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 In this paper, we propose an approach to the reliability analysis of distributed
programs that addresses real-time constraints.  Our approach is based on a model for
evaluating transmission time, which allows us to find the time needed to complete
execution of the program, task, or mission under evaluation.  With information on
time-constraints, the corresponding Markov state space can then be defined for
reliability computation.  To speed up the evaluation process and reduce the size of the
Markov state space, several dynamic reliability-preserving reductions are developed.
A simple distributed real-time system is used as an example to illustrate the feasibility
and uniqueness of the proposed approach.

Keywords: distributed program reliability, distribute system reliability, file spanning
tree, file spanning forest, reliability.

1. INTRODUCTION

Distributed real-time systems have been widely applied in various application
domains, including the military, industrial manufacturing, and medical care sectors.
Numerous research projects related to distributed real-time systems have been
conducted in the past two decades [13-18].  Reliability analysis is an important issue
in designing distributed real-time systems for various applications.  In distributed
computing systems, distributed program reliability has been proposed as a reliability
index for analyzing the probability of successful execution of a program, task, or
mission in a system.  Distributed program reliability (DPR) [1-3] in a distributed
computer system (DCS) is defined as the probability that the program under con-
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sideration with distributed files can be run successfully in spite of some faults
occurring in the processing elements or in the communication links.  In [1], Prasanna
Kumar et al. introduced the notions of a File Spanning Tree (FST), Minimal File
Spanning Tree (MFST), and File Spanning Forest (FSF).  An FST is defined as a
spanning tree that connects the root (the PE that runs the program under consid-
eration) to some other nodes such that its vertices hold all the files required to
execute that program.  An MFST is an FST such that there is no other FST which
is a subset of it.  An FSF is defined in the same way as an FST except that the union
of all the data files associated with evaluated distributed programs is accomplished
before the spanning tree is identified.

Under the FST concept, several reliability evaluation algorithms have been
developed to speed up the reliability evaluation process [4-8].  However, reliability
models so far proposed for distributed program reliability evaluation do not capture
the effect of real-time constraints.  In this paper, we propose an approach to reliability
performance analysis of distributed programs that addresses the real-time con-
straint issue.  The approach proposed here is based on a model for evaluating
transmission time to find the time needed to complete execution of the FST for a
given program, task, or mission.  With time-constraint information and the ex-
ecution time of every FST, the corresponding Markov state space can be defined
for reliability computation.  To speed up the evaluation process and reduce the size
of the Markov state space, several dynamic reliability-preserving reduction tech-
niques are developed.  A simple distributed real-time system is used as an example
to illustrate the feasibility and uniqueness of the proposed approach.

2. TIME-CONSTRAINED DISTRIBUTED PROGRAM

Consider the distributed processing system in Fig. 1.  There are four process-
ing elements (x1, x2, x3, x4) connected by links x1,2, x1,3, x2,3, x2,4 and x3,4.  Processing
element x1 contains two data files (F1 and F2) and can run program P1 directly to
communicate with other nodes and access data files required to complete the

Fig. 1.  A simple distributed computing system.
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execution of program P1.  The information in each node in Fig. 1 is summarized
by FAj, PAj(j = 1, 2, 3, 4), and FNi(i = 1, 2, 3), where FAi is the set of data files
available at processing element xi, PAj is the set of programs, tasks, or missions
available at processing element xj, and FNi is the set of data files                   needed
for program Pi to be executed.

Let the execution of P1 in the DCS in Fig. 1 require the use of F1, F2, and
F3 and allow P1 to be run from either node x1 or node x4.  From the DCS graph,
we can identify the following File Spanning Trees (FSTs) rooted on x1:

1) x1 x2 x1,2, 2) x1 x2 x3 x1,2 x2,3, 3) x1 x2 x4 x1,2 x2,4,
4) x1 x2 x3 x1,3 x2,3, 5) x1 x3 x4 x1,3 x3,4, 6) x1 x2 x3 x4 x1,2 x2,3 x3,4,
7) x1 x2 x3 x4 x1,2 x2,4 x3,4, 8) x1 x2 x3 x4 x1,3 x2,3 x2,4, and
9) x1 x2 x3 x4 x1,3 x3,4 x2,4.

