model have been developed that improve 
the phase accuracy by using either a pulse model (e.g. 
Rosenberg pulse, LF pulse) or an all-pass filter [7]. 

Unlike existing STCs, we propose that the vocal sys- 
tem is modelled by a noncausal filter of the all-pole 
type. The motivation for this representation is two- 
fold. First, it has been shown that noncausal all-pole 
filters are more appropriate for modelling the vocal 
system because they take into account the maximum- 
phase poles of differentiated glottal pulses [8]. Sec- 
ondly, the minimum-phase assumption is more applica- 
ble to versions of STCs which code the sine-wave 
amplitudes using cepstral coefficients, rather than those 
using the Bark spectrum. In contrast, the noncausal all- 
pole approach applies to both representations of sine- 
wave amplitudes. 

2 Harmonic sine-wave model 

A promising approach to the parameter quantisation 
problem lies in the observation that voiced speech, 
when perfectly periodic, can be represented by har- 
monic components of its Fourier series decomposition. 
Other research [l] shows that if the measured frequen- 
cies are replaced by integer multiples of pitch fre- 
quency, high-quality speech can still be synthesised, 
provided that the amplitudes and phases are chosen to 
be harmonic samples of the magnitude and phase spec- 
tra, respectively. Viewed from this perspective, the gen- 
eral form of a harmonic sine-wave model can be 
expressed as 

L 

2(n)  = C Ai C O S ( ~ W ~  + 0,) (1) 
1=1 

where L denotes the number of sinusoids, wo represents 
the pitch frequency, and A I  and el are the amplitude 
and phase of the Zth sinusoidal component, respec- 
tively. 

A low-rate representation is achieved by fitting a set 
of cepstral coefficients to an envelope of the measured 
sine-wave amplitudes [2]. For the system with the trans- 
fer function H(z) ,  the real cepstrum is defined as the 
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sequence of coefficients in the power series representa- 
tion of its log magnitude: 

cm = - log IH(w)I cos(mw)dw 0 5 m 5 M - 1 

(2) 
: LT 

The main attraction of cepstral representation is that it 
exploits the minimum-phase model, where the log mag- 
nitude and phase of the system function can be 
uniquely related in terms of the Hilbert transform [6]: 

M-1 

log lH(w)I = CO + 2 c, cos(mzu) (3) 

a (w)  = -2 c,sin(rnw) (4) 

m=l 

M - 1  

m = l  

With this exploitation, additional economies in coding 
the phase information can be obtained by explicitly 
identifying the phase components due to the excitation 
and the vocal system [9]. The first step is to employ a 
mixed excitation model, in which the probability of 
voicing is used to control the harmonic spectrum cut- 
off frequency. Below this cut-off frequency the excita- 
tion phases are made linear, whereas above this cut-off 
freequency they are made random on [-n, n]. When 
combined with the vocal system phase iD(w), it has 
been shown [9] that good quality synthetic speech can 
be obtained without the need to code the phase infor- 
mation. 

McAulay and Quatieri [3] have proposed a technique 
to estimate the voicing probability by using the degree 
to which the harmonic model fits the original sine-wave 
data. This approach is based on the observation that 
the harmonic fit has poorer accuracy in unvoiced 
speech than in voiced speech. 

spectrum 

X(9 

3 Perceptual coding of sine-wave amplitudes 

In the context of sinusoidal transform coding, the main 
drawback of using cepstral analysis to obtain the 
smoothed envelope of the sine-wave amplitudes is that 
it leads to a uniform fit across the whole frequency 
range. This is inconsistent with the fact that the ear is 
less sensitive to details in the sine-wave amplitudes at 
higher frequencies than at lower frequencies. This 
inconsistency can be alleviated, to some extent, by 
warping the amplitude envelope along the perceptually 
based me1 scale before computing the cepstral coeE- 
cients [2] .  Although spectral warping conceptually satis- 
fies its ability to simulate nonlinear frequency 
resolution, its suitability to represent perceived loud- 
ness is limited. This suggests that further improvement 
can be achieved through a more precise exploitation of 
psycho-acoustic knowledge. To advance with this, we 
propose to implement an amplitude coder by using the 
Bark spectrum [5 ] ,  rather than the vocal tract envelope 
as in current STCs [2, 31. 

