
Contributed article

A second-order learning algorithm for multilayer networks based on
block Hessian matrix

Yi-Jen Wang*, Chin-Teng Lin
Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan, ROC

Received 18 November 1996; revised 19 June 1998; accepted 19 June 1998

Abstract

This article proposes a new second-order learning algorithm for training the multilayer perceptron (MLP) networks. The proposed
algorithm is a revised Newton’s method. A forward–backward propagation scheme is first proposed for network computation of the Hessian
matrix, H, of the output error function of the MLP. A block Hessian matrix,H b, is then defined to approximate and simplifyH. Several
lemmas and theorems are proved to uncover the important properties ofH andH b, and verify the good approximation ofH b to H; H b

preserves the major properties ofH. The theoretic analysis leads to the development of an efficient way for computing the inverse ofH b

recursively. In the proposed second-order learning algorithm, the least squares estimation technique is adopted to further lessen the local
minimum problems. The proposed algorithm overcomes not only the drawbacks of the standard backpropagation algorithm (i.e. slow
asymptotic convergence rate, bad controllability of convergence accuracy, local minimum problems, and high sensitivity to learning
constant), but also the shortcomings of normal Newton’s method used on the MLP, such as the lack of network implementation ofH, ill
representability of the diagonal terms ofH, the heavy computation load of the inverse ofH, and the requirement of a good initial estimate of
the solution (weights). Several example problems are used to demonstrate the efficiency of the proposed learning algorithm. Extensive
performance (convergence rate and accuracy) comparisons of the proposed algorithm with other learning schemes (including the standard
backpropagation algorithm) are also made.q 1998 Elsevier Science Ltd. All rights reserved.

Keywords:Multilayer perceptrons; Hessian matrix; Forward–backward propagation; Newton’s method; Least squares estimation

1. Introduction

Gradient-descent-based backpropagation (BP) learning
algorithm has been widely used for training multilayer per-
ceptron (MLP) networks (Haykin, 1994; Lin and Lee,
1996). However, several drawbacks of the BP learning
method have been observed; its convergence speed is
usually too low, its convergence accuracy is hard to control,
it is easily stuck in bad local minima, and the choice of
proper learning constant largely depends on trial and
error. Further numerical optimization theory (Luenberger,
1984) can be applied to overcome these drawbacks. One
common approach is to upgrade the normal BP, which is
a first-order learning algorithm, to a second-order one, the
so-called Newton’s method. Since Newton’s method is an
optimization algorithm with quadratic convergence speed
(Luenberger, 1984), it can be used to improve the learning
speed and accuracy of the normal BP. Also, since Newton’s

method is less sensitive to the learning constant, the choice
of a proper learning constant is not difficult. However,
several shortcomings of Newton’s method, as mentioned
later, make its use for training the MLP quite limited.
This article aims at conquering these shortcomings, and
develops an efficient second-order learning algorithm for
the MLP.

There are several problems in using Newton’s method to
minimize the output error function of the MLP (Haykin,
1994; Lin and Lee, 1996).

1. Newton’s method needs to compute the second-order
derivatives of the output error function with respect to
the network weights, i.e. the Hessian matrix. Since the
computation of the Hessian matrix needs global informa-
tion, Newton’s method is not suitable for network com-
putation. Besides, the large computation load of the
Hessian matrix hinders its practical use in training MLPs.

2. One common strategy to simplifying the computation of
Hessian matrix is to approximate the whole matrix by its
diagonal terms only (we call it the diagonal Hessian
matrix) (Battiti, 1992). This article will show that the

* Corresponding author. Tel: +886 3 5712121 ext 54315; Fax: +886 3
5715998; e-mail: ctlin@fnn.cn.nctu.edu.tw

0893–6080/98/$ - see front matterq 1998 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(98)00091-4

Neural Networks 11 (1998) 1607–1622PERGAMON

Neural
Networks

diagonal Hessian matrix does not maintain the major
properties of the true Hessian matrix of a MLP, and
thus cannot be used to improve the convergence speed
and accuracy of BP learning efficiently.

3. In using Newton’s method for minimizing the output
error of a MLP, each iteration requires the computation
of the inverse of Hessian matrix, so the method is
expensive in terms of both storage and computational
requirements.

4. In order to converge, Newton’s method requires a good
initial estimate of the solution. This further restricts the
practical usability of Newton’s method on the MLP.

From these points, we know that standard Newton’s
method is not a practical technique for training the MLP.
Although several alternatives or revised methods have been
studied such as those based on conjugate-direction method
and quasi-Newton method (Ricotti et al., 1988; Becker and
LeCun, 1989; Makram-Ebeid et al., 1989; Bello, 1992), the
aforementioned problems have not been seriously addressed
and most problems still exist. Especially, in the existing
second-order learning approaches, the computation-
expensive nonlinear programming techniques in the
numerical optimization theory are usually adopted, and
the special properties of the Hessian matrix of the MLP
are not taken into account to reduce the computation load.

In this article, we shall propose a novel second-order
learning algorithm for the MLP, aimed at solving the four
drawbacks of Newton’s method. We first propose an order-
based-derivative scheme (Werbos, 1990; Piche, 1994) to
derive a network computation method for computing the
Hessian matrix of a given MLP network. This can be viewed
as a network implementation of the Hessian matrix. With
this scheme, the computation of the Hessian matrix of a
MLP can be performed as signals flow forward and back-
ward in the MLP network. This solves the first drawback of
Newton’s method mentioned previously. From the proposed
network computation method of the Hessian matrix, we can
analyze the important properties of the Hessian matrix of the
MLP easily; e.g. the Hessian matrix of a MLP is always a
singular matrix. From such analysis, we clearly understand
why the diagonal Hessian matrix is not a good approxima-
tion of the original Hessian matrix. This theoretically
explains why the existing second-order learning algorithms
based on the diagonal Hessian matrix do not display the
expected advantages over Newton’s method as mentioned
in the second point of the last paragraph. To overcome this
drawback, and avoid the large computation load of the
whole Hessian matrix, we propose a better approximation
of the Hessian matrix, called the block-diagonal Hessian
matrix or block Hessian matrix,H b, for short. The block
Hessian matrix keeps the singularity of the original Hessian
matrix. Also, we show that the block Hessian matrix of a
MLP is linearly dependent with the matrix formed by the
gradients of the output error functionE of this MLP, =E.
This dependency property makes the equation,=E ¼ 0, the

weight space have solutions even thoughH b is singular,
when we apply the block Hessian matrix (H b) for second-
order approximation of theE function. Hence, like the
original error function, there also exist extreme points for
the error function which is second-order approximated by
the block Hessian matrix.

Making use of the singularity and dependency property of
the block Hessian matrix, we arrive at an efficient algorithm
for solving the equation=E ¼ 0. This algorithm does not
need the computation of the inverse of the block Hessian
matrix explicitly, and thus solves the third drawback of
Newton’s method mentioned earlier. In the proposed algo-
rithm, we also apply the least squares estimation technique
(Goodwin and Sin, 1984; Stefanos and Anastassioy, 1988)
to modify the original Newton’s method. This further
improves the convergence speed and accuracy of learning.
Finally, since Newton’s method only guarantees finding the
extreme points of error functions (i.e. the points that result
in =E¼ 0), which may be minimum or maximum points, we
develop three protection methods in this article to prevent
the proposed second-order learning algorithm from conver-
ging in wrong directions. Among these three protection
methods, two methods try to change the gradient of the
error surface in the transient region, and keep the gradients
in the steady states unchanged. These protection methods
make Newton’s method insensitive to initial states, and
solve the fourth drawback of Newton’s method.

The rest of this article is organized as follows. Section 2
derives a forward–backward propagation scheme for
computing the Hessian matrixH of the MLP in the form
of network operations. This section also defines the block
Hessian matrixH b, and shows the singularity ofH andH b,
and the linear dependency ofH b and=E. In Section 3, the
special properties of the block Hessian matrix are adopted to
develop an efficient algorithm that greatly reduces the com-
putation load of the inverse Hessian matrix. This section
also uses the least squares estimation technique to increase
learning speed and accuracy. Extensive computer simula-
tions and performance comparisons with normal BP and
diagonal Hessian matrix approaches are made in Section
4. In this section, three protection methods are given to
further improve the proposed second-order learning
algorithm. Conclusion and discussion are presented in
Section 5.

