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The release consistency model is the generally accepted hardware-centric
relaxed memory consistency model because of its performance and implementation
complexity. By extending the release consistency model, in this paper, we propose a
hardware-centric memory consistency model particularly for shared-memory multi-
processor systems with parallel-multithreaded processing elements. The new model
uses a new categorization for memory references and utilizes the feature of parallel
multithreaded processors (PMPs). We further partition acquire and release refer-
ences into three sub-categories: one for lock-unlock pairs, one for barrier synchroni-
zation, and the last for others. According to the semantic of each synchronization
primitive, each sub-category has its own relaxed restrictions. On the other hand, the
feature of a PMP is that it is capable of executing more than one thread at the same
time, where all parallel threads share only one cache hierarchy. Under the new model,
we can use dual write-caches to reduce write traffic and synchronization time.

We have used five benchmarks in the SPLASH suite to evaluate the perfor-
mance gain for the new model. According to the simulation results, the new model is
superior to the release consistency model at best by about 11%.

Keywords: memory consistency model, multithread, multiprocessor, write cache,
synchronization, PSC model, barrier, performance evaluation.

1. INTRODUCTION

Improvements in semiconductor technology have allowed more and more
transistors to reside on a single chip, leading to rapid progress in advanced
microprocessor architecture design, including superscalar [1] and multithreaded
architectures [2], etc. Parallel multithreaded processors (PMPs) are capable of
executing more than one thread at the same time in a single chip [3-5]. The advantage
of PMPs is that they enable greater hardware utilization because all the parallel
running threads share the functional units in this processor. Therefore, we expect
that this type of processor will become one of the most popular single-processor
designs [5]. For huge computations, however, PMP architectures are not powerful
enough because a single chip cannot execute tens or even hundreds of parallel
threads. One possible way to upgrade their performance is to employ the PMP-
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based multiprocessor system (PMP-MP). The PMP-MP is a cache-coherent, non-
uniformed memory architecture similar to the conventional shared-memory mul-
tiprocessor system except that the processing element (PE) is PMP architecture. The
key feature of the PMP-MP is that several threads share only one cache in each
PE.

Since multiple threads are allowed to simultaneously read and write the same
memory locations, programmers need a memory consistency model for the semantics
of memory operations to allow them to correctly use the shared memory. A memory
consistency model determines the order in which memory references can be executed
by the system and greatly affects the implementation and performance of a system
[6-14]. The most commonly assumed memory model is sequential consistency (SC)
[6]. While SC provides a simple model for programmers, it imposes many constrains
on architecture and compiler optimizations that exploit the reordering and overlap
of memory references. To achieve better system performance, several relaxed
memory models have been proposed, for example, processor consistency (PC)
[7], weak consistency (WC) [8, 9], and release consistency (RC) [10, 11]. These
are referred to as hardware-centric models because they are defined in terms of
relatively low-level hardware constraints on the ordering of memory references
[15].

In this paper, we propose a new hardware-centric memory model, the
PMP-MP-specific consistency model (PSC), which is suitable especially for
PMP-MPs. We further divide the acquire and release references into three groups,
according to the program-level objects for which they are implemented, e.g., critical
sections and barriers. The release reference for a critical section can be performed
if references within the critical section have all been performed. It does not matter
whether memory references prior to the critical section have all been performed
or not. On the other hand, because more than one thread is executing on each
processing element in a PMP-MP system, we can relax the ordering constrain on
releases references for barrier synchronizations. A release reference of this
type can be performed independently of memory references prior to it if the issuing
thread is not the last one arriving at the barrier synchronization from the same
processor.

The new parallelism exploited by the new categorization can be utilized by
incorporating dual write-caches in PMP-MPs. Write caches can merge all the write
references belonging to the same block into a single write miss request [16, 17].
Consequently, the amount of write traffic can be reduced significantly. The dual
write-cache not only reduces the write traffic, but also shortens the synchronization
time. We have used five benchmarks in the SPLASH suite to evaluate the perfor-
mance gain for the new model. According to the simulation results, the new model
is superior to the release consistency model at best by about 119%.

The rest of this paper is organized as follows. Section 2 introduces the
framework proposed by Gharachorloo et al. [13, 15] and the release consistency
model. Section 3 specifies the ordering requirements of memory references for the
PSC model. Section 4 gives an example to illustrate how the PSC model can be
implemented. Insection 5, we present our use of a simulation environment to evaluate
the performance benefit propped by the PSC model. Some concluding remarks are
given at the end of this paper.
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2. RELATED WORK

Release consistency is the generally accepted hardware-centric relaxed memory
consistency model because of its performance and implementation complexity [14].
It categorizes memory references, as depicted in Fig. 1, in order to relax restrictions
on memory access ordering. Basically, release consistency takes two forms that
depend on whether special references are sequential consistent (RCsc) or processor
consistent (RCpc) [10]. In the following, we use the framework [13, 15] proposed
by Gharachorloo et al. to specify the system requirements of RCsc. The framework
provides a formal methodology for specifying sufficient system requirements that
precisely capture the semantics of various memory consistency models. In addition,
we can compare various models through the formal framework. For more details
about the framework, we refer the reader to [13, 15].

Memory Access

Shared Local

PN
/&ecial Ordinary
\

Synchronization non-Synchronization

_/
Acquire Release

Fig. 1. Categorization of memory references.