Conceptually, the advantage of the Bark spectrum 
over the cepstrum is that it more closely emulates sev- 
eral known features of human hearing. As outlined in 
Fig. 1, the calculation of the Bark spectrum involves 

subjective spectrum HzIBark critical band equal loudness 
transformation filtering preemphasis ~~~~~~n 

signal ,-, I 

the Hertz-to-Bark transformation, critical band filter- 
ing, equal loudness pre-(emphasis and subjective loud- 
ness conversion. First, the power spectrum Xy> is 
warped along its frequency axis f into the Bark fre- 
quency b following the function b = R(f). The resulting 
warped power spectrum X(b) is then convolved with 
the simulated critical band masking curve F(b), to yield 
samples of the excitation pattern D(b) at one-Bark 
intervals. It typically suffices to use 15 spectral samples 
of D(b) to cover the 4kHz speech bandwidth. 

Consider the vectors D and X representing the excita- 
tion pattern and N-point discrete Fourier transform 
(DFT) of incoming sound, respectively. For ease of 
notation, the frequency corresponding to the kth DFT 
coefficient is referred to as f k  = kfJN, where j ;  denotes 
the sampling rate. The contribution due to the critical 
band filtering can be summarised in a matrix C = [cl:+], 
where the entry c,,k takes the value of F[R(fk) - i]. With 
these descriptions, the calculation of excitation pattern 
D can then be formulated as applying the matrix C on 
X: 

D z = C - X  (5) 
Loudness is another important attribute of auditory 
perception, in terns of which sounds can be ranked on 
a scale extending from quiet to loud. The phenomenon 
that relates audibility to frequency can be described 
most conveniently with the equal loudness curve [4]; in 
turn, this provides an ideal framework for perceptual 
weighting of spectral energy across the critical bands. 
For use in the telephone band, a bilinear pre-emphasis 
filter has been proposed [SI to approximate the equal 
loudness response. 

In the final operation of Bark spectral analysis, a 
subjective loudness conversion is needed to account for 
the nonlinear relation between the intensity of sound 
and its perceived loudness. The resulting Bark spec- 
trum Bdb), which reflects the ear's nonlinear transfor- 
mation of frequency and loudness, yields a measure in 
terms of which perceptual information can be more 
precisely incorporated in the coder design. 

Although Bark spectral analysis is a necessary first 
step in developing amplitude coding, there remains the 
problem of inverse processrng in the hope that sine- 
wave amplitudes can be recovered from the received 
version of the Bark spectrum in the synthesis part. This 
task can be aided by taking advantage of the harmonic 
modelling assumption, where the sine-wave amplitudes 
are given by the harmonic samples of the spectral enve- 
lope. 

The strategies for estimating these harmonic 
amplitudes may be divided into two steps. First, the 
Bark spectrum is inversely processed to obtain the 
excitation pattern following the equal loudness de- 
emphasis. The next problem is the association of the 
resulting excitation pattern D with harmonic 
amplitudes, which are exclusively embedded in X. An 
intuitive approach is to obtain the harmonic 
amplitudes by solving the equation X = C-'.D. 
Unfortunately, however, a unique solution does not 
exist because the dimension of D is less than the 
number of harmonics. As an example, a typical low- - - Bark - (-I- 

Fig. 1 Bark spectral analysis 
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pitched speaker can have as many as 80 harmonic 
samples in a 4kHz speech bandwidth, compared to the 
dimension of 15 in D. 

Recognising this problem, we propose to develop an 
analytic method for computing the autoregressive (AR) 
parameters of the all-pole model, such that its magni- 
tude is a best fit to the underlying excitation pattern. 
This choice is motivated in part by the success of linear 
prediction on a warped frequency scale [IO], and in 
part because accurate estimation of AR parameters can 
easily be found by solving a set of linear equations. We 
first compute the autocorrelation function by taking an 
inverse Fourier transform of the excitation pattern. The 
autocorrelation values are then used to determine the 
AR parameters of the all-pole model by solving the 
least-squares Yule-Walker equations [ 1 11. Finally, the 
sine-wave amplitudes are given by the harmonic sam- 
ples of the AR modelled fit of D(B). 