A time-constrained system is a system whose computations and actions must
be performed before a given deadline [9-10].  For a real-time system, the deadline
is crucial.  The system must be able to perform and meet critical deadlines even
when it is not fully operational because of abnormal conditions in its components.
Some FSTs may be unable to meet the deadline constraints.  Such FSTs will be
considered to fail during reliability measurement even though the system is still
operational.

When a time constraint is considered, it may turn out that some of the FSTs
identified in Fig. 1 are unable to complete execution before the deadline.  We
consider such FSTs to be failed FSTs; they are classified as being in failure
states.  Thus, three steps must be performed before we can compute the reliability
of a program which is being evaluated.  We must

1) generate all the FSTs associated with the evaluated distributed program,
2) evaluate the transmission time of each FST and identify the failed FSTs,

and
3) map the good FSTs into Markov transition states and the failed FSTs into

failure states.

Thus, the state space of the Markov model can be partitioned into two sets:
1) the set O of operational states, which contain at least one FST each and meet
the time constraint, and 2) the set F of failure states, which either contain no FSTs
or do not meet the time deadline.  When time constraints are used, two new
reliability measures for the DCS can be derived as follows.

Definition 1: The Time-Constrained Distributed Program Reliability (TCDPR) of

the model can be defined as TCDPR =    PsΣ
S ∈ O

(t) where Ps(t) is the state probability
for state S and O is the set of states that contain at least one FST and allow the
program in the DCS to meet the execution deadline.

Definition 2: The Time-Constrained Distributed System Reliability (TCDSR) can

be defined as TCDSR =    PsΣ
S ∈ O

(t), where Ps(t) is the state probability for state S
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and O is the set of states that contain at least one File Spanning Forest (FSF) and
allow all programs in the DCS to meet their deadlines.

3. RELIABILITY EVALUATION OF TIME-CONSTRAINED
DISTRIBUTED PROGRAMS

In this section, we will present an approach to reliability evaluation of time-
constrained distributed programs.  As discussed in the previous section, three steps
must be performed before the TCDPR can be computed.  The first step is to
generate all the FSTs associated with the program under evaluation.  This can be
done using the algorithms presented in [1,4,5].  The next step is to evaluate the
transmission time of each FST and identify the failed FSTs.  To evaluate the
transmission time of each FST, we shall propose a model for evaluating the response
time of DCSs connected to a wide area network.  In our model, we assume that
there are two processors: the application processor, which executes programs, and
the network processor, which handles all the intra- and internode communications
in a DCS node.  The execution time of a program is assumed to be constant in our
model, and the time needed to transfer needed files from resident nodes to the
root node is considered to be the response time.  Many factors affect the response
time, including link capacity, network topology, file distribution, and CPU speed.
CPU speed is often less important than the other factors [11].  Once the transmission
time of each FST is computed, we can map the successful FSTs into operational
states and the failed FSTs or non-FSTs (FSTs that cannot meet the deadline for
execution or subtrees that are not FSTs) into failure states in the resulting Markov
process.  Finally, we apply a common technique for solving the Markov process
described in [12] to compute the reliability as a function of time and MTTF.  In
the following sections, we present the file transfer protocol used in our evaluation
model, the transmission time evaluation algorithm used to compute the response
time, and the complete method for computing the TCDPR and TCDSR.

3.1 File Transfer Protocol

At beginning of each cycle, the root node sends the file request signal REQ
to all of its neighboring nodes.  The node receiving the REQ signal will send the
requested file through the communication link, and then file request signals for
the remaining files will be issued to the neighboring nodes.  The transmission time
of the REQ signal is assumed to be fixed and very small, so it can be neglected.
In this model, we assume that a simple store-forward scheme and a virtual
cut-through [12] mechanism are used.  In virtual cut-through, packets arriving at
an intermediate node are forwarded to the next node in the route without
buffering.  A node that has data coming from more than one neighboring node is
called a branch node.  The data packets received by branch nodes are sent
according to a predefined priority.