2. Block Hessian matrix of multilayer perceptrons

2.1. Network computation of Hessian matrix based on
order-based derivative

The gradient-descent-based BP learning method was
widely used for training the MLP. Although the gradient-
descent (or steepest-descent) method is one of the simplest
optimization techniques, it is not a very effective one.
Numerical optimization theory provides a rich and robust

1608 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

set of techniques which can be applied to neural networks to
improve learning rates. The gradient-descent method con-
siders only the first-order derivative of an error function. It
is helpful to take into account higher-order derivatives.
Using Taylor’s series expansion on the error function
E(w) of a MLP around the current pointw0 in the weight
space, we have

E(w) ¼ E(w0) þ (w ¹ w0)T=E(w0)

þ
1
2
(w ¹ w0)TH(w0)(w ¹ w0) þ …, ð1Þ

whereH(w0) is called Hessian matrix and is the second-
order derivative evaluated atw0:

H(w0) ; =2E(w)lw ¼ w0
or H ij ¼

]2E
]wi]wj

(2)

To find the minimum ofE(w), we set its gradient to zero:

=E(w) ¼ =E(w0) þ H(w0)(w ¹ w0) þ … ¼ 0 (3)

If we ignore the third- and higher-order terms, we obtain

w ¼ w0 ¹ H ¹ 1(w0)=E(w0) (4)

or usingk to indicate thekth updating step, we obtain

w(kþ 1) ¼ w(k) ¹ H ¹ 1(w(k))=E(w(k)) (5)

This is called Newton’s method of weight updating.
Newton’s method uses the second-order derivative in
addition to the gradient to determine the next updating
direction and step size. It can converge quadratically when
close to a solution of a convex function. However, there are
several drawbacks for Newton’s method as mentioned in the
last section. In this subsection, we shall derive a network
computation scheme with forward–backward signal propa-
gation to simplify the computation of Hessian matrix of the
MLP. We shall also study the important properties of
Hessian matrix of the MLP, and then propose an approxi-
mated matrix that keeps the important properties of the
original one.

Consider a MLP network withL layers. For notation
clarity, let #l denote the number of nodes in thelth layer
of the MLP for l ¼ 1,2,…,L. The input of thejth node in the
(l þ 1)th layer is represented by net(l þ 1)

j , and the output by

z(l þ 1)
j ; f (net(l þ 1)

j) ; f (
∑#l

k¼ 1
w(l)

jk z(l)
k) (6)

wheref(·) is an activation function, andw(l)
jk is the connection

weight between thekth node in layerl and thejth node in
layer l þ 1. The output error function of the MLP is defined
by

E¼
1
2

∑]L

j ¼ 1
(z(L)

j ¹ dj)
2 (7)

wherez(L)
j is thejth network output for the current input and

dj is the corresponding desired output.

We shall then use order-based derivative (Werbos, 1990;
Piche, 1994) to derive the Hessian matrix ofE with respect
to connection weightsw(l)

ji andw(p)
mn according to Eq. (2). We

shall see that the use of order-based derivative can lead to a
network implementation of the Hessian matrix; i.e. the com-
putation of the Hessian matrix can be proceeded through the
forward and backward data flow in a MLP network. Order-
based derivative is defined as the deviation of a function,
E(z1,z2,…,zn), with respect to the deviations of a set of
variables, {z1,z2,…,zn}, where this set of variables form a
order set; i.e. any variable,zj, is a function of variables
{ z1,z2,…,zj¹1}. Due to the nest relationship in this set of
variables, the total derivative ofE(z1,z2,…,zn) with respect
to zj, j ¼ 1,2,…,n ¹ 1 can be obtained recursively, based on
the order relationship of the set of dependent variables,
{ z1,z2,…,zn}. The approach to such a recursive computation
is called an order-based-derivative scheme. The reader is
referred to (Piche, 1994) for a detailed example. According
to the types of ordering, two kinds of order-based deriva-
tives, forward and backward, can be distinguished. The con-
cept of an order-based derivative is similar to that of a
partial derivative formed by chain rule with ordinary deri-
vatives. However, the former uses more precise notation to
distinguish the value and ordering of a derivative, which are
easily mixed up in the notation of partial derivative. Hence,
as compared with using chain rule to derive first-order deri-
vatives in a backpropagation algorithm, the concept of
order-based derivative is more suitable for deriving com-
plex and higher-order derivatives, such as the second-order
derivatives in the Hessian matrix of a MLP.

At first, we use the backward scheme to derive the first-
order order-based derivative ofE with respect towji:

]þ E

]w(l)
ji

¼
]z(l þ 1)

j

]w(l)
ji

]þ E

]z(l þ 1)
j

¼ (f 9(net(l þ 1)
j)z(l)

i)
]þ E

]z(l þ 1)
j

(8)

wherel ¼ 1,2,…,L ¹ 1, and(]þ E)=(]z(l þ 1)
j) is computed by

the following backpropagation rule

]þ E

]jz(s) ¼
]E

]z(s)
j

þ
∑#(sþ 1)

k¼ 1

]z(sþ 1)
k

]z(s)
j

]þ E

]z(sþ 1)
k

(9)

where s ¼ L,…,(l þ 1) and j ¼ 1,…,#s. Notice that
(]z(sþ 1)

k)=(]z(s)
j) ¼ 0 if s ¼ L, and (]E)/(]z(s)

j) ¼ 0 if s Þ L.
Next, we find the second-order order-based derivative of

E with respect tow(l)
ji and another connection weightw(p)

mn by
computing the order-based derivative of Eq. (8) with respect
to w(p)

mn, assumingp # l:

]þ

]w(p)
mn

]þ

]w(l)
ji

E¼
]þ

]w(p)
mn

(f 9(net(l þ 1)
j)z(l)

i)
]þ E

]z(l þ 1)
j

þ
]þ

]w(p)
mn

]þ E

]z(l þ 1)
j

 !
·f9(net(l þ 1)

j)·z(l)i ð10Þ

where the term[(]þ)=(]w(p)
mn)][(]þ E)=(]z(l þ 1)

j)] can be com-
puted by the order-based derivative of Eq. (9) and has the

1609Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

following backward form

]þ

]w(p)
mn

]þ E

]z(s)
j

 !
¼

∑#(sþ 1)

k¼ 1

]z(sþ 1)
k

]z(s)
j

]þ

]w(p)
mn

]þ E

]z(sþ 1)
k

 !

þ
∑#(sþ 1)

k¼ 1

]þ

]w(p)
mn

(f 9(net(sþ 1)
k))w(s)

kj

]þ E

]z(sþ 1)
k

ð11Þ

wheres ¼ L ¹ 1,…,(l þ 1) and j ¼ 1,…,#s. Notice that
the initial state of Eq. (11) at s ¼ L is
[(]þ)=(]w(p)

mn)][(]þ E)=(]z(L)
j)] ¼ [(]þ)=(]w(p)

mn)](z
(L)
j).

The first term of the right-hand side (RHS) of Eq. (11) is
the same as the formula in the normal backpropagation
algorithm, whereas the second term can be viewed as the
bias term of thejth node in thesth layer of a MLP. If the
differential of the activation functionf with respect to its net
input can be expressed as a function of its outputz(s)

j , then
calculating the bias term in Eq. (11) needs only computation
of the order-based derivative[(]þ)=(]w(p))]z(s)

j . For
example, if f (net) ¼ [2=(1þ exp(¹ l·net))] ¹ 1¼ zj (i.e.
sigmoidal function), then f 9(net) ¼ (l=2)(1¹ z2

j), and
[(]þ)=(]w)]f 9(net) ¼ ¹ lzj [(]þ zj)=(]w)]. Hence to compute
Eq. (11) in backward direction, we need to compute
[(]þ)=(]w(p)

mn)]z
(s)
j , for s ¼ L, L ¹ 1,…, p þ 1. We shall

then derive an algorithm for computing the bias term in
Eq. (11) in the form of network operations like the
backpropagation algorithm. Since this algorithm performs
forward propagation on the network, it is called the
forward propagation rule. This forward propagation rule
can also be used to compute the first term of the RHS of
Eq. (10).