4 Noncausal all-pole modelling of vocal system 

At low rates, more properties of the speech production 
mechanism need to be explored for use in phase quan- 
tisation. Essentially, the production of sound can be 
described most conveniently as passing an excitation 
through the vocal system which represents the compos- 
ite characteristics of the glottal pulse, vocal tract and 
lip-radiation filters. The phase contribution from the 
excitation can be modelled well by adding together a 
voicing-dependent random phase E ( W )  and a linear 
component corresponding to the onset time no of the 
glottal pulse [9]. When combined with the vocal system 
phase @(w), the complete sine-wave phase synthesis 
model for the Zth harmonic becomes 

el = -noiwo + E(zwO) + q w 0 )  (6) 
As a consequence, the success of this representation 
heavily depends on the accuracy of phase derivation 
for modelling the vocal system. The minimum-phase 
assumption has proved to be reasonably effective, 
although further refinements can be achieved by cas- 
cading the minimum-phase system with an all-pass 
filter [7]. 

pitch estimation and 

Unlike in the current STCs, the approach taken here 
is to use a noncausal all-pole filter to model the vocal 
system. As mentioned above, the vocal system repre- 
sents the composite characteristics of the glottal pulse, 
vocal tract and lip-radiation filters. It is convenient to 
combine the glottal pulse filter and lip-radiation filter, 
and represent them as the negative impulse response of 
an anticausal two-pole filter with transfer function [I I ]  

scales 

+ pitch 

( 7) 
1 

G ( z )  = 
(1 - g12-1)(1 - g2z-1) 

voicing detection 

where the poles (gl, g2}  lie outside the unit circle. 
On the other hand, resonant characteristics of the 

vocal tract can be modelled by means of a causal all- 
pole filter. Particularly for phase derivation, it suffices 
to employ a second-order filter with transfer function 

. voicing 

To model the vocal system, these two filters can be 
combined into a noncausal all-pole filter with the fol- 
lowing phase spectrum: 

g1 sin w 
@(w)  = -tan-' - tan-' 

1 -g1cosw 1-g2cosw 
VI sin w + v2 sin 2w 

1 - v ~ c o s w - v ~ c o s 2 w  
(9) 

9 2  sin w 

- tan-' 

To operate the system at 2.4kbit/s, it may not be possi- 
ble to encode additional information about the filter 
parameters. Fortunately, good results have been 
obtained by using fixed parameters (gl, g 2 )  = ( I .  1, 1.1) 
and (v,, v2) = (1.515, - 0.752); these were empirically 
determined by estimating the long-term-averaged corre- 
lation between coded and natural speech at 8kHz. 

maximum level 
subjective 
loudness 

5 Experimental results 

The suitability of the parametric models introduced 
above has been evaluated for use in conjunction with 
the harmonic sine-wave speech model at 2.4 kbit/s. 
Fig. 2 displays the experimental arrangement of the 

- 
computation Of amplitudes 

harmonic -b 

amplitudes 

maximum level speech harmonic sine-wave 

4 4  

F!=T modelling 

I 
voicing 

probability 

Fig. 2 
a Encoder 
b Decoder 
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proposed coding system. Using an analysis frame 
length of 17.5ms, the total number of bits available per 
frame is 42, with the breakdown according to parame- 
ters as shown in Table 1. 

Table 1: Bit allocation for Bark-adaptive STC coders at  
2400 bit/s 

Parameters Bits 

Pitch 7 

Voicing probability 3 

Maximum subjective loudness level 8 

15 subjective loudness scales 24 

Total bits per frame 42 

15 subjective loudness scales were normalised with 
respect to the maximum absolute value within a frame. 
An 8-bit representation of this maximum absolute 
value was transmitted as side information. We divided 
the normalised loudness scales into two parts; the first 
part has the first seven components and the second 
part has the remaining eight components. Each part is 
quantised separately using a 4096-level vector quan- 
tiser. Notably, the phase information is coded implic- 
itly, by adding together a mixed excitation phase and a 
phase contribution due to the vocal system. Although 
the former could be determined by the voicing proba- 
bility, the latter had to be estimated from the vocal sys- 
tem either through cepstral modelling or through 
noncausal all-pole modelling. 