The file transfer protocol is described formally below:
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for all node xi do
repeat

if self_demand(REQ) then
add_send_request(Vt, REQ)

for all neighboring node of xi (denoted as xj) do
if send_request(xj) ≠ ∅

then send_request(xj)
if receive_request_from(xj, REQ)

then if REQ has been processed then discard REQ
else

add_send_list(xj, FAi ∩ REQ)
add_send_request(Vt-xj, REQ-FAi)

if receive_data_from(xj, DATA, xk) then
if xk = xi then save DATA
else if status_channel_to(xk) = idle

pass_to(xk, DATA)
else

save_data(TEMP)
add_send_list(xk, TEMP)

if status_channel_to(xk) = idle and send_list(xj) ≠ ∅ then
send_data_to(xk)

od
until ∅

od

3.2 Response Time Evaluation Algorithm

The Transmission Time algorithm developed here is based on traversing the
DCS graph in a breadth-first manner.  A marking strategy is used to eliminate the
possibility of visiting a node more than once.  The algorithm begins by choosing
one node as a root to generate file transmission paths from the set of nodes which
includes the program under consideration.  Starting from this root, paths are gen-
erated by connecting edges to this root or to the paths expanded from this root;
t.node is, therefore, needed to hold the necessary information about this root; t.path
is used to hold the nodes included in path t; and t.req is used to hold the message
of the file request signal.

The procedure for constructing the file transmission paths consists of a
checking step and an expanding step.  In the checking step, the subgraphs that
have been generated so far, which are stored in a list called TRY, are checked to
determine whether they are file transmission paths.  A subgraph t is a file trans-
mission path if its t.node contains files required to execute the distributed
program, that is, if FAt.node ∩ t.req ≠ ∅.  If the t.node contains all the files required,
then no more file request signals will be sent to the neighboring nodes that have
not been visited.  Thus, subgraph t is removed from TRY if FAt.node ⊃ t.req.  Once
the checking process is complete, the list TRY will contain all the paths in which
t.req is not an empty set.

The expanding step will generate the t.path in TRY by extending the t.node
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to a new adjacent vertex in the hope that the new vertex will have the needed files
(if TRY is empty, of course, the algorithm stops).  The adjacent vertex added might
have all or some of the needed files.  If the added node contains some of the
missing files, a new file transmission path is generated by connecting this adjacent
vertex to the existing path.  If none of the needed files are in the adjacent vertex,
then this node can be used as an intermediate node to access another set of adjacent
nodes in the next expanding step.  If t.node has more than one unvisited adjacent
vertex, a flag t.node.branch is set to indicate that this node is a branching node.

Once the file transmission paths are generated, information on link capacities
and file sizes is used to generate the real paths.  Before the real paths are generated,
the file transmission paths are sorted by a predefined order of priority for branch
nodes.  A real path contains a pair of lists: one lists the amount of data that will
be sent from each node, and the other lists the capacity of the links in the path.
The mapping from a file transmission path to a real path is straightforward.  First,
the amount of the data sent from the last node is accumulated in the variable x.acc.
Then, for path xp1, xp2, …, xpm, two lists are generated: xp2.acc, xp3.acc, …, xpm.acc
and newr.capacity = (cap(xp1, xp2), cap(xp2, xp3), …, cap(xpm–1, xpm)), where m is the
number of nodes in the path, xpi (i = 1, 2, …, m) is nodes in the path, xpi.acc (i =
1, 2, …, m) is the accumulated data to be transmitted for node xpi, cap(xpi, xpi+1)
(i = 1, 2, …, m-1) is the link capacity between nodes xpi and xpi+1, and newr is a
new real path.  The formal algorithm is stated below.

The transmission time for files to pass through a real path can be calculated
recursively.  If the path length is equal to 1, the transmission time can be computed
directly by dividing the amount of data by the capacity of the link.  If the time needed
to empty the nodes in each path forms a descending order from the last node to

the root node,  Fn

Cn
 >  Fn – 1

Cn – 1 – Cn
 >  Fn – 2

Cn – 2 – Cn – 1
 > … >  F1

C2 – C1
, then the transmission

time is  Fn

Cn
, where Fi (i = 1, 2, …, n) is the file size in node i and Ci (i = 1, 2, …,

n) is the link capacity between node i and node i+1.  The cut-through mechanism
indicates that if a node exists that is empty before the data in its neighboring node
goes through, then the link between these two nodes can be eliminated.

Once the transmission time through various paths of each file needed has
been computed, the response time can be obtained by 1) finding the minimum
transmission time for each file needed and 2) finding the maximum of the trans-
mission times obtained in 1).  A formal description of the algorithm is given below.