At first, we have

]þ z(s)
j

]w(p)
mn

¼
∑#(s¹ 1)

k¼ 1

]z(s)
j

]z(s¹ 1)
k

]þ z(s¹ 1)
k

]w(p)
mn

þ
]z(s)

j

]w(p)
mn

¼
∑#(s¹ 1)

k¼ 1
wjkf 9(net(s)j)

]þ z(s¹ 1)
k

]w(p)
mn

þ
]z(s)

j

]w(p)
mn

ð12Þ

wherep þ 1 , s# L. Notice that ifs¼ p þ 1 then Eq. (12)
becomes

]þ z(pþ 1)
j

]w(p)
mn

¼
]z(pþ 1)

j

]w(p)
mn

¼
z(p)
n m¼ j

0 mÞ j,

(
(13)

and if s Þ p þ 1 then the term,(]z(s)
j)=(]w(p)

mn) in Eq. (12) is
zero.

The formula in Eq. (12) can be represented in a network-
operation form to simplify the computation. Consider a
node in a MLP whose output isz(s)

j . The order-based deri-
vative of this node’s output with respect to the connection
weight w(p)

nm in layer p, i.e. (]þ z(s)
j)=(]w(p)

mn) , is equal to the
output activation value of the network shown in Fig. 1, when
we let the inputs, net(pþ 1)

m ¼ 1 and net(pþ 1)
j ¼ 0, j Þ m,

forward propagate through the network. The network
shown in Fig. 1 has the same topology as the original
MLP whose Hessian matrix is to be computed, whereas
their node functions are different as indicated in Fig. 1.
From Eq. (12) and Fig. 1, we find that each forward
propagation starting from themth node of the
ðpþ 1Þth layer can compute all the terms of(]z(s)

j)=(]w(p)
mn),

for n ¼ 1,…,#p, wherep þ 1 # s # L. Moreover, for a
specific z(s)

j , the vector [(]þ z(s)
j)=(]w(p)

mn)]n¼ 1, …, #p is
proportional to [z(p)

n]n¼ 1,…, #p. The forward propagation
rule in Eq. (12) can be used to compute the first term of

Fig. 1. Network for computing the order-based derivatives(]þ z(s)
j)=(]w(p)

mn) using the forward propagation rule, where each node performs the operation,(,
which computes the product net·f9(net), where net is the net input of the node.

1610 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

the RHS of Eq. (10) and the second term of the RHS of
Eq. (11).

The computations of Eqs. (10)–(12) are summarized as
follows. In computing the element of Hessian matrix
(]þ]þ E)=(]w(p)

mn]w(l)
ji), we perform one forward propagation

on the network in Fig. 1 starting from themth node in layer
pþ 1 to obtain all the bias terms in Eq. (11) and the first
term of the RHS of Eq. (10). Then according to Eq. (11) and
then Eq. (10), we perform one backward propagation pro-
cess on the original network to find all the terms in the
column of the Hessian matrix right below the term of
(]þ]þ E)=(]w(p)

mn]w(p)
ji) ; i.e. the terms(]þ]þ E)=(]w(p)

mn]w(l)
ji)

for all l $ p. Repeat this process until all such terms in all
the columns of the Hessian matrix are obtained. Finally, we
can apply the symmetric property and the column propor-
tional property of the Hessian matrix of the MLP shown in
the following lemma to get all the other terms and obtain the
complete Hessian matrix. For a MLP withN nodes, its
whole Hessian matrix can be obtained after only (N ¹ k1)
cycles of forward and backward propagation, wherek1 is the
number of input nodes. The forward–backward propagation
corresponding to thepth layer will produce #(p þ 1)·#p
columns in the Hessian matrix, in which #(p þ 1) columns
are linearly independent (as being shown in the next sub-
section). Moreover, the network for a forward–backward
propagation will be getting smaller; i.e. the computation
load is lessening as the forward–backward propagation
process proceeds.

As an example, in computing the Hessian matrix of a
four-layer fully-connected MLP with structureN5,3,3,1

(meaning that the node number of each layer is 5, 3, 3, 1,
respectively, from the input layer), the sizes of the networks
to be propagated and the obtained columns of Hessian
matrix for each cycle of forward–backward propagation
are listed in Table 1. Correspondingly, the form of the

resultant Hessian matrix after the seven cycles of
forward–backward propagation is shown in Fig. 2. In
Fig. 2, columnsa1, a2, a3, b1, b2, b3, andc1 correspond to
the first, second,…, and seventh cycle of forward–
backward propagation, respectively. This correspondence
is also shown in Table 1. More clearly, the first cycle of
forward–backward propagation produces the five
columns of Hessian matrix indicated bya1 in Fig. 2.
These five columns consist of the order-based
derivatives, (]þ]þ E)=(]w(1)

1n]w(p)
ji), for n ¼ 1,2,…,5,

where {w(p)
ji } ¼ { w(1)

11 , …,w(1)
35 ,w(2)

11 , …,w(2)
33 ,w(3)

11 ,w(3)
12 ,w(3)

13}
i.e. those weights shown on the right-hand side of the
Hessian matrix in Fig. 2. Similarly, the second and third
cycles of forward–backward propagation produce those
columns indicated bya2 and a3 in Fig. 2, respectively,
each set including five columns. They consist of the
order-based derivatives, (]þ]þ E)=(]w(1)

2n]w(p)
ji) and

]þ]þ E=]w(1)
3n]w(p)

ji , for n ¼ 1,2,…,5. The fourth cycle of
forward–backward propagation produces the three columns
of Hessian matrix indicated byb1 in Fig. 2. These three
columns consist of the order-based derivatives,
(]þ]þ E)=(]w(2)

1k]w(p)
ji) , for k ¼ 1,2,3, where

{ w(p)
ji } ¼ { w(1)

11 , …,w(2)
33 ,w(3)

11 , w(3)
12 , w(3)

13} ,i.e. those weights
shown on the corresponding right-hand side of the
Hessian matrix in Fig. 2. Similarly, the fifth and sixth
cycles of forward–backward propagation produce those
columns indicated byb2 and b3 in Fig. 2, respectively,
each set including three columns. They consist of the
order-based derivatives, (]þ]þ E)=(]w(2)

2k]w(p)
ji) and

(]þ]þ E)=(]w(2)
3k]w(p)

ji), for k ¼ 1,2,3. Finally, the seventh
cycle of forward–backward propagation produces the
three columns of Hessian matrix indicated byc1 in Fig. 2.
These three columns consist of the order-based derivatives,
(]þ]þ E)=(]w(3)

1k]w(p)
ji), for k ¼ 1,2,3, where

{ w(p)
ji } ¼ { w(3)

11 , w(3)
12 ,w(3)

13}. Hence, in Fig. 2, all the elements
in the columns indicated bya1, a2, a3, b1, b2, b3, andc1 are
computed by seven cycles of forward–backward propaga-
tion. The rest of the elements of the Hessian matrix (i.e. the

Table 1
The sizes of the networks to be propagated and the obtained columns of
Hessian matrix for each forward–backward propagation on the MLP,
N5,3,3,1

Time Subnetwork size for
forward–backward propagation

Columns
computed in
Hessian matrix

1st time (1→ 3 → 1) þ (3 ← 3 ← 1) a1: 5 columns
2nd time (1→ 3 → 1) þ (3 ← 3 ← 1) a2: 5 columns
3rd time (1→ 3 → 1) þ (3 ← 3 ← 1) a3: 5 columns
4th time (1→ 1) þ (3 ← 1) b1: 3 columns
5th time (1→ 1) þ (3 ← 1) b2: 3 columns
6th time (1→ 1) þ (3 ← 1) b3: 3 columns
7th time (1)þ (1) c1: 3 columns

Here, considering the first forward–backward propagation for example,
(1 → 3 → 1) þ (3 ← 3 ← 1) means the signals flow forward from a
layer-two node to the three layer-three nodes, and to the single output
node in layer four, and then the signals flow backward from the single
output node to the three layer-three nodes, and finally to the three layer-
two nodes. The second and third cycles of forward–backward propagation
are performed on similar subnetworks, but they start at a different node in
layer two.

Fig. 2. Form of resultant Hessian matrix after seven times of forward–
backward propagation on the MLP,N5,3,3,1, where m ¼ 1,2,3, n ¼

1,2,…,5, andk ¼ 1,2,3.

1611Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

upper-left empty part in the Hessian matrix shown in Fig. 2)
can be obtained directly from the computed elements by
using the symmetric property of Hessian matrix shown in
Section 2.2.

2.2. Block Hessian matrix and its properties

In this subsection, we shall study some properties of the
Hessian matrix of the MLP based on the order-based-
derivative formulas derived in the last subsection. Consider
a MLP network withL layers, each layer containing an
extra node (called ‘threshold node’) with fixed activation
value ¹ 1 to provide the threshold value for each node in
the next layer. At first, we show that the Hessian matrix
derived from the order-based-derivative scheme in the last
subsection keeps the symmetric property of a Hessian
matrix.