The specification assumes the following system abstraction. The system consists
of n processors, Py, ..., Py, and P; contains t; threads. A read operation R shared
by P; is composed of an initial sub-operation R;,;;(i) and a read sub-operation R(i).
A write operation W shared by P; is composed of (n + 1) atomic sub-operations:
the initial write sub-operation W;,:(i) and n sub-operations W(1), ..., W(n). All sub-
operations of W access the same location and write the same value.

To specify restrictions on the execution order under the RCsc model, we
illustrate several notations in Fig. 2, and the reach condition will be explained in
some detail here. The main purpose of the reach condition is to disallow anomalous
executions that arise if, for example, systems have the ability to overlap or reorder
a read reference with respect to a subsequent write reference. Informally, a read
reference reaches a write reference that follows it in program order (denoted by

" W) if the read determines whether the write will execute, the address accessed
by the write, or the value written by it. In addition, = "< \ if the read controls
the execution, address, or value written of another memory reference that is before
W in program order and is related to W by certain program orders. We refer the
reader to [13, 15] for a formal definition of the reach condition.

Fig. 3 shows the sufficient system requirements for RCsqc. i

spo’ po

X0 X0
— -
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* R:aread access, including an acquire memory operation;

« W: a write access, including a release memory operation;

e RW: either a read or a write memory operation;

e X, Y: either a read or a write memory operation;

e X(i), Y(i): either a read sub-operation R(i) or a write sub-opertion W(i), excluding the
initial read or write sub-operations, which are always denoted explicitly;

* RW,: a competing read or write memory operation;

* R aq' @n acquire memory operation;

* W, . a release memory operation;

s PO

. rch

. ot airs of values for i and j for which both X(i) and Y (j) are
defined.

Fig. 2. Listing of notation (1).

X0

(a) the following conditions must be obeyed:
Condition 1: initiation condition for reads and writes.
Condition 2: termination condition for writes; applies to all write sub-operations.
Condition 3: return value for read sub-operations.
Comdition 4: atomicity of read-modify-write operations.

(b) uniprocessor dependence: if X and Y conflict and are the first and last operations
. po

X0
In — —

©) 2 = .
(d) multiprocesor dependence: given that X and Y are the first and last operations
in one of the following conditions, and Y is from Py:

spo’
—
spo
—
co spo'
- —
X0 X0
— —
rch X0

Fig. 3. Sufficient conditions for RCgc.
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Condition 1: Initiation Condition for Reads and Writes
Given memory operations performed by P; to the same location, the following

po X0 po X0

conditions hold. If R 5 e 5 2
po X0

- -

Condition 2: Termination Condition for Writes

Suppose a write sub-operation W;j,;:(i) (corresponding to operation W) per-
formed by P; appears in the execution. The termination condition requires that the
other n corresponding sub-operations, W(1), ..., W(n), also appear in the execution.

Condition 3: Return Value for Read Sub-Operations

A read sub-operation R(i) performed by P; returns a value that satisfies the
following conditions. If there is a write operation W performed by Pi to the same
location as R(i) such that = , then R(i) returns the value of the last
such X . Otherwise, R(i) returns the value of W'(i) (from any processor)
such that W’(i) is the last write sub-operation to the same location that is ordered
before X . If there are no writes that satisfy either of the above two categories,

then R(i) returns the initial value of the location.

Condition 4: Atomicity of Read-Modify-Write Operations
If R and W are the constituent read and write operations for an atomic read-
modify-write (R % W/ by definition) on P;, then for every conflicting write operation

X0 X0

W’ from a different processor Py, either \W'(i) 5 and W'(i) S for all i
or L wWr(i) and L wr(i) for all .

The condition in part (b) is uniprocessor dependence, which captures the order
of operations from the same thread and to the same location. The condition in part
(c) is coherence, which ensures that write sub-operations to the same location occur
in the same order with respect to every memory copy. The condition in part (d)
is multiprocessor dependence chain, which captures the relations among operations
that are ordered according to program order and conflict order. The multiprocessor
dependence chain specifies the restrictions for a given memory model. Finally, the
execution order has to obey the reach condition in part (e). In the following section,
we will use the above framework to describe a new model for PMP-MP systems
that are extensions from the release consistency model.

3. THE PMP-MP-SPECIFIC CONSISTENCY MODEL (PSC)

In this section, we will extend the release consistency model to obtain a more
relaxed one that is more suitable for PMP-MP systems. First, we will explain how
to utilize the different semantics of critical section and barrier synchronization to
further categorize the shared memory references for the release consistency model
in Section 3.1. Next, we will propose our new model in Section 3.2 by presenting
its constraint on memory access ordering. In Section 3.3, we will introduce how
to properly label programs for the proposed model to ensure correctness.



790 CHAO-CHIN WU AND CHENG-CHEN

3.1 Critical section and barrier synchronization

In the SPLASH benchmark suite, synchronization references are divided into
locks, unlocks and barriers [18]. Barriers require that all processors reach a consistent
state before the codes following them are executed. When a thread reaches a barrier,
it typically perform the following three steps: (1) it marks itself as present at the
barrier; (2) it delays until all other processes reach that same barrier; (3) after all
involved threads have arrived at the barrier, it proceeds past the barrier. Shared
data accessed within a barrier must be made consistent only at the points where
the barrier computation proceeds from one phase to the next. Within a phase, there
are no consistency guarantees for data updated during that phase (unless other lock
synchronizations are used), so threads must assume that only data from previous
phases has reached a consistent state.