Transmission Time Evaluation Algorithm

Step 1: Initialization
t.node = first node xj which includes the program to be executed.
t.path = xj
t.requ = FNj
visit = {xj}
add t to TRY
PATH = ∅
REALPATH = ∅
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Step 2: Generating all file transmission paths
repeat

2.1 Checking step and Generating path
for all t ∈ TRY do

if FAt.node ∩ t.req ≠ ∅ then
newp.file = FAt.node ∩ t.req
newp.path = t.path

add newp to PATH
if FAt.node ⊃ t.req then

remove t from TRY
od

2.2 Expanding Step
NEW = ∅
for all t ∈ TRY do

add EXPAND(t) to NEW
od
TRY = NEW

until TRY = ∅
Step 3: Generating all real paths

sort the paths in the path list PATH
for all p ∈ PATH do

for all Fi ∈ p.file do
newr.file = Fi
MAP_TO_REAL(p.path, Fi)
add newr to REALPATH

od
ACC(p.path)

od
Step 4: Time Evaluation

for all r ∈ REALPATH do
time =TIME_EVALUATE(r.capacity, r.size)
if time < r.file.time then

 r.file.time = time
od

function EXPAND(t)
begin

count = 0
for all node xi adjacent to t.node and xi ∉ visit do

begin
newt.node = xi
newt.path = t.path+xi
newt.requ = t.requ-FAt.node
add newt to tmp
add xi to visit
count = count + 1
if count > 1 then

t.node.branch = true
end
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od
EXPAND = tmp

end. (*EXPAND*)
function MAP_TO_REAL(xp1, xp2, …, xpm, File)
begin

xpm.acc = xpm.acc+size(File)
newr.size = (xp1.acc, xp2.acc, …, xpm.acc)
newr.capacity = (cap(xp1, xp2), cap(xp2, xp3), …, cap(xpm-1, xpm))    end

(*MAP_TO_REAL*)
function ACC(xp1, xp2, …, xpm)
begin

for all branching nodes xpj do

xpj.acc = xpj.acc+   xi.accΣ
i = pj + 1

pm

od
end(*ACC*)
function((C1, C2, …, Cn); (F1, F2, …, Fn))
begin

if n = 1 then

return  F1

C1

if  Fn

Cn
 >  Fn – 1

Cn – 1
 >  Fn – 2

Cn – 2 – 1  > … >  F1

C2 – C1
 then

return  Fn

Cn

if  Fn

Cn
 ≤  Fn – 1

Cn – 1 – Cn
 then

TIME_EVALUATE((C1, C2, …, Cn-1); (F1, F2, …, Fn-1 + Fn));

if j is the largest index such that  Fj

Cj – Cj + 1
 ≤  Fj – 1

Cj – 1 – Cj
 then

TIME_EVALUATE((C1, C2, …, Cj-1, Cj+1, …, Cn-1); (F1,
F2, …, Fj-1, Fj, …, Fn))

end(*TIME_EVALUATE*)

3.3 An Example of Response Time Evaluation

Fig. 2 shown the DCS with the capacity of each communication link specified.
Suppose we want to compute the response time of distributed program 1 when

link 3 is down.  Based on the Response Time Evaluation algorithm, we get four
file transmission paths: 1) F2: x1x2, 2) F4: x1x2, 3) F3: x1x3, and 4) F4: x1x3.  These
file transmission paths and the real paths generated are shown in Fig. 3.  The Time
Evaluation function calculates the response time of program 1 to be 60ms.

For the state S = {1, 3}, three file transmission paths are generated for F2, F3,
and F4 for program 1.  These file transmission paths and the real paths generated
from them are shown in Fig. 4.  With these real paths, the computed response time
of program 1 is 140ms.
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Fig. 2.  The distributed computer system with file size and link capacity specified.

Fig. 3.  The path list and real path list for S = {3}.

Fig. 4.  The path list and real path list for S = {1, 3}.
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By applying the Transmission Time algorithm to all the FSTs generated for
distributed program 1, we obtain the response time of each FST, as shown in
Fig. 5.  State {i, j} represents the state where both link i and link j have failed
while State {i} represents a failure in link i.  State ∅ indicates that all the links are
working.

Fig. 5.  The response time of each FST for distributed program 1.
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Suppose we set the deadline for distributed program 1 at 100ms.  Then, states
{1} {1, 3} {1, 4} {1, 5} and {1, 4, 5} become failure states; although they are operational,
they fail to meet the execution deadline.  The set of failure states can be collapsed
into one large failure state F; the resulting Markov Chain is shown in Fig. 6.