Lemma 1. The matrix whose elements are given in Eq. (10)
is symmetric, i.e.

]þ

]w(p)
mn

]þ

]w(l)
ji

E(z(L)) ¼
]þ

]w(l)
ji

]þ

]w(p)
mn

E(z(L)) (14)

wherez(L) is the output vector of the MLP.

Proof. Let Ẽ(w (1),…,w (L)) represent the error function
EðzðLÞÞ expressed in terms of connection weight vectors,
w(s) ; [w(s)

ji], for s ¼ 1,…,L. According to the concept of
order-based derivative, we have

]þ E(z(L))
]w(l)

ji

¼
]

]w(l)
ji

Ẽ(w(1),…,w(L)) (15)

and

]þ

]w(p)
mn

]þ

]w(l)
ji

E(z(L)) ¼
]2

]w(p)
mn]w(l)

ji

Ẽ(w(1), …,w(L)) (16)

Similarly, we can obtain

]þ

]w(l)
ji

]þ

]w(p)
mn

E(z(L)) ¼
]2

]w(l)
ji]w(p)

mn
Ẽ(w(1), …,w(L)) (17)

Since the derivative ordering is changeable for partial
derivative,Eq. (16) is equal to Eq. (17), i.e.

]þ

]w(p)
mn

]þ

]w(l)
ji

E(z(L)) ¼
]þ

]w(l)
ji

]þ

]w(p)
mn

E(z(L)) (18)

This completes the proof.
Notice that the change of derivative ordering in Lemma 1

(see Eq. (14) might not be allowed by other forms of
derivatives, e.g.[(]þ =]zi)(]=zj)]E Þ [(]=]zj)(]þ =]zi)]E and
[]þ =(]w(p)

mn)][]þ =(]z(p)
j)]E Þ []þ =(]z(p)

j)][]þ =(]w(p)
mn)]E.

The following theorem shows an important property of
the Hessian matrix of the MLP.

Theorem 1.Consider a MLP network whose error function

is E¼ (1=2)
∑

#L
i ¼ 1(z(L)

i ¹ di)2. Assume the differential of the
node activation function of the MLP can be expressed as a
function of the node output (e.g. assume the activation func-
tion is a sigmoidal function). Then the Hessian matrix ofE
with respect to the connections weights of the MLP is a
singular matrix.

Proof. We shall first show that for a fixedm, we have
[]þ =(]w(1)

mn)][(]þ E)=(]w(l)
ji)] ¼ Dl

ji z
(1)
n , whereDl

ji is a constant
determined by the forward–backward propagation compu-
tation between layer 2 and layerl þ 1. From the forward
propagation rule in Eq. (12), we know that(]þ z(s)

j)=(]w(1)
mn) is

proportional toz(1)
n , and the proportional constant, sayc(s)

j , is
dependent on the node output in concern, i.e.z(s)

j . Hence we
have (]þ z(s)

j)=(]w(1)
mn) ¼ c(s)

j z(1)
n . Considering Eq. (11) for

computing[]þ =(]w(1)
mn)][(]þ E)=(]z(s)

j)], sincef 9(net(sþ 1)
k) is

a function ofz(sþ 1)
k , the second term of the RHS of Eq. (11)

is proportional toz(1)
n . Also, since]þ =]w(1)

mn(]
þ E=]z(L)

j) is
proportional toz(1)

n , the first term of the RHS of Eq. (11)
is also proportional to z(1)

n . Hence the term
]þ =]w(1)

mn(]þ E=]z(s)
j) computed in Eq. (11) is proportional

to z(1)
n . This results in the fact that the second term of the

RHS of Eq. (10) is proportional toz(1)
n , when Eq. (10) is

used to compute the term[]þ =(]w(1)
mn)][(]þ E)=(]w(l)

ji)]. Since
the first term of the RHS of Eq. (10) is also proportional to
z(1)
n , we conclude that

]þ

]w(1)
mn

]þ E

]w(l)
ji

¼ Dl
ji z

(1)
n , (19)

where Dl
ji is a constant determined by the forward–

backward propagation computation between layer 2 and
the jth node of layerl þ 1.

With the same reason as in the above analysis, we can
prove that the next column of the Hessian matrix associated
with the samem has the same property:

]þ

]w(1)
mnþ 1

]þ E

]w(l)
ji

¼ Dl
ji z

(1)
nþ 1 (20)

for all l ¼ 1,…,L ¹ 1 andi,j ¼ 1,…,#l. From Eqs. (19) and
(20), we find that there exist at least two columns in the
Hessian matrix which are linearly dependent, so the Hessian
matrix is singular. This completes the proof.

In the above theorem, we assume there are at least two
input nodes for a MLP. This assumption is always true if a
threshold node is added to each layer of the MLP. Many
existing literatures point out that the computation of the
Hessian matrix of a MLP is quite complex (Becker and
LeCun, 1989; LeCun, 1989), partly because of the large
size of the Hessian matrix, and to the lack of its network
implementation (such as the form we derived earlier). To
simplify the computation, the diagonal terms of the Hessian
matrix were usually used to approximate the whole Hessian
matrix. From the aforementioned analysis, we clearly see
that such approximation is improper, since the singular
property of the true Hessian matrix of a MLP is not

1612 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

preserved by the approximating diagonal Hessian matrix.
This also explains why Newton’s method based on the
diagonal Hessian matrix cannot speed up the weight con-
vergence in MLP learning efficiently (Battiti, 1992). The
network implementation of the Hessian matrix proposed
in the last subsection dose make its computation easier.
To further simplify the computation, we shall next derive
a block-diagonal Hessian matrix or block Hessian matrix,
H b, for short, to approximate the true Hessian matrix,H. In
the block Hessian matrix, we consider only the second-order
order-based derivatives of the error function with respect to
the two weights in the same layer,(]þ]þ E)=(]w(p)

mn]w(p)
ji),

and let the other second-order order-based derivatives to
zero, i.e.(]þ]þ E)=(]w(p)

mn]w(l)
ji) ¼ 0 for p Þ l. This reduces

the computation load of the Hessian matrix greatly. More
importantly, the block Hessian matrix keeps the singularity
property of the true Hessian matrix as shown in the
following.

Consider a MLP with a threshold node in each layer. The
elements of the block Hessian matrix of the MLP are
arranged in the order of layer numbers and indexes of
weights such that the derivatives with respect to the weights
in the same layer flock together in a block lying along the
diagonal of the Hessian matrix, i.e.

H ¼

H(1)
b p p p p

p] p p p

p p H(p)
b p p

p p p] p

p p p p H(L ¹ 1)
b

266666666664

377777777775
,

Hb;

H(1)
b 0 0 0 0

0] 0 0 0

0 0 H(p)
b 0 0

0 0 0] 0

0 0 0 0 H(L ¹ 1)
b

266666666664

377777777775
ð21Þ

whereH(p)
b with dimension (#(p þ 1) ¹ 1)(#p) 3 (#(p þ 1)

¹ 1)(#p) is the block corresponding to thepth layer of the
MLP. Notice that ‘¹ 1’ in the term (#(p þ 1) ¹ 1) is due to
the threshold node we assumed in each layer except the
output layer. Hence for the output layer, ‘¹ 1’ should be
taken out; i.e. the dimension ofH(L ¹ 1)

b is (#L)(#(L ¹ 1)) 3
(#L)(#(L ¹ 1)). This notation simplification will also be
used throughout the following development.

The following theorem shows that the block Hessian
matrix of a MLP is singular.

Theorem 2. Under the same assumptions in Theorem 1,
each submatrixH(p)

b of the block Hessian matrixH b is a
singular matrix withrank(H(p)

b)# #(p þ 1) ¹ 1.