The purpose of locks (acquire references) is to gain permission to access a set
of shared locations; the purpose of unlocks (release references) is to grant permission
for accesses. Usually, locks and unlocks together ensure exclusive accesses within
critical sections. A critical section is bounded by a pair of synchronization references
to a synchronization variable. A lock occurs at the beginning of a critical section
and is used to gain access to a set of shared memory locations. An unlock occurs
at the end of a critical section and is used to signal that access is available. Lock
and unlock references together protect the shared data within a critical section from
concurrent accessing. When a processor executes a lock reference to enter a critical
section, it will later execute an unlock reference.

To sum up, before we release a lock, data that can be accessed within the
corresponding critical section must be made consistent with all processors. On the
other hand, before barriers can be performed, we have to make all shared data con-
sistent with all threads. Based on the above observation, we propose a new con-
sistency model for PMP-MP systems, called the PMP-MP-specific consistency (PSC)
model. Because barriers are also implemented using acquire and release references
[19], we have to further classify acquire and release references into different groups.
Acquires and releases implemented for critical sections and not for barrier operations
are called CS-acquires and CS-releases, respectively. Each paired CS-acquire and
CS-release is executed by the same thread. The acquires and releases which it needs
to mark itself as present at barriers (step 1 in implementing a barrier as mentioned
above) are called bar-acquires and bar-releases, respectively. Other acquires and
releases are called ord-acquires and ord-releases, respectively.

We can relax the restrictions on memory access ordering by utilizing the
suggested categorization and the feature of PMP architecture: (1) shared data prior
to a critical section in program order can be inconsistent with other memory copies
even when the lock to the critical section has been released; (2) shared data prior
to a barrier operation in program order can be not consistent with other memory
copies until the issuing thread has passed the barrier; (3) multiple threads on the
same processor share only one memory copy. An important observation is that no
thread can pass the barrier synchronization if any participating thread has not reached
the barrier. Consequently, shared data accessed by a processor prior to a barrier
in program order can be inconsistent with other memory copies if any participating
thread on the processor has not arrived at the barrier. In the following section, we
will introduce the PSC model more precisely and formally.
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3.2 The PSC model

Like the release consistency model, PSC has PSCgc and PSCpc two forms. It
depends on whether the special references are sequential or processor consistent.
In order to explain our PSCsc model clearly, we will first introduce some notations
used in this model as shown in Fig. 4. (Other notations have the same meanings
as defined in the previous section.)

* Rc_cs_acq: aCS-acquire access
* W¢_cs rd: aCS-release access
* Rc_par_acq: abar-acquire access
* We_bar_rel: abar-release access
* Rc_ord_acq: an ord-acquire access
* We¢_ord_rel: an ord-release access

Fig. 4. List of notation (2).

Fig. 5 shows the sufficient conditions for the PSCsc model. We define the

following three relations to capture the s =
spo”
(i) a memory references within a critical section and the immediately following

CS-release reference ordered 2

(if) a memory reference and the immediately following bar-release reference
ordered . where the memory reference is enclosed by the bar-release
reference and the paired bar-acquire reference.

° spo’ po

. 0 P

(i) if the first operation is an ord-acquire reference, or

(i) if the second operation is an ord-release reference.

The conditions in parts (a), (b), (¢) and (e) are identical in the two specifications
for PSCsc and RCsc. The difference between PSCsc and RCqc lies in the condition
in part (d) and the additional condition in part (f), particularly for PSCsc. The
multiprocessor dependence chain in Fig. 5 specifies the following restrictions for
PSCsgc systems. )

(i) For each pair of memory references ordered * a CS-release ref-
erence or a bar-release reference can take effect in every memory copy, a
memory reference protected by the release reference must have occurred with
respect to every memory copy.

(ii) Each pair of competing references ordered in program order (X ¥° Y) must
take effect in the same order as the program order in every memory copy.

(iii) If an ord-acquire reference is prior to a memory reference in program order



792

CHAO-CHIN WU AND CHENG-CHEN

0 0 50
oo 7™
-
po po
— —
po po
— —
spo’
N
po
i
po
N
po
—
po
—

X0

(a) the following conditions must be obeyed:
Condition 1: initiation condition for reads and writes.
Condition 2: termination condition for writes; applies to all write sub-operations.
Condition 3: return value for read sub-operations.
Condition 4: atomicity of read-modify-write operations.
(b) uniprocessor dependence: if X and Y conflict and are the first and last operations
in ” ad
©) 2 et .
(d) multiprocesor dependence: given that X and Y are the first and last operations
in one of the following conditions, and Y is from Py:

o

e
50
_C)O spo’

N X0 X0

rch X0

ipo
X0
Fig. 5. Sufficient conditions for PSCsc.
( = ), then the ord-acquire reference must occur before the

subsequent memory reference with respect to every memory copy.
(iv) Ifamemory reference is prior to a ord-release reference in program order (

po

—

), then the memory reference has to take effect before the ord-

release reference in every memory copy.
(v) If a write reference conflicts with a competing read reference and the read

reference is prior to a competing memory reference in program order, then

the write reference must take effect before the last memory reference in every
memory copy.
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The final condition in part (f) relaxes the restrictions on memory access ordering
between a memory reference and barrier synchronization reference following it on
the same processing element. Shared data accessed by the same processor, P, have
to be consistent with other memory copies only when all the participating threads
on Pk have arrived at a barrier. In the following, we will define the relation of intra-
processor program order ( ™) to specify which memory references have
to be consistent with other memory copies before passing a barrier.

