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Abstract

This article proposes a new second-order learning algorithm for training the multilayer perceptron (MLP) networks. The propos
algorithm is a revised Newton’s method. A forward—backward propagation scheme is first proposed for network computation of the Hess
matrix, H, of the output error function of the MLP. A block Hessian mattik,, is then defined to approximate and simplify Several
lemmas and theorems are proved to uncover the important propertiésanfl H,,, and verify the good approximation &f, to H; Hy,
preserves the major propertiestéf The theoretic analysis leads to the development of an efficient way for computing the invétge of
recursively. In the proposed second-order learning algorithm, the least squares estimation technique is adopted to further lessen the
minimum problems. The proposed algorithm overcomes not only the drawbacks of the standard backpropagation algorithm (i.e. sl
asymptotic convergence rate, bad controllability of convergence accuracy, local minimum problems, and high sensitivity to learni
constant), but also the shortcomings of normal Newton’s method used on the MLP, such as the lack of network implemehtatibn of
representability of the diagonal termstéf the heavy computation load of the inversdfand the requirement of a good initial estimate of
the solution (weights). Several example problems are used to demonstrate the efficiency of the proposed learning algorithm. Exten
performance (convergence rate and accuracy) comparisons of the proposed algorithm with other learning schemes (including the star
backpropagation algorithm) are also ma@el998 Elsevier Science Ltd. All rights reserved.
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1. Introduction method is less sensitive to the learning constant, the choice
of a proper learning constant is not difficult. However,
Gradient-descent-based backpropagation (BP) learningseveral shortcomings of Newton’'s method, as mentioned
algorithm has been widely used for training multilayer per- later, make its use for training the MLP quite limited.
ceptron (MLP) networks (Haykin, 1994; Lin and Lee, This article aims at conquering these shortcomings, and
1996). However, several drawbacks of the BP learning develops an efficient second-order learning algorithm for
method have been observed; its convergence speed ighe MLP.
usually too low, its convergence accuracy is hard to control, There are several problems in using Newton’s method to
it is easily stuck in bad local minima, and the choice of minimize the output error function of the MLP (Haykin,
proper learning constant largely depends on trial and 1994; Lin and Lee, 1996).
error. Further numgncal optimization theory (Luenberger, 1. Newton's method needs to compute the second-order
1984) can be applied to overcome these drawbacks. One oo . i
common approach is to upgrade the normal BP, which is derivatives of the OUtPUt error func;'uon W'th res.pect to
the network weights, i.e. the Hessian matrix. Since the

a first-order learning algorithm, to a second-order one, the . ; . :
, ] , ; computation of the Hessian matrix needs global informa-
so-called Newton’s method. Since Newton’s method is an . , . )
tion, Newton’s method is not suitable for network com-

optimization algorithm with quadratic convergence speed . . .
. : . putation. Besides, the large computation load of the
(Luenberger, 1984), it can be used to improve the learning . L . ; . .
. \ Hessian matrix hinders its practical use in training MLPs.
speed and accuracy of the normal BP. Also, since Newton’s A :
2. One common strategy to simplifying the computation of

Hessian matrix is to approximate the whole matrix by its

* Corresponding author. Tel: +886 3 5712121 ext 54315; Fax: +886 3 diagonal terms only (we call it the diagonal Hessian
5715998; e-mail: ctlin@fnn.cn.nctu.edu.tw matrix) (Battiti, 1992). This article will show that the
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diagonal Hessian matrix does not maintain the major weight space have solutions even though is singular,
properties of the true Hessian matrix of a MLP, and when we apply the block Hessian matrid ) for second-
thus cannot be used to improve the convergence speedrder approximation of thée function. Hence, like the
and accuracy of BP learning efficiently. original error function, there also exist extreme points for
3. In using Newton’s method for minimizing the output the error function which is second-order approximated by
error of a MLP, each iteration requires the computation the block Hessian matrix.
of the inverse of Hessian matrix, so the method is  Making use of the singularity and dependency property of
expensive in terms of both storage and computational the block Hessian matrix, we arrive at an efficient algorithm
requirements. for solving the equatio’VE = 0. This algorithm does not
4. In order to converge, Newton’'s method requires a good need the computation of the inverse of the block Hessian
initial estimate of the solution. This further restricts the matrix explicitly, and thus solves the third drawback of
practical usability of Newton’s method on the MLP. Newton’s method mentioned earlier. In the proposed algo-
rithm, we also apply the least squares estimation technique
From these points, we know that standard Newton’s (Goodwin and Sin, 1984; Stefanos and Anastassioy, 1988)
method is not a practical technique for training the MLP. to modify the original Newton’s method. This further
Although several alternatives or revised methods have beenimproves the convergence speed and accuracy of learning.
studied such as those based on conjugate-direction methodinally, since Newton’s method only guarantees finding the
and quasi-Newton method (Ricotti et al., 1988; Becker and extreme points of error functions (i.e. the points that result
LeCun, 1989; Makram-Ebeid et al., 1989; Bello, 1992), the in VE = 0), which may be minimum or maximum points, we
aforementioned problems have not been seriously addressedevelop three protection methods in this article to prevent
and most problems still exist. Especially, in the existing the proposed second-order learning algorithm from conver-
second-order learning approaches, the computation-ging in wrong directions. Among these three protection
expensive nonlinear programming techniques in the methods, two methods try to change the gradient of the
numerical optimization theory are usually adopted, and error surface in the transient region, and keep the gradients
the special properties of the Hessian matrix of the MLP in the steady states unchanged. These protection methods
are not taken into account to reduce the computation load. make Newton’s method insensitive to initial states, and
In this article, we shall propose a novel second-order solve the fourth drawback of Newton’s method.
learning algorithm for the MLP, aimed at solving the four ~ The rest of this article is organized as follows. Section 2
drawbacks of Newton’s method. We first propose an order- derives a forward—backward propagation scheme for
based-derivative scheme (Werbos, 1990; Piche, 1994) tocomputing the Hessian matrid of the MLP in the form
derive a network computation method for computing the of network operations. This section also defines the block
Hessian matrix of a given MLP network. This can be viewed Hessian matrixd,, and shows the singularity &f andH,,
as a network implementation of the Hessian matrix. With and the linear dependency Hf, and VE. In Section 3, the
this scheme, the computation of the Hessian matrix of a special properties of the block Hessian matrix are adopted to
MLP can be performed as signals flow forward and back- develop an efficient algorithm that greatly reduces the com-
ward in the MLP network. This solves the first drawback of putation load of the inverse Hessian matrix. This section
Newton’s method mentioned previously. From the proposed also uses the least squares estimation technique to increase
network computation method of the Hessian matrix, we can learning speed and accuracy. Extensive computer simula-
analyze the important properties of the Hessian matrix of the tions and performance comparisons with normal BP and
MLP easily; e.g. the Hessian matrix of a MLP is always a diagonal Hessian matrix approaches are made in Section
singular matrix. From such analysis, we clearly understand 