Proof. As we noted in the above thatH(p)
b is a

ð#ðpþ 1Þ ¹ 1Þ(#p) 3 (#(p þ 1) ¹ 1)(#p) matrix. Each
element ofH(p)

b is computed by Eq. (10). To obtain a set
of columns ofH(p)

b corresponding to some fixedm, for n ¼

1,2,…,#p, we need to compute the term]þ =]w(p)
mn(f 9(net(s)k)),

for s ¼ p þ 1,…,L, which requires the computation of the
order-based derivative(]þ z(s)

j)=(]w(p)
mn) assuming the sigmoi-

dal activation function is used [see the first term of the RHS
of Eq. (10) and the second term of the RHS of Eq. (11)].
From the forward propagation rule in Eq. (12) with initial
valuez(p)

n , we have

]þ z(s)
j

]w(p)
mn

¼ c(s)
j z(p)

n for all pþ 1 # s# L (22)

where c(s)
j is a constant determined by the connection

weights between the node with outputz(pþ 1)
j and the node

with output z(s)
m , and is thus not a function ofz(p)

n . Hence,
when we compute some specific row ofH(p)

b [i.e. the indexes
i andj are fixed in Eqs. (10)–(12)], the first term of the RHS
of Eq. (10) is proportional toz(p)

n .
We shall next show that the second term of Eq. (10) is

also proportional toz(p)
n when we compute some specific row

of H(p)
b . This is achieved by showing that the first and second

terms of the RHS of Eq. (11) are both proportional toz(p)
n .

With the same reason in deriving Eq. (22), we see that the
bias term [i.e. the second term of the RHS of Eq. (11)] is also
proportional toz(p)

n , and the proportion constant is deter-
mined by the forward–backward propagation computation
between nodem in layerp þ 1 to the specific row position.
As to the first term of Eq. (11), it is obtained by the
backpropagation rule with initial value

]þ

]w(p)
mn

]þ E

]z(L)
j

 !
¼

∑#L

k¼ 1

]þ

]w(p)
mn

(dk ¹ z(L)
k) (23)

where dk is the kth component of the desired output.
According to Eq. (22), Eq. (23) is also proportional toz(p)

n .
Hence the first term of the RHS of Eq. (11) is also
proportional toz(p)

n .
This analysis proves that the order-based derivative com-

puted by Eq. (11) and thus that computed by Eq. (10) are
proportional toz(p)

n . Hence for a specificm, the adjacent two
columns of theH(p)

b matrix are proportional toz(p)
n andz(p)

nþ 1,
respectively. Since the full columns ofH(p)

b are spanned by
the vectors[]þ =(]w(p)

mn)][]þ =(]w(p))E] and the earlier analy-
sis shows that they are also spanned by the vectors
[]þ =(]w(p)

m1)][]þ =(]w(p))E], for m ¼ 1,…,# (p þ 1) ¹ 1,
we can conclude that rank(H(p)

b) # #(pþ 1) ¹ 1. This
completes the proof.

This theorem shows that each submatrix (block) of the
block Hessian matrix is singular. This obviously implies
that the whole block Hessian matrix is singular. Since the
rank ofH(p)

b is equal to the number of nodes in the layer next
to the layer corresponding toH(p)

b , the equality in Theorem 2
usually holds, i.e. rank(H(p)

b) ¼ #(pþ 1) ¹ 1. Further,
according to the property in Theorem 2, we can decompose

1613Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

the H(p)
b matrix into #(p þ 1) ¹ 1 submatrices, each with

dimension (#(p þ 1) ¹ 1)(#p) 3 (#p). Matrix H(p)
b can thus

be represented by

H(p)
b ¼

∑#(pþ 1) ¹ 1

k¼ 1
h

(p)
k 0k¹ 1, z(p),0#(pþ 1) ¹ 1¹ k

� �
(24)

whereh
(p)
k is the vector derived by Eq. (11) and Eq. (12),0j

is a zero(row) vector containingj·(#p) zeros, andz(p) is the
output (row) vector of layerp.

From numerical optimization theory (Luenberger, 1984),
a system usually has no extreme points if its Hessian matrix
is singular. However, since there are usually many extreme
points in the error surface of a MLP, especially for large
networks, we expect thatH b and=E are linearly dependent.
Otherwise, theH b matrix cannot be used for second-order
approximation of theE function in finding the extreme
points of E by Newton’s method. The following theorem
proves this property.

Theorem 3. Under the same assumptions in Theorem 1 and
assuming that the rank ofH(p)

b is #(p þ 1) ¹ 1 and there is no
zero element in=E(p), then the rank of matrix[H(p)

b ,=E(p)] is
also equal to #(p þ 1) ¹ 1, where=E(p) is the gradient ofE
corresponding to layerp.

Proof. By the backpropagation rule, we can derive

]þ E

]w(p)
mn

¼ cmz(p)
n , (25)

where nonzero constantcm is not a function of connection
weights of layer p. For convenience, we let
s¼ #ðpþ 1Þ ¹ 1.Then Eq. (24) can be rewritten as

H(p)
b ¼

∑s

k¼ 1

y
(p)
k 0k¹ 1,

]þ E

]w(p)
k

 !T

, 0s¹ k

" #
(26)

where y
(p)
k ¼ h

(p)
k =ck, and [(]þ E)=(]w(p)

k)]T ¼

[(]þ E)=(]w(p)
k1), …, (]þ E)=(]w(p)

kp)].
By the symmetric property of a Hessian matrix, we have

(H(p)
b)T ¼ H(p)

b ¼
∑s

k¼ 1

0T
k¹ 1

]þ E

]w(p)
k

0T
s¹ k

2666664

3777775(y(p)
k)T (27)

Notice that the matrix

M ;

(yp
1)T

:

(yp
s)T

2664
3775

is a s 3 (#p)(#(p þ 1) ¹ 1) matrix. Since rank(M) ¼

#ðpþ 1Þ ¹ 1 ¼ s, there exists a series of column operations
such that thes 3 1 unit vector, [11,12,…,1s]

T, can be
spanned by the columns ofM . Hence, the vector
=E(p) ¼ { [(]þ E)=(]w(p)

1)], …, [(]þ E)=(]w(p)
s)]} T can also be

spanned by the columns of H(p)
b , and thus

rank[H(p)
b , =E(p)] ¼ s. This completes the proof.

This theorem shows thatH(p)
b and =E(p) are linearly

dependent. This implies that the block Hessian matrixH b

is linearly dependent with

=E ;

=E(1)

:

=E(L ¹ 1)

2664
3775

since H b is composed ofH(p)
b as defined in Eq. (21).

Theorems 2 and 3 show that the block Hessian matrix
H b preserves the singularity and extreme-point properties
of the true Hessian matrixH. Hence we can approximate the
error function of a MLP,E ; ¹ (1=2)

∑
#L
k¼ 1(z(L)

k ¹ dk)2, by
Ẽ(w) ¼ E(w0) þ KwT=E(w0) þ (1=2)KwTHbKw. In the
next section, we shall derive an efficient second-order
learning algorithm for the MLP by minimizing such an
approximated error function.

3. Second-order learning algorithm based on block
Hessian matrix

In this section, we shall develop a second-order learning
algorithm for the MLP based on the block Hessian matrix.
By making use of the properties of the block Hessian matrix,
this algorithm can reduce the computation load of the block
Hessian matrix, its inverse, and the process for finding the
least squares solution.

3.1. Inverse of block Hessian matrix

In using Newton’s method to minimize an error function
E approximated by the block Hessian matrix, we need to
solve the linear equations,=E ¼ ¹ H bKw. Since=E and
H b are linear dependent as shown in the last section, we cannot
compute the inverse of the block Hessian matrix,H ¹ 1

b ,
directly to solve the linear equations,=E ¼ ¹ H bKw. To
address this problem, we apply the Levenberg–Marquardt
method to replaceH ¹ 1

b by (lI þ H b)
¹1 (LeCun, 1989; Silva

and Almeida, 1990), wherel is an arbitrary small positive
number. Hence, the problem now is to solve the linear equa-
tions, Kw ¼ ¹ (lI þ H b)

¹1=E, i.e. Kw(p) ¼

¹ (lI þ H(p)
b)¹ 1=E(p), p ¼ 1,2,…,L ¹ 1. We shall next pro-

pose an algorithm to simplify the computation of(lI þ

H(p)
b)¹ 1 based on the special property of the block Hessian

matrix.

1614 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

According to Eq. (24), the inverse matrix(lI þ H(p)
b)¹ 1

can be represented by

(lI þ H(p)
b)¹ 1 ¼

lI þ

∑#(pþ 1) ¹ 1

k¼ 1
h

(p)
k

�
0k¹ 1,

z(p),0#(pþ 1) ¹ 1¹ k

�!¹ 1

ð28Þ

for p ¼ 1,2,…,L ¹ 1. The inverse in Eq. (28) can be easily
obtained by the matrix inverse lemma (Kailath, 1980). The
matrix inverse lemma says ifA is an invertible matrix, andu
and v are two column vectors then the following equality
holds,

(A þ uvT)¹ 1 ¼ A ¹ 1 ¹
(A ¹ 1u)(vTA ¹ 1)

1þ vTA ¹ 1u
(29)

Using Eq. (29) recursively, we can find the (#(p þ 1) ¹

1)(#p) 3 (#(p þ 1) ¹ 1)(#p) inverse matrix of Eq. (28)
after #(p þ 1) ¹ 1 iterations. It takes (#(p þ 1) ¹ 1)(#p)
iterations to compute such an inverse matrix in the normal
way. Hence, by making use of the singular property ofH(p)

b ,
we reduce the computation load of(lI þ H(p)

b)¹ 1 by #p
times.