A memory reference is prior to either an R par acq reference or a We par rel
reference ordere i
(i) the memory reference and its subsequent R¢ par acq OF We par_rel reference are

issued from the same processor but not necessarily from the same thread, and
(i) the memory reference is prior to a barrier synchronizatio =

(iii) the R¢ par acq reference or the W p4 o reference will be executed so as to pass
the barrier B.

Formally, we give the following definition of intra-processor program order

in Definition 5 and we illustrate use of the notation using an example in Fig. 6.

Ty To

al:a memory access

bl: Rc_bar_aoq b2 Re_bar_acq

— represents the — relation
t=2,B; ={al, bl}, B, ={a2, b2}, B ={By, By}

Fig. 6. Anexample illustrating the " relation.

Definition 5: Intra-Processor Program Order
Assume that t threads are participating in a barrier synchronization instance,
B, on processor P. A set denoted as B, is composed of R par acqg @nd We par rel

instruction instances for thread r, Tr, to pass instance B, where r ranges from 1 to

denoted as B‘l is the union of By, B,, ..., and B;. We define the intra-processor
program order, denoted by %5, 25 an order on the dynamic instruction instances from
different threads on the same processor in a run of the program. If a memory
operation, o, is prior to all instruction instances in B, in program order, then for

ipo

- t
any element, b, inB;, 0 5
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Definition 6 below specifies (i) the comparison set (denoted by COMP g )
that consists of the identities of the participating threads for barrier instance B on
processor Py, and (ii) the arrival set (denoted by ARRg, 1)) that is comprised of the
identities of the participating threads that have reached barrier instance B on
processor Py at the run time. The intra-processor synchronization condition in part
(f) imposes the following ordering restriction: the final issued W, par rel reference
on Py cannot be performed until all the memory references prior to the W par el
reference ordered by %5 taken effect in every memory copy. The final issued
W. var_rel reference is identified by comparing the equivalence between the set
(COMP g, ) — {r}) and the set ARRg, ), where the W, p,, rei reference is issued from
thread r. Fig. 7 shows an example to illustrate the comparison set and the arrival
set. There are two threads, T, and T,, on processor Py. Therefore, t = 2, and the
comparison set is made up of the identities of T, and T, that is, 1 and 2. On the
other hand, because only the references from T, for barrier instance B have all been
performed, the arrival set is composed of the identity of T;. Now, we will give the
formal definitions for the comparison set and the arrival set below.

Ty To
al: amemory access
cl: We_par_rel €2: We_par_rel

[ the accesses inside the shaded region have been performed
- Assume that k = 0.
t=2, COMPgg ={1, 2}, ARRgq ={1}.

Fig. 7. An example illustrating the comparison set and the arrival set.

Definition 6: Comparison Set and Arrival Set of Barrier Synchronization Instance

Assume t threads are participating in a barrier synchronization instance, B,
on processor P,. A comparison set, COMP g ), is made up of the identities of the
tthreads. An arrival set of a barrier synchronization instance, ARR g i), for processor
Pk to pass instance B is initially an empty set. Once a W _par rel instruction instance
from thread r is performed, the element, r, is added to the arrival set ARRg, ).
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In summary, the PSCsc model relaxes two ordering restrictions imposed by
RCsc. (1) A CS-release reference does not wait for ordinary references prior to
the paired CS-acquire reference in program order. Because a CS-release reference
gives permission to other process to read/write the shared data protected by the
corresponding critical section, it only needs to be delayed for the references within
its corresponding critical section. (2) If a bar-release reference is not the final one
reaching the corresponding barrier instance on a processor, then it need not be
delayed for the ordinary references prior to the paired bar-acquire reference ordered
in program order. This is reasonable because even when the bar-release reference
has completed, the issuing thread cannot pass the corresponding barrier instance.

Because we relax the release consistency model by means of different semantics
of critical section and barrier synchronization and we assure that the PSC model
enforces the original semantics of these two synchronization primitives, a program
can be executed correctly under the PSC model if memory references can be labeled
properly. In the next section, we will introduce the proper-labeling technique.

3.3 Proper labeling technique

The categorization of shared memory references described in Section 3.2 is
based on the intrinsic property of an reference. Like the release consistent system,
the programmer or the compiler has the responsibility of labeling memory references.
The goal of labeling is to ensure that a program can be executed correctly under
relaxed consistent systems [10]. The label represents what is asserted about the
categorization of the reference. It needs to have a proper relationship with the actual
category of an reference. Fig. 8 shows the labels used for memory references in
PSC systems, where the subscript L denotes that these are labels. The labels that
are in the same level are disjoint, and a parent label includes all properties of its
leaf labels.