3.4 Time-Constrained Distributed Program Reliability Evaluation

Once the state space is obtained, the transition probability between states can
be supplied by reliability engineers.  Method 1 describes the process used to compute
TCDPR and TCDSR.

Method 1: TCDPR and TCDSR Analysis
Step 1: Generate the FSTs of the evaluated distributed program.
Step 2: Use the Transmission Time algorithm to evaluate the execution time of each

FST.
Step 3: Map each FST into the corresponding Markov state and merge all failure

FSTs into one failure state.
Step 4: Assign a transition probability ri (or failure probability) to each transition.
Step 5: Generate the transition probability matrix P.
Step 6: Analyze the resulting Markov model to find the reliability, mean time to

failure, etc.

Fig. 6.  The Markov model for distributed program 1 in Fig. 1.
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In the following, we will present the complete computation of the TCDPR of
distributed program 1 from the last section (Fig. 2).

Example: Compute the TCDPR1 of the DCS shown in Fig. 2 without a repair
mechanism.

Applying Method 1, we obtain the Markov model shown in Fig. 6.  Assume
that the failure probabilities associated with the set of communication links e1, e2,
…, e5 in the DCS of Fig. 2 is ρ1, ρ2, …, ρ5, where ρi = λi∆t (i = 1, 2, …, 5).  For
the purposes of this example, we set the transition probability as λ1∆t = λ2∆t = …
= λ5∆t = 0.01.  The reliability parameters λj are assumed to be provided by r
eliability engineers.  The resulting transition matrix P is shown in Table 1.

Table 1.  The transition probability matrix P for the resulting Markov Chain.

{0} {2} {3} {4} {5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} {2,4,5} {3,4,5} F

{0 } .95 .01 .01 .01 .01 0 0 0 0 0 0 0 0 .01

{2 } 0 .96 0 0 0 .01 .01 .01 0 0 0 0 0 .01

{3} 0 0 .96 0 0 .01 0 0 .01 .01 0 0 0 .01

{4} 0 0 0 .96 0 0 .01 0 .01 0 .01 0 0 .01

{5 } 0 0 0 0 .96 0 0 .01 0 .01 .01 0 0 .01

{2,3 } 0 0 0 0 0 .97 0 0 0 0 0 0 0 .03

{2,4 } 0 0 0 0 0 0 .97 0 0 0 0 .01 0 .02

{2,5 } 0 0 0 0 0 0 0 .97 0 0 0 .01 0 .02

{3,4 } 0 0 0 0 0 0 0 0 .97 0 0 0 .01 .02

{3,5 } 0 0 0 0 0 0 0 0 0 .97 0 0 .01 .02

{4,5 } 0 0 0 0 0 0 0 0 0 0 .97 .01 .01 .01

{2,4,5} 0 0 0 0 0 0 0 0 0 0 0 .98 0 .02

{3,4,5} 0 0 0 0 0 0 0 0 0 0 0 0 .98 .02

F 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The 14-state Markov chain consists of one absorbing state and 13 transient
states.  The inverse of the fundamental matrix (I-Q) is shown in Table 2, and the
fundamental matrix M [12] is shown in Table 3.

Fig. 7 shows reliability as a function of time after computation; the reliability
of failure only and failure-repair cases is also shown in Fig. 7.

In Table 4, The DCS uses about 70 time units in transient states (starting in
a state where all the communication links are good before entering failure state F).
Hence, when it starts under perfect conditions, the mean time to failure (MTTF)
is 70.00001 time units; when it starts at state {2} (link 2 failed), it is 58.33334 time
units, and so on.
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Table 2.  The inverse of the fundamental matrix (I-Q).

0.05 -0.01 -0.01 -0.01 -0.01 0 0 0 0 0 0 0 0

0 0.04 0 0 0 -0.01 -0.01 -0.01 0 0 0 0 0

0 0 0.04 0 0 -0.01 0 0 -0.01 -0.01 0 0 0

0 0 0 0.04 0 0 -0.01 0 -0.01 0 -0.01 0 0

0 0 0 0 0.04 0 0 -0.01 0 -0.01 -0.01 0 0

0 0 0 0 0 0.03 0 0 0 0 0 0 0

0 0 0 0 0 0 0.03 0 0 0 0 -0.01 0

0 0 0 0 0 0 0 0.03 0 0 0 -0.01 0

0 0 0 0 0 0 0 0 0.03 0 0 0 -0.01

0 0 0 0 0 0 0 0 0 0.03 0 0 -0.01

0 0 0 0 0 0 0 0 0 0 0.03 -0.01 -0.01

0 0 0 0 0 0 0 0 0 0 0 0.02 0

0 0 0 0 0 0 0 0 0 0 0 0 0.02

Table 3.  The fundamental matrix M = (I-Q)–1.