Another advantage of this method is that the computation
of the matrix inverse can be performed separately for dif-
ferent layersp, p ¼ 1, 2,…, L ¹ 1, due to its recursive form.
This can shorten the duty cycle of computation. Hence, with
the proposed computation method based on the matrix
inverse lemma, the use of the block Hessian matrix for
substituting the diagonal Hessian matrix in Newton’s
method can preserve the property of the true Hessian matrix
at the expense of only small extra computation load.

3.2. Least squares update method

Consider that there arex(1),x(2),…, x(s) training patterns
for training a MLP. The corresponding desired output
vectors ared(1), d(2),…, d(s). The total error function to
be minimized is

Etotal ;
1
2

∑s

i ¼ 1
kd(i) ¹ z(L)(i)k2 (30)

where zðLÞð1Þ, z(L)(2),…, z(L)(s) are the network output
vectors corresponding to the inputsx(1), x(2),…, x(s),
respectively. The concept of standard Newton’s method is
to approximateEtotal by a second-order function,Ẽtotal, as
follows

Ẽtotal(w(k) þ Dw) ¼ Etotal(w(k)) þ (=Etotal)TDw

þ
1
2
DwTH totalKw, ð31Þ

whereH total is the Hessian matrix ofEtotal taking value at
weights w(k). Then the minimum points ofEtotal are
obtained approximately by finding the minimum points of

Ẽtotal according to

Dw ¼ ¹ H ¹ 1
total=Etotal (32)

In using the above update rule, we usually find the average
gradient value overs training patterns to get=Etotal, and the
average ofs Hessian matrices corresponding to thes
training patterns to getH total. From qualitative analysis,
since this approach smooths the update direction and size
corresponding to each training pattern, it cannot speed up
the convergence speed efficiently.

We shall now adopt the least squares (LS) estimation
technique to derive a fast update rule forDw. At first, we
apply Newton’s method on each individual training pattern
and produces gradient equations:

H(x(i)lw(k))Dw ¼ ¹ =E(x(i)lw(k)) (33)

for i ¼ 1, 2,…, s. Then we solve the following combination
of equations in the LS sense,

H(x(1)lw(k))

:

:

H(x(s)lw(k))

2666664

3777775 Dw ¼ ¹

=E(x(1)lw(k))

:

:

=E(x(s)lw(k))

2666664

3777775 (34)

to obtain

Dw ¼ ¹ HT
1 H1 þ … þ HT

s Hs

� �¹ 1
HT

1 =E1 þ … þ HT
s =Es

� �
(35)

whereHi ¼ H(x(i)lw(k)) and=Ei ¼ EðxðiÞlwðkÞÞ. To solve
Eq. (34), we need to findlI þ HT

1H1 þ … þ HT
s Hs

� �¹ 1

according to the Levenberg–Marquardt method. By apply-
ing the matrix inverse lemma [Eq. (29)] recursively, this can
be done incrementally for each availableH i, i ¼ 1,2,…,s.
Hence to solve Eq. (34), we need to find each Hessian
matrix and the corresponding(HT

i H i)¹ 1, i ¼ 1,2,…,s. For
notation simplicity, we omit the subscripti hereafter.
Since H TH is singular, (lI þ H TH)¹1 is used to replace
(H TH)¹1 as mentioned in the last subsection. To reduce the
computation load in solving Eq. (34), we use the block Hessian
matrix H b to approximateH as discussed in the previous
sections.

Consider the block Hessian matrix,H b, defined by
Eqs. (21) and (24), which are repeated here,

Hb ¼ diagonal {H(1)
b , H(2)

b ,…,H(L ¹ 1)
b } (36)

where H(p)
b ¼

∑
#(pþ 1) ¹ 1
k¼ 1 h

(p)
k 0k¹ 1,z(p),
�

0#(pþ 1) ¹ 1¹ kÿ,
p¼ 1, 2, …, L ¹ 1. Due to the block structure of the block
Hessian matrix, the inverse of(lI þ HT

bHb) can be obtained
by finding the inverse of each block (corresponding to one
layer of the MLP), (lI þ (H(p)

b)TH(p)
b)(¹ 1), as we did in

Section 3.1. According to Lemma 1,H(p)
b is a symmetric

1615Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

matrix, i.e.(H(p)
b)T ¼ H(p)

b , so we have

(H(p)
b)TH(p)

b ¼ H(p)
b (H(p)

b)T ¼
∑#(pþ 1) ¹ 1

k¼ 1 kz(p)k2h(p)
k (h(p)

k)T

¼ kz(p)k2·
∑#(pþ 1) ¹ 1

k¼ 1
h

(p)
k (h(p)

k)T (37)

for p ¼ 1,2,…,L ¹ 1. We can then apply the matrix inverse
lemma to find

(lI þ H(p)
b (H(p)

b)T)¹ 1 ¼ lI þ kz(p)k2·
∑#(pþ 1) ¹ 1

k¼ 1

h
(p)
k (h(p)

k)T

 !¹ 1

(38)

recursively.
Let us now analyze the computation complexity of the

above approach. Letnp ¼ (#(p þ 1) ¹ Bp)(#p), whereBp ¼

1 if p Þ L ¹ 1 andBp ¼ 0 if p ¼ L ¹ 1. For general matrix
multiplication, the number of multiplications needed in
computingHT

b H b is
∑

L ¹ 1
i ¼ 1 n3

i , and the number of additions
needed is

∑
L ¹ 1
i ¼ 1 (ni ¹ 1)n2

i . However, if we take the singular
property of HT

bH b into account and computeHT
bH b

according to Eq. (37), the number of multiplications needed
in computingHT

bH b is
∑

L ¹ 1
p¼ 1[(#(pþ 1) ¹ Bp)n2

p þ #pþ np],
and the number of additions needed is∑

L ¹ 1
p¼ 1[([(#(pþ 1) ¹ Bp)n2

p þ np ¹ 1]. For example, consider
a four-layer MLP with structureN4

2341, wheren1 ¼ 4, n2 ¼

9, n3 ¼ 4. The number of multiplications needed for com-
puting HT

bH b using normal matrix multiplication is 64þ
729 þ 64 ¼ 857, and the number of additions needed is
48þ 648þ 48¼ 744. For the proposed simplified method,
the number of multiplications needed is (2þ 4 þ 163 2) þ

(3 þ 9 þ 813 3) þ (4 þ 4 þ 16)¼ 317, and the number of
additions needed is 35þ 251 þ 19 ¼ 305. Further, if the
symmetric property of theH b matrix is considered, the
computation load analyzed previously can be cut in half.

Again, the singular property of block Hessian matrix
simplifies the computation ofHT

bH b greatly in using the
LS method for updating network weights. Also, like the
analysis in Section 3.1, the matrix inverse lemma reduces
the load in computing(lI þ (H(p)

b)TH(p)
b)¹ 1 by np/#p times

as compared with the normal approach.

4. Simulations

In this section, we shall compare the performance of the
proposed second-order learning algorithm in Section 3 to
that of the pure gradient descent rule (backpropagation
algorithm), Newton’s method in which the whole Hessian
matrix is computed, and a commonly used simplified
Newton’s method in which only the diagonal terms of the
Hessian matrix are considered. The performance compari-
son indexes are learning speed and convergence accuracy.
Since the MLP is a universal approximator of continuous
functions, we shall use three continuously differentiable

functions with different input–output dimensions as
examples to test the learning speed and convergence
accuracy of the proposed second-order learning algorithm.