Access,
/Shar ed,_\ Local,
Special, Ordinary,
Synq_/ Nsync,

Acq,

P |

Ord-acq, CS-acq. Bar-acq, Ord-acq, CS-acq. Bar-rel,

Fig. 8. Labels for memory references.
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If every reference is labeled with the category it actually belongs to, the labeling
is clearly correct. However, the conventional categories may be difficult to determine
for certain references. Therefore, we allow such labeling to be conservative. In
other words, the references labeled by our categories will have more restrictions
on reference ordering than those of the conventional categories. In those cases, we
ensure correctness at the cost of not fully exploiting the potential for performance.
Conservative labels are shown in bold type in Fig. 8. The following definition
formalizes when a program is properly labeled.

Definition 7: Properly Labeled Programs for the PSC model (PLpsc Programs)

A program is properly labeled for the PSC model if (i) all references labeled
shared, are shared references, (ii) all references labeled special; are special refer-
ences, (iii) all references labeled sync, are synchronization references, (iv) all
references labeled ord-acq, are ord-acquire references, and (v) all references labeled
ord-rel,_ are ord-release references.

Fig. 9 shows the implementation of two common synchronization primitives
[13] that we will use to illustrate properly labeling. Figure 9(a) shows a critical section
bounded by a pair of lock and unlock operations, where we use a test-and-set to
lock a synchronization variable and a write to unset the lock. The test is labeled
as a CS-acquire reference and the write used to unset the lock is labeled as a CS-
release reference. In addition, the set of the test-and-set does not compete with
any other operations and can, therefore, be labeled as ordinary.

P1 P2 Labels
al: while (test&set(L) == 0); a2: while (test&set(L) == 0); al, a2 (test): CS_acq,
accesses to data; accesses to data; al, a2 (set): ordinary
bl: L=0; b2: L=0; bl, b2: CS_rel
C))
P P2
accesses to data accesses to data
/* barrier code */ /* barrier code */ Labels
al: local_flag = !local_flag; a2: local_flag = !local_flag; -
bl if(fetch&incr(Count) ==N) {  b2: if(fetch&incr(Count) == N) { b1, b2 (fetch): bar_acq
cl:  Count=1; c2: Count=1, bl, b2 (incr): bar_rel
dl:  Flag = local_flag; d2:  Flag = local_flag; ¢, c2: ordinary;
el: }else { e2: } else { dl, d2: ord_rel
Ji: while(Flag != local_flag); 2 while(Flag != local_flag); S1, /2 ord_acql,
g} g2: )
accesses to data accesses to data
(b)

Fig. 9. Example of program segments: (a) critical section, (b) barrier.
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Fig. 9(b) shows the implementation of a barrier [20] using an atomic fetch-
and-increment operation. Because the fetch-and-set operation marks the corre-
sponding thread as present in a barrier, the fetch is a bar-acquire reference, and
the increment is a bar-release reference. The write to Count is ordinary because
it is executed by the final thread reaching the barrier to reset the counter, based
on which the number of threads having arrived at the barrier will be calculated.
Therefore, it is non-competing. The write to Flag is used to inform all other threads
that they can pass the barrier. Consequently, this write is qualified as an ord-release
because it needs to be delayed until all preceding memory references have all
performed. The read to Flag is qualified as an ord-acquire reference.

We will next discuss how the category of an reference can be conveyed in PLpsc
programs. The PARMACS macros from the Argonne National Laboratory [19]
used in the SPLASH suite extend conventional sequential languages through parallel
runtime libraries. The macros provide a set of predefined high-level synchronization
constructs which programmers can use to order all conflicting memory references.
Programmers only have to understand the exact semantic of each predefined syn-
chronization primitive and use these constructs to ensure that all memory references
are race-free or non-competing. Only the writers of the high-level constructs need
to see the full complexity of a PLpsc program. Compared with labeling for release
consistency, they only have to label the instructions differently in the macros for
barrier synchronization and the lock-unlock pair for the critical section according
to their own semantics. Therefore, it is easy to transform a program labeled for
release consistency into one labeled for the PSC model. On the other hand, because
acquire (release) references in the release consistency and ord-acquire (ord-release)
references in the PSC model have the same ordering restrictions, a PLpgc program
can also be easily executed in the release consistent system. We only need to recognize
the ord-acquire (ord-release), CS-acquire (CS-release), and bar-acquire (bar-release)
references as ord-acquire (ord-release) ones. In the following section, we will
introduce how the PScsc model can be implemented in a PMP-MP architecture.

4. IMPLEMENTATION OF PSC MODEL

To reduce the complexity of implementation, we do not optimize all types of
barrier synchronization. We call a barrier operation a Type | barrier if it is participated
by all threads; otherwise we call a Type 1l barrier. We will investigate Type | barriers
in order to improve the performance of PMP-MPs under the PSCsc model for the
following reasons. (1) They are used much more frequently in the SPLASH suite
programs [18]. (2) Hardware can easily decide when all the participating threads
have arrived at a barrier. (We will discuss this shortly.) In other words, we label
Type Il barriers only with ord-acquire and ord-release references. Consequently,
to distinguish between Type | and Type Il barriers, we have to provide programmers
with two different barrier macros. In addition, to distinguish three types of acquire
and release references, we can use different macros and instructions for various
references.