Table 2: Mean square error of various phase models 

All-pass 
Minimum compensation Noncasual all- 
phase model model pole model 

Vowels 

fa/ 0.23744 0.19274 0.09560 

le/ 0.06708 0.05140 0.04851 

/if 0.34790 0.26249 0.26174 

lo1 0.25475 0.20413 0.12009 

f ut 0.16993 0.15624 0.10562 

Average 0.21542 0.17340 0.12631 

Towards this end, a preliminary experiment was 
conducted to examine the accuracy of different phase 
models over 800 frames of sustained vowels, including 
lal, lel, lil, lo/ and lul. In our analysis, we employed the 
reference STC algorithm in [2]. The distortion measure 
applied here is the mean square error between the orig- 
inal waveform and its modelled fit. According to 
Table 2, the noncausal all-pole model outperformed its 
minimum-phase counterpart with either all-pass com- 
pensation included [7] or not [9]. To elaborate further, 
some typical waveforms synthesised by the various 
phase models are shown in Fig. 3. The inadequacy of 
the minimum-phase assumption appears to result from 
glottal pulses tending to have rather slowly rising edges 
but which are terminated by much sharper trailing 
edges. 

Computer simulations were then conducted to exam- 
ine the validity of the Bark spectral model for use in 
perceptual coding of the sine-wave amplitudes. The 
speech database for these studies consisted of four sen- 
tential utterances spoken by two males and two 
females, each 3 seconds in duration and sampled at 
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8 kHz. The Bark-based version and the cepstral-based 
version of the STC are referred to as STC-Bark and 
STC-cep, respectively. We also compare the proposed 
system with the well established 4.8kbith FS1016 
CELP coder [12]. 

-: 

+> 

a b 

C d 
Fi .3 Waveform compurisom 
a ?me phase 
b Minimum phase model 
c Minimum phase model plus all-pass compensation 
d Noncausal all-pole phase model 

20 
18 
16 
14 
12 
10 
8 
6 
4 
2 
0 

male 1 male 2 female 1 female 2 
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Fig. 4 A/B test 1: prefirences for STC-Burk. STC-cep or neither 
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male 1 male 2 female 1 female 2 

STC-Bark neither FS1016 

Fig.5 A/B test 2 preferencesfor STC-Bark, FS1016 or neither 

Subjective quality evaluation was accomplished 
through the use of an A/R comparison test, where 20 
participants listened to a number of pairs of speech 
samples. Each pair has the same content, but one was 
the STC-Bark version, and the other was either the 
STC-cep version (in A/B test I )  or the FS1016 version 
(in A/B test 2). For eachi pair, the subject selected 
which one sounded better, or chose neither if they 
sounded the same. The results of two A/B tests are 
depicted in Figs. 4 and 5. For each speech sample, the 
number of subjects who preferred A, B or neither is 
indicated. The results indicate that the STC-Bark coder 
is preferred to the STC-cep coder for all test samples, 
and it performs better or equal to the FS1016 coder at 
a half rate. Informal listening tests also showed that the 
combined use of a Bark-adaptive amplitude coder and 
a noncausal all-pole phase model allows the STC to 
deliver synthetic speech of good quality at 2.4kbitls. 

6 Conclusions 

We have presented refinements that allow the STC to 
deliver good quality speech at 2.4kbith. Experimental 
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results have demonstrated that the Bark spectrum pro- 
vides an ideal framework for incorporating several 
known features of human hearing in the design of 
amplitude quantisation. In comparison to cepstral- 
based systems, the Bark-based amplitude coder is pre- 
ferred because of its ability to achieve a uniform per- 
ceptual fit across the spectrum. 

Algorithms have also been presented that relate the 
harmonic amplitudes to the Bark spectrum. One 
enhancement that further increases performance is the 
use of a noncausal all-pole vocal system that better 
matches the maximum phase nature of differentiated 
glottal pulses. 
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