20 5 5 5 5 3.3 3.3 3.3 3.3 3.3 3.3 5 5

0 25 0 0 0 8.3 8.3 8.3 0 0 0 8.3 0

0 0 25 0 0 8.3 0 0 8.3 8.3 0 0 8.3

0 0 0 25 0 0 8.3 0 8.3 0 8.3 8.3 8.3

0 0 0 0 25 0 0 8.3 0 8.3 8.3 8.3 8.3

0 0 0 0 0 33.3 0 0 0 0 0 0 0

0 0 0 0 0 0 33.3 0 0 0 0 16.6 0

0 0 0 0 0 0 0 33.3 0 0 0 16.6 0

0 0 0 0 0 0 0 0 33.3 0 0 0 16.6

0 0 0 0 0 0 0 0 0 33.3 0 0 16.6

0 0 0 0 0 0 0 0 0 0 33.3 16.6 16.6

0 0 0 0 0 0 0 0 0 0 0 50 0

0 0 0 0 0 0 0 0 0 0 0 0 50

To compute the TCDSR, one needs to generate FSFs instead of FSTs.  The
concept of generating FSFs was introduced in [1].  Once all the FSFs are obtained,
the TCDSR can be computed using Method 1.
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Table 4.  MTTF for each state.

start state time unit

state    ∅ 70.00001

state   {2} 58.33334

state   {3} 58.33334

state   {4} 66.66669

state   {5} 66.66669

state {2,3} 33.33337

state {2,4} 50.00007

state {2,5} 50.00007

state {3,4} 50.00007

state {3,5} 50.00007

state {4,5} 66.66669

state {2,4,5} 50.00005

state {3,4,5} 50.00005

Fig. 7.  Reliability as a function of time.
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4. DYNAMIC RELIABILITY PRESERVING REDUCTIONS

In this section, we will propose dynamic reliability-preserving reduction tech-
niques to reduce the size of graph G and, therefore, reduce the state space of the
associated Markov process model.  These reduction techniques are listed below.

1) Degree-1 Reduction

Degree-1 reduction is used to eliminate nodes that contain no data files needed
by the program under consideration.

Definition 3: Let xi,j be an edge in G such that degree(xi) = 1 and FAi ∩ FN = ∅
and PAi ∩ PN = ∅.  Then, G’ is obtained by deleting xi,j and xi.

2) Series Reduction

Like degree-1 reduction, series reduction can be used for real time DCS
reliability problems.  There are some differences between using series reduction in
DCS reliability problems and using it in real time DCS reliability problems.  Series
reduction for the real time DCS reliability problems can be defined as follows.

Definition 4: Let xi,j and xi,k be two edges in G such that degree(xi) = 2 and FAi
∩ FN = ∅ and PAi ∩ PN = ∅.  Then G’ is obtained by replacing xi,j and xi,k with
a single edge xj,k such that λi,k = λi,j + λi,k, where λi,j and λi,k are the failure rates
of edges xi,j and xi,k, respectively.  The capacity of edge xj,k, cj,k = Min(ci,j, ci,k), where
ci,j and ci,k are the capacities of edges xi,j and xi,k respectively.

In other words, if degree (xi) = 2 and node xi contains no needed data files
or programs, then we can apply series reduction on G.

3) Degree-2 Reduction

In dynamic reliability analysis, degree-2 reduction can be applied to reducible
nodes for real time reliability analysis.  Suppose node xi is a reducible node.  Then,
one can apply series reduction to node xi and move data files and programs within
node xi to one of its adjacent nodes, xj or xk.  This reduction case is called degree-
2 reduction.

By using dynamic reliability preserving reduction, Method 1 proposed in section
3.4 can be modified to reduce the state space.  Method 2 presents the complete
approach.