The PMP-MP we are studying is a cache-coherent, non-uniformed memory
architecture similar to that described in [17] except that the processing element (PE)
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is PMP instead of a RISC processor as illustrated in Fig. 10. The key feature of
the PMP-MP is that several threads share only one cache hierarchy in each PE. It
hides write latencies because each PE has a two-level cache in which each level has
one write buffer to store write misses that cannot be serviced immediately. Moreover,
a dual write-cache (DWC) is placed next to the second level cache.

First Level Second Level
Write Buffer Write Buffer
(FLWB) Write CS- (SLWB)
Write wC ]
=
- — m
First Second Non-CS- w
Level Level wWC 8
Cache Cache =
(FLC) | Read (SLC) Read

Fig. 10. Processing node architecture.

A DWC is composed of two separate write-caches (WC). Write-caches (WCs)
were first proposed by Bray and Flynn for uniprocessors [16] and are used in allocate-
on-write-miss, write-back, and no-allocate-on-a-read-miss strategies with a single,
combined dirty/valid bit per word. A WC allocates a block frame to a write reference.
The write reference is performed in the WC by setting the corresponding dirty bit
and writing the data. Thereafter, all the write references belonging to the same block
will be merged into a single write miss request. If the block is replaced, only dirty
words need to be transferred to the next level in the memory hierarchy. Consequently,
temporal and spatial locality in write references will result in less write traffic [16].

However, WCs have a different effect on shared-memory multiprocessor systems.
Unlike uniprocessor systems, memory reference ordering requirements must be
enforced by some underlying memory consistency model. In weak or release
consistency systems, because every ordinary reference can be performed indepen-
dently of other ordinary references, WCs have to be flushed only when a synchro-
nization reference or a release reference arrives. Nevertheless, because an acquire
reference request usually incurs a long synchronization waiting period, we also flush
the write cache whenever an acquire reference request is encountered. Consequently,
write caches can merge write reference requests between any two consecutive
synchronization points, thus boosting the performance substantially [17].

DWCs are composed of two separate write-caches. One is for buffering writes
issued from the code segments enclosed by CS-acquire-and-CS-release pairs or bar-
acquire-and-bar-release pairs, and the other is for other write references. We call
the first the critical-section write-cache (CS-WC), and the second the non-critical-
section write-cache (non-CS-WC). DWCs are the key components used to implement
the PSCsc model in PMP-MP systems. In the following, we will describe the handling
method and the function of DWCs in some detail.

Three counters on each processor are used to handle DWCs: the switch counter,
the comparison counter, and the arrival counter. Their initial values are all zero.
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The switch counter records how many CS-acquire and bar-acquire references have
arrived at the SLC. When a CS-acquire or bar-acquire reference arrives, the switch
counter is increased by one. In contrast, when a CS-release or a bar-release reference
arrives, the switch counter is decreased by one. According to our categorization,
a CS-release reference must follow a CS-acquire reference. Similarly, a bar-release
reference must follow a bar-acquire reference. Consequently, the value of the switch
counter is always non-negative. The value of the switch counter determines which
write cache is allocated for subsequent write references. A positive value indicates
that at least one thread has encountered a CS-acquire or a bar-release operation,
but that the paired CS-release or bar-release reference has not yet arrived. To ensure
that the memory references enclosed by the paired references are buffered in the
CS-WC, a positive value switches from the non-CS-WC to the CS-WC. On the other
hand, the zero value switches from the CS-WC to the non-CS-WC. Of course, the
CS-WC needs to be flushed when a CS-release or a bar-release is encountered.

The purpose of the comparison counter is to record how many threads on the
processor will participate in a barrier instance. Remember that we investigate only
the Type | barriers for optimization. Therefore, the number of participating threads
on a processor for a Type | barrier is equal to the number of threads on the processor.
The value of the comparison counter is maintained by the operating system.

Finally, the arrival counter records how many threads on the processor have
reached a barrier instance. Because each thread will mark itself as present at a barrier
instance only one time, the arrival counter records how many bar-release references
have arrived. Whenever a bar-release is encountered, the arrival counter is increased
by one. If the values of the comparison counter and the arrival counter are equal,
then we reset the arrival counter after flushing the CS-WC and the non-CS-WC.

The non-CS-WC and the CS-WC are also flushed to the write buffer when
an ord-release reference arrives. However, unlike the handling method proposed
in [17], we do not flush DWCs whenever acquire references of any type arrive. The
reason is that the long synchronization waiting period incurred by an acquire ref-
erence request can be hidden by the parallel executions of other threads on the same
processor for PMP-MP systems.

A DWC lookup is performed on every reference to the SLC. When a block
is evicted from the DWC, all modified words in the block have to be bookkept in
the SLWB. In the following, we will describe how the DWC handles different read
and write conditions.

(1) If a read hits in the SLC or a write reference is done to a dirty SLC copy, no
write action is taken.

(2) Ifaread missesinthe SLC but hits in the DWC, the DWC can supply the processor
with the data.

(3) If the requested word for a read-miss is valid neither in the SLC nor in the DWC,
a request is sent to the memory system. When the block arrives, it is filled in
the FLC and the SLC but not filled in the DWC, after the block has merged
with words that are valid in the DWC.

(4) If the SLC copy is invalid or shared, a write reference is performed in the DWC
by first making sure that a block frame has been allocated. We must update
the DWC and set the dirty/valid bit of the corresponding word. If the block
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frame has not been allocated, another DWC block might have to be evicted before
the write reference can be implemented in the DWC. Because a DWC must
have at most one write request for each memory word, when a write is allocated
to the CS-WC, we must invalidate the corresponding word in the non-CS-WC.
Similarly, when a write is allocated to the non-CS-WC, we must invalidate the
corresponding word in the CS-WC.