It is noted that in applying Newton’s method to minimize
an error function, we simply let=E ¼ 0 [see Eq. (32)] and
thus the found extreme point could be either a minimum
point or a maximum point. To avoid wrong convergent
directions in using Newton’s method, we propose three
protection methods, denoted by PT1, PT2 and PT3, respec-
tively. In the PT1 method, we compare the directions (signs)
of the computedDw and ¹ =E. If they are in the same
direction, then we adopt the updateDw. Otherwise, we
update the network weights according to¹ =E. With the
PT1 method, the network weights are updated by the general
gradient descent rule whenE(w) is convex, and are updated
by the proposed second-order learning algorithm whenE(w)
is concave. In the PT2 method, we reverse the sign of the
bias term in Eq. (11), and keep the sign of the backpropaga-
tion term in Eq. (11) unchanged. This makesE(w) become
concave when it is convex to push the weights away from
the maximum points. WhenE(w) is concave and near the
region =E < zero, since the backpropagation term in
Eq. (11) is dominant (this can be proved by order analysis),
the sign change of the bias term will not affect the curvature
of E(w). The PT3 method is the simplest one; it ignores the
bias term in Eq. (11) and leaves only the backpropagation
term. In the three protection methods, only PT1 computes
the exact block Hessian matrix. However, the (approxi-
mated) block Hessian matrices computed in all the three
methods own the properties mentioned in the three theorems
in Section 2. Especially, these (approximated) block
Hessian matrices converge to the same curvature, which is
determined by the backpropagation term in Eq. (11), when
=E < zero.

We shall next use three typical examples concerning
single-input-single-output (SISO), multi-input-single-out-
put (MISO), and multiinput-multioutput (MIMO) systems,
respectively, to verify the convergence speed and accuracy
of the proposed second-order learning algorithm based on
the block Hessian matrix under the protections of PT1, PT2
and PT3, respectively. (In the following, we shall call the
proposed second-order learning algorithm with the PT1,
PT2, and PT3 protection schemes as PT1, PT2, and PT3
methods, respectively, for short.) The performance will be
compared with that of the pure gradient descent rule (i.e.
backpropagation (BP) algorithm), Newton’s method
computing the full Hessian matrix (H method), and the
simplified Newton’s method computing only the diagonal
Hessian matrix (H d method). Here, the LS update method
proposed in Section 3.2 and the PT2 protection method are
also used in theH method.

Example 1: consider a four-layer MLP with structure
N2,3,4,1. We fix the weights of this network (denoted by
‘teaching MLP’), and use another MLP (denoted by ‘train-
ing MLP’) with the same topology to learn the input–output
relationship of the teaching MLP. The training data are

1616 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

collected by feeding random numbers uniformly distributed
in [¹ 3.0, 3.0] to the teaching MLP and recording its output
values. A total of 60 training input–output pairs are
collected. The weights of the training MLP are initialized
randomly, and then updated by the six first-order and
second-order learning algorithms mentioned previously.
The learning results are shown in Fig. 3. Fig. 3(a) and (b)
show, respectively, the convergence curves (accuracy) of
the PT1 and PT2 methods after 40 learning iterations. The

convergence curve of the BP algorithm after 400 iterations
is shown in Fig. 3(c). It is observed that the convergence
accuracy of BP is smaller than that of PT2 by one order,
even after ten cycles of the learning iterations, which takes
nearly the same actual computation time as PT1 and PT2.
Fig. 3(d) shows the learning curve of theH d method, which
displays poor convergence accuracy. The learning curve of
the PT3 method is shown in Fig. 3(e), which is very similar
to that of the PT2 method in convergence speed and

Fig. 3. Convergence curves of various learning algorithms inExample 1.

Table 2
Range of weight variations and convergence accuracy of the training MLP under six different learning algorithms inExample 1, wherew (k) means the weight
vectors in layerk, k ¼ 1,2,3

Method kw (1) ¹ w (1)(0)k kw (2) ¹ w (2)(0)k kw (3) ¹ w (3)(0)k Epochs Error

PT1 0.4046 0.3313 0.8875 40 2.9443 10^{¹3}
PT2 0.3332 0.3255 0.7705 40 1.7963 10^{¹3}
BP 0.0603 0.0454 0.1325 400 7.3203 10^{¹3}
H d 0.2081 0.2807 0.0908 40 1.0663 10^{¹2}
PT3 0.3868 0.2959 0.8507 40 3.2303 10^{¹3}
H 0.1571 0.0812 0.2189 40 8.1213 10¹4

1617Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

accuracy. The learning curve of theH method under the PT2
protection is shown in Fig. 3(f). We observe that the pro-
posed second-order learning algorithm based on the block
Hessian matrix can achieve nearly the same convergence
accuracy as that of the Newton’s method that computes
the full Hessian matrix, although the former takes much
less computation time per iteration than the latter. Table 2
shows the moving distances of the weight vectors of the
training MLP (the distance between the final and initial
weight vectors) and convergence accuracy under different
learning algorithms. To obtain reliable test results, we
repeat the above test fifty times; at each time, the weights
of the training MLP are re-initialized randomly. In the
repeated tests, we use the BP, PT2, and PT3 methods to
train the training MLP, and record the respective total
error after 40 (for PT2 and PT3) or 400 (for BP) iterations.
The results are shown in Fig. 4. It is found that the mean of
total errors for the PT2 method is 0.0064, and the standard
deviation is 0.0056; the mean of total errors for the PT3
method is 0.0151, and the standard deviation is 0.0183;
the mean of total errors for the BP method is 0.0669, and
the standard deviation is 0.0437. These statistics numbers
are comparable to those in Table 2 in magnitude order. From

Table 2 and Fig. 4, we find that the proposed block-Hessian-
matrix-based second-order learning algorithm has much
larger search range than the gradient descent method, and
preserves high convergence accuracy and speed.

Example 2: consider the Vander Pol’s equation,
y(x1,x2) ¼ (1=20)(x1(1¹ x2

2) ¹ x2), which is a two-input–
single-output system. In this example, we use a MLP,
N3,10,5,1, with random initial weights to learn this system.
The training data are collected by randomly choosing (x1,
x2) values uniformly distributed in [¹ 2.5, 2.5]3 [¹ 2.5,
2.5]. A total of 100 training data are used. The six learning
algorithms inExample 1are used here again to train the
MLP. The results are shown in Fig. 5. Fig. 5(a) and (b)
show the learning curves of PT1 and PT2, respectively. It
appears that the PT2 methods still keeps high convergence
accuracy and speed. The learning curve of BP after 800
iterations is shown in Fig. 5(c). The whole actual learning
time of BP is larger than that of PT1 and PT2, but the
convergence accuracy of BP is much worse than that of
PT1 and PT2. In using theH d method, we found that the
samel value in Eq. (28) as that used in the PT1 and PT2
methods could not make theH d method converge. Hence
we reset the parameterl from 0.5 3 10¹4 to 0.5. The

Fig. 4. Repeated tests of convergence accuracy of three learning algorithms: BP (solid line), PT2 (dotted line), and PT3 (broken line) inExample 1.

Table 3
Range of weight variations and convergence accuracy of the training MLP under six different learning algorithms inExample 2, wherew (k) means the weight
vectors in layerk, k ¼ 1,2,3

Method kw (1) ¹ w (1)(0)k kw (2) ¹ w (2)(0)k kw (3) ¹ w (3)(0)k Epochs Error

PT1 3.7414 32.1940 2.8925 160 3.9223 10^{¹1}
PT2 6.6627 18.9966 3.6575 80 4.8193 10^{¹2}
BP 1.9902 1.7518 2.5195 800 4.5463 10^{¹1}
H d 0.0939 0.0640 1.2062 80 1.454
PT3 7.5917 21.1058 1.9849 80 1.2303 10^{¹1}
H 4.0045 24.8150 23.047 80 3.0583 10¹2

1618 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

corresponding learning curve is shown in Fig. 5(d),
Displaying similar convergence accuracy and speed to the
BP method. The learning curves of the PT3 andH methods
are shown in Fig. 5(e) and (f), respectively, which are both
similar to the learning curve of PT2. Table 3 lists the range
of weight variations and convergence accuracy under
various learning algorithms. Again, the proposed second-
order learning algorithm, like theH method, shows the
largest search range on the weight space.

Example 3: consider a system described by

y(x1,x2) ¼
1
5
exp

sin(x1) ¹ cos(x2)
4þ cos(x2)

� �
,cos(x1)sin(2x2)

� �
,

which is a two-input–two-output system, where the two
inputs are x1, x2, and the two outputs are
(1=5)exp[(sin(x1) ¹ cos(x2))=(4þ cos(x2))] and cos(x1)-
sin(2x2). In this example, we use aN3,7,5,2 MLP, which has
two output nodes, to learn the behavior of this system. The

Fig. 5. Convergence curves of various learning algorithms inExample 2.