Method 2: TCDPR and TCDSR analysis for the DCS based on Reliability-Preserving
Reductions.

Step 1: Perform degree-1 reduction, series reduction, and degree-2 reduction on
DCS graph G to obtain the reduced graph G’.

Step 2: Generate the FSTs of the evaluated distributed program.
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Step 3: Use the Transmission Time algorithm to evaluate the execution time of each
FST.

Step 4: Map each FST into the corresponding Markov state and merge all failure
FSTs into one failure state.

Step 5: Assign a transition probability λi (or failure probability) to each transition.
Step 6: Generate the transition probability matrix P.
Step 7: Analyze the resulting Markov model to find the reliability, mean time to

failure, etc.

Example

To compute the TCDPR1 of the DCS shown in Fig. 1, we apply Method 2.
The DCS graph G can be reduced by using series reduction on e4 and e5.  Let the
edge generated by series reduction be e45, with ρ4,5 = ρ4 + ρ5.  The resulting
Markov process is shown in Fig. 8, where state {4|5} indicates that either link 4 or
link 5 has failed.

Fig. 8.  The Markov chain for computing TCDPR1 after reduction of the DCS in Fig. 1.

Assume that the failure probabilities associated with the set of communication
links e1, e2, …, e5 in the DCS of Fig. 2 is ρ1, ρ2, …, ρ5.  To present an example,
we set λ1∆t = λ2∆t = … = λ5∆t = 0.01.  The resulting transition matrix P is shown
in Table 5.
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Table 5.  The transition matrix for the resulting Markov process.

states {0} {2} {3} {4|5} {2,3} {2,4|5} {3,4|5} F

∅ .95 .01 .01 .02 0 0 0 .01

{2} 0 .96 0 0 .01 .02 0 .01

{3} 0 0 .96 0 .01 0 .02 .01

{4|5} 0 0 0 .97 0 .01 .01 .01

{2,3} 0 0 0 0 .97 0 0 .03

{2,4|5} 0 0 0 0 0 .98 0 .02

{4|5} 0 0 0 0 0 0 .98 .02

F 0 0 0 0 0 0 0 1

The 8-state Markov chain consists of one absorbing state and 7 transient
states.  The inverse of the fundamental matrix and the fundamental matrix is shown
in Tables 6 and 7, respectively.

Table 6.  The inverse of the fundamental matrix of the resulting Markov process.

0.05 -0.01 -0.01 -0.02 0 0 0

0 0.04 0 0 -0.01 -0.02 0

0 0 0.04 0 -0.01 0 -0.02

0 0 0 0.03 0 -0.01 -0.01

0 0 0 0 0.03 0 0

0 0 0 0 0 0.02 0

0 0 0 0 0 0 0.02

Table 7.  The fundamental matrix of the resulting Markov process.

20 5 5 13.3 3.3 11.6 11.6

0 25 0 0 8.3 25 0

0 0 25 0 8.3 0 25

0 0 0 33.3 0 16.6 16.6

0 0 0 0 33.3 0 0

0 0 0 0 0 50 0

0 0 0 0 0 0 50
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Fig. 9.  Reliability as a function of time using Method 2.

Table 8.  MTTF for each state.

start  state time unit

state ∅ 70.00003

state {2} 58.33334

state {3} 58.33334

state {4|5} 33.33337

state {2,3} 66.66676

state {2,4|5} 50.00005

state {3,4|5} 50.00005

5. CONCLUSIONS

Reliability analysis is an important issue in designing distributed real-time
systems for various applications.  If an appropriate reliability index is not available
to guide the design of a system, the performance of the system may be unable to
meet the reliability requirements of its particular application domain, and modifying
the system to the desired level of reliability may be costly.  Systems that do not meet

Fig. 9 and Table 8 show reliability as a function of time and MTTF.  The
reliability obtained from Method 2 is exactly the same as that obtained from Method
1 (in Fig. 6).  Also, the MTTF starts at state .
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appropriate reliability standards can result in loss of business or even life-threatening
catastrophes in applications such as nuclear power plant control.  Current models
for evaluation of distributed program reliability do not capture the effect of real-
time constraints.  In this paper, we have proposed an approach to analyzing the
reliability performance of distributed programs that addresses the issue of real-time
constraints.  Examples have been given in which reliability is computed as a function
of time and the MTTF of the evaluated distributed program.
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