(5) The DWC is not affected by any incoming invalidation requests because the data
modified by the write requests in the DWC are invisible to other processors.

We use the following algorithm to show the interaction between the DWC and
the three counters mentioned above.

Algorithm: Interaction between the DWC and the three counters
declare integer C, A, S;
C ~ the number of parallel threads on the PE;
A < 0
S <0
while(1) {
if (a CS-acquire or a bar-acquire reference request arrives) {
S=S+1,;
switch the current write cache to the CS-WC;

else if (a CS-release or a bar-release reference request arrives) {
flush the CS-WC;
S=S-1;
if (S§==0)
switch the current cache to the non-WC;
if (the reference is a bar-release one) {

if (A-1==0){
flush the CS-WC and the non-CS-WC;
A =0;

}

else
A=A+1;

}
}
else if (an ord-release reference request arrives) {
flush the non-CS-WC

}

In summary, to implement a PSC system, we need to provide three more macros
for (i) Type I barriers, and (ii) locking and unlocking for critical sections. Moreover,
we have to provide additional instructions for (i) CS-acquire and CS-release ref-
erences, (ii) bar-acquire and bar-release references. The macros are implemented
by means of different instructions according to their own semantics. Programmers
can easily use the predefined macros to write their applications. In addition, we
use three counters and a dual write-cache per processor to utilize the new parallelism
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exploited by the PSC model. Because the block size of a write-cache is usually small
(about 4 to 8 blocks), the hardware cost is small.

5. SIMULATION RESULTS

In order to evaluate the performance of the PSCsc model for PMP-MPs, we
have constructed a simulation environment named SEESMA (a simulation and
evaluation environment for shared-memory multiprocessor architecture). Itis a
program-driven simulator consisting of a memory reference generator (front end)
and a target system simulator (back end) as shown in Fig. 11. The former is basically
the MINT package [21], and it models the execution of an application program on
some number of processors. The latter models memory hierarchy and system
interconnect. Once the program performs a memory reference, the front-end sends
an event to the back-end. As soon as the event is completed, the back-end signals
the front-end that the corresponding process can continue.
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- cache size, block size PE (Front End)
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- direct-mapped placement
First Level Write Buffer|
- block size
- number of entries
I SEESMA Process
Second Level Cache Second Level Cache Controller | NMemory Subsystem Control
- cache size, block size « Coherece Protocol y y
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Fig. 11. Overview of the SEESMA package.
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SEESMA aids investigation of shared-memory multiprocessor architecture
by means of a user friendly interface. It is a software platform for education and
research purposes. To achieve the objectives, SEESMA supports the following
simulation environment:

(1) two-level cache;

(2) interconnection network;

(3) memory consistency models;

(4) cache coherence protocols;

(5) parallel multithreaded processor, etc.

Each sub-environment supports various options for investigating the interac-
tions among these options. Users are provided with an X-window interface to specify
the system architecture and benchmarks in addition to friendly on-line help. SEESMA
runs a simulation based on a user specified architecture and outputs the evaluated
results. Finally, users can analyze the interaction among system modules for the
sake of cost/effective system design.

We assume that all memory references to code and private data always hit
on the first level cache (FLC) and take a single processor clock. We summarize
several important architecture parameters in Table 1, and others are as follows: (1)
the processor is blocked on read misses but write misses; (2) the clock rate of the
processor is 100 MHz; (3) the reference times of FLC and SLC are 1 and 3 processor
clocks; (4) the size of each WC is 8 blocks; (5) FLC, SLC, and DWC are all direct-
mapped; (6) the size of the memory page is 4 Kbytes, and the memory pages are
distributed in a round-robin fashion; (7) the interconnection network is 4-by-4 torus;
and (8) the linked width of the network is 64 bits.

Table 1. Architecture parameters.

Parameter Value

Number of Processing nodes 16

Number of threads per PE 4
Sixe of FLC 16 Kbytes
Size of SLC 256 Kbytes

Block size of FLC and SLC 32 bytes
Nubmer of entries in FLWB 16
Number of entries in SLWB 32

As for the cache coherence protocol, we adopt the clean protocol, which is
a fully-mapped directory-based protocol. The clean protocol is similar to the write-
invalidate protocol except that the memory copy is kept clean until a write request
arrives from the only PE that has a cached copy. Dahlgren and Stenstrom concluded
that write caches can improve the performance of write-update, clean, and competi-
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tive-update protocols [17]. However, only clean protocols with write caches (Clean-
WC) and competitive-update protocols with write caches (Comp-WC) were shown
to be superior to write-invalidate protocols without write caches. Moreover, because
Clean-WC and Comp-WC have almost the same performance, and the competitive-
update protocol requires one counter per cache block, we chose the clean protocol
in order to investigate the impact of write caches on PMP-MPs after considering
the cost/performance tradeoff.

We used five applications as benchmark programs, which are summarized in
Table 2. All applications were written in C using the PARMACS macros from the
Argonne National Laboratory [19] and have been compiled using cc under IRIS
version 3 with optimization level 2 on a SGI workstation. All statistics were gathered
in the parallel sections of the benchmarks.