Table 4
Range of weight variations and convergence accuracy of the training MLP under six different learning algorithms inExample 3, wherew (k) means the weight
vectors in layerk, k ¼ 1,2,3

Method kw (1) ¹ w (1)(0)k kw (2) ¹ w (2)(0)k kw (3) ¹ w (3)(0)k Epochs Error

PT1 6.0998 18.0398 5.4619 100 4.8633 10^{¹1}
PT2 3.5607 45.6548 7.3597 80 1.5393 10^{¹1}
BP 2.3591 1.1166 1.8174 800 9.1413 10^{¹1}
H d 0.2883 0.7666 0.6662 80 6.447
PT3 22.4823 49.1420 49.5137 80 6.9793 10^{¹1}
H 8.1261 12.9116 67.3783 80 3.7183 10¹1

1619Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

training data are obtained by randomly choosing (x1, x2)
values uniformly distributed in [¹ 1,1] 3 [¹ 1,1]. A
total of 64 training patterns are used. Like the previous
two examples, six learning algorithms are used to train the
MLP, and the results are shown in Fig. 6. The learning
curves of PT1 and PT2 are shown in Fig. 6(a) and (b),
respectively. Again PT2 is found to be superior in conver-
gence accuracy and speed. Fig. 6(c) is the learning curve of
BP after 800 iterations, which takes longer actual computa-
tion time, but achieves much worse accuracy than PT2. The
learning curve of theH d method, as shown in Fig. 6(d),
converges when the parameterl is reset to be 1.0. The
learning curves of the PT3 andH methods are shown in
Fig. 6(e) and (f), respectively, which are both similar to
the learning curve of PT2 again. The ranges of weight
variations and convergence accuracy of various learning
algorithms are listed in Table 4.

To see the performance of the combination of different
learning algorithms, we did the following extra tests. In the

first test, we train the MLP using BP until the learning curve
converges stably after about 100 epochs, and then apply PT2
on the trained MLP for further training. The corresponding
learning curve is given in Fig. 7(a) showing that the PT2
method can further reduce the network output error even
after the BP learning. In the second test, we train the MLP
using PT2 first until converges and then using BP with the
same learning constant as that used for Fig. 6(c). The learn-
ing curve of this test is shown in Fig. 7(b), indicating that the
learning constant is too large to keep the minimum point
located by PT2. The third test is similar to the second one,
except that the learning constant of BP is reduced by 100
times. The corresponding learning curve is shown in
Fig. 7(c), indicating that BP keeps the minimum point
found by PT2 in this case. These tests show that the learning
constant affects the convergence accuracy of BP greatly.
The aforementioned tests use some hybrid learning
schemes, but the PT2 method still show the best
performance.

Fig. 6. Convergence curves of various learning algorithms inExample 3.

1620 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

It is noted that the MLPs used in the earlier examples all
have more than two input nodes and use sigmoidal
activation functions, so their Hessian and block Hessian
matrices are singular according to Theorems 1 and 2. This
substantiates the legal usage of the proposed second-order
learning algorithm. The previous simulations lead to the
following discussions. Since the proposed block-Hessian-
matrix approach is a second-order learning algorithm with
quadratic convergence speed, it, unlike the normal back-
propagation algorithm, can avoid the phenomena of being
trapped in the flat region of error surface. This property
generates a higher learning speed and probabilities of

locating better local minima than the normal back-
propagation algorithm. Simulation results also show that
the proposed approach has higher learning speed and
convergence accuracy than the diagonal-Hessian-
matrix method. This is consistent with our analysis
result in Section 2.2 that the diagonal Hessian matrix of a
MLP does not own the important properties of the
whole Hessian matrix. In other words, the diagonal
Hessian matrix of a MLP is an ill approximation of
the original Hessian matrix. On the contrary, the block
Hessian matrix discussed in this paper keeps the
important properties of the original Hessian matrix.
Hence, the proposed block-Hessian-matrix approach
shows nearly the same convergence accuracy as the one
that computes the whole Hessian matrix; however, the
former needs much less computation power, and thus
has higher learning speed, than the latter. Moreover,
the proposed protection methods associated with the
block-Hessian-matrix approach can avoid the problem of
wrong convergence directions in the normal Hessian-
matrix-based learning algorithms.

5. Conclusion

A novel second-order learning algorithm for the MLP has
been developed in this article, which represents an attractive
alternative to standard backpropagation algorithms. The
proposed second-order learning algorithm is a revised
Newton’s method, in which the computation of the Hessian
matrix of the MLP (H) and its inverse is the kernel part.
Several techniques have been presented in developing this
algorithm, including the order-based-derivative approach to
deriving formulas forH, the network implementation ofH,
a forward–backward propagation scheme for computingH,
the block Hessian matrix of the MLP to approximateH, the
use of matrix inverse lemma to find the inverse of block
Hessian matrix, the least squares update method for
updating the weights of the MLP, and three protection
methods to insure correct convergence directions. Further,
several lemmas and theorems have been provided to show
the important properties ofH, and verify that the proposed
block Hessian matrix is a good approximation ofH. The
theoretic analysis not only uncovers the nature of the
Hessian matrix of the MLP, but also provides important
insight into developing an efficient second-order learning
algorithm for the MLP. The proposed algorithm has solved
the major drawbacks of the standard backpropagation
algorithm and of normal Newton’s method in training the
MLP. Extensive computer simulations and performance
comparisons with backpropagation algorithm and other
revised Newton’s methods have demonstrated the fast
learning speed and high convergence accuracy of the
proposed learning algorithm. Formal mathematic analysis
on the convergence speed and accuracy of the proposed
second-order learning algorithm protected by the

Fig. 7. Convergence curves of hybrid learning algorithms of BP and PT2 in
Example 3.

1621Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

proposed protection methods will be the subject of our
future work.

References

Battiti, R. (1992). First and second order methods for learning between
steepest descent and Newton’s method.Neural Computation, 4,
141–166.

Becker, S., & LeCun, Y. (1989). Improving the convergence of back-
propagation learning with second order methods. In D. S. Touretzky,
G. E. Hinton, & T. J. Sejnowski (Eds.),Proc. 1988 Connectionist
Models Summer School. San Mateo, CA: Morgan Kaufmann,
pp. 29–37.

Bello, M. G. (1992). Enhanced training algorithms, and integrated training/
architecture selection for multilayer perceptron networks.IEEE
Transactions on Neural Networks, 3, 864–875.

Goodwin, G. C., & Sin, K. S. (1984).Adaptive Filtering Prediction and
Control (chap. 3). Englewood Cliffs, NJ: Prentice-Hall.

Haykin, S. (1994).Neural Networks(chap. 7). New York: Macmillan.
Kailath, T. (1980).Linear Systems. Englewood Cliffs, NJ: Prentice-Hall.
LeCun, Y. (1989). Generalization and network design strategies. In

Connectionism in Perspective. Amsterdam: North Holland, 143–155.

Lin, C. T., & Lee, C. S. G. (1996).Neural Fuzzy Systems: A Neural-Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall.

Luenberger, D. G. (1984).Linear and Nonlinear Programming. Reading,
MA: Addision-Wesley.

Makram-Ebeid, S., Sirat, J. A., & Viala, J. R. (1989). A rationalized back-
propagation learning algorithm. InProc. Int. Joint Conf. Neural
Networks. Washington, DC, pp. 373–380. NJ: IEEE.

Piche, S. W. (1994). Steepest descent algorithms for neural network
controllers and filters.IEEE Transactions on Neural Networks, 5,
198–212.

Ricotti, L. P., Ragazzini, S., & Martinelli, G. (1988). Learning of word
stress in a sub-optimal second order back-propagation neural
network. InProc. IEEE Int. Conf. Neural Networks. San Diego, CA,
pp. 355–361. NJ: IEEE.

Silva, F., & Almeida, L. (1990). Acceleration techniques for the backpro-
pagation algorithm.Lecture Notes in Computer Science, Vol. 412.
Berlin: Springer, pp. 110–119.

Stefanos, K., & Anastassioy, D. (1988). Adaptive training of
multilayer neural networks using a least-squares estimation technique.
In Proc. IEEE Int. Conf. Neural Networks.San Diego, CA, pp. 383–
390. NJ: IEEE.

Werbos, P. J. (1990). Backpropagation through time: what it does and how
to do it. Proc. of the IEEE, 78, 1550–1560.

1622 Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607–1622