Table 2. Benchmark programs.

Benchmark Description Data sets

MP3D 3-D particle-based wind-tunnel sumulator | 50K particles, 10 time steps
Cholesky | Cholesky factorization of a sparse matrix | The matrix bcsstk 14

Pthor Distributed time digital circuit simulator RISC circuit, 1000 time step
Ocean Ocean basin simulator 130x130 grid, tolerance 1077
Barnes Hierarchical N-body gravitation simulator | 1024 bodies, 3 steps

Fig. 12 shows a network traffic comparison for RCsc and PSCgc. For the sake
of brevity, we will use the terms RC to denote RCgc and PSC to denote PSCgc
programs in the subsequent discussion and figures. The network traffic for each
application under the PSC model is normalized relative to that under the RC model.
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N
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Fig. 12. Normalized network traffic for the RC and PSC models.
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The network traffic is reduced for the PSC by further merging more write requests.
The PSC model provides more opportunities for merging write traffic. The first
reason is that DWC is not flushed whenever an acquire reference is encountered.
The second reason is that a bar-release reference will not incur a flush for the DWC.
Because the frequency of flushing the DWC is reduced, references from different
threads on the same processor are likely to be merged.

We show a performance comparison for RCsc and PSCsc in Fig. 13. The
execution times for each application under the PSC model were normalized relative
to that under the RC model. In addition, we have decomposed each execution-time
bar into five sections: the busy time (the bottom section); the read-stall time, i.e.,
the time spent servicing cache misses; the acquire-stall time, i.e., the time spent waiting
for a lock to be acquired; the contention time, i.e., the time before permission is
granted to reference the FLC; and at the top, the buffer-stall time, i.e., the time during
which the processor is stalled due to a full first-level write buffer (FLWB).
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Fig. 13. Normalized execution times for RC and PSC models.

We can see that the PSC model is superior to the RC model for all application
programs for the following reasons. (1) The PSC model merges more write traffic
as shown in Fig. 12; thus, it reduces the network contention. (2) Acquire references
have no need to wait until all the DWCs have been flushed. Therefore, the acquire-
stall time is reduced. (3) A CS-release reference has to be delayed only for the
references enclosed within the corresponding critical section instead of for all the
references prior to the CS-release reference in program order. Consequently, CS-
release references can release locks earlier and the execution time for the critical
section can then be reduced. (4) Only the bar-release reference from the final
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participating thread on a processor will flush the DWC. Bar-release references from
other threads on the processor can be performed after the references enclosed by
them and their paired bar-acquires have completed.

In the following, we will examine the different effects on total performance
of various numbers of threads for each processing element. Fig. 14 shows a per-
formance comparison between the RC model and the PSC model. The speedup
is derived from the ratio of the execution times between these two models. It becomes
larger when the number of threads is increased. This is because more threads on
a processor provide more opportunities to merge write traffic and to optimize bar-
release references in the PSC model. The exception is that the release consistency
model outperforms the PSC model for the Cholesky program when the number of
threads on a processor is 2. This is because Cholesky is dynamically scheduled during
run time and its busy time may be not equal for different runs. For a configuration
of 2 threads on each processor, the busy time for the PSC model is larger than that
for the RC model.
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Fig. 14. Performance speedup for various numbers of threads per processor.

Another important observation is that the PSC model has better performance
than the RC model for a configuration of 1 thread per PE. The PSC model has
the same restrictions on ord-release references as does the RC model because there
is only one thread on each PE. Therefore, the performance gain is only due to the
relaxation on CS-release references. A CS-release reference has no need to wait
for its previous references to all be performed. Consequently, the synchronization
waiting time is shortened; thus, the system performance is boosted.
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6. CONCLUDING REMARKS

In multiprocessor systems, it is very important to provide an efficient memory
consistency model. In this paper, we have proposed a hardware-centric model,
called the PMP-MP-specific consistency (PSC) model. This new model extends the
release consistency model by partitioning acquire and release references into
three sub-categories. It makes the data consistent under different reference
ordering requirements of lock and barrier synchronization. Locks protect only the
data that can be accessed within critical sections enclosed by it and its paired unlocks.
Consequently, only the protected data need be made consistent before locks are
released. On the other hand, barriers enforce all data prior to them in the program
order to become consistent before subsequent codes are executed.

According to the categorization, fewer restrictions on memory reference ordering
can be imposed on each synchronization reference. Thus, the PSC model not only
allows more pipelining and buffering, but also exploits new parallelism. We have
implemented the PSC model by incorporating DWCs into PMP-MP systems to utilize
the full performance potential as much as possible. DWCs can merge more write
traffic and reduce the time spent waiting for locks to be acquired. According to
our simulation results on five application programs in the SPLASH suite, the PSC
model outperforms the release consistency model at best by about 11% for a
configuration of 4 threads on a processor. In addition, the PSC model has better
performance gain when the number of threads on a processor is increased.

In the future, we will study aggressive conditions for PSCsc that impose
constraints on the execution order among conflicting sub-operations only. The
aggressive specification does not prohibit practical optimization that does not violate
the semantics of the model. Consequently, it is easier for the system designer to
implement the model efficiently. Furthermore, we will study the original and
aggressive conditions for the PSCpc model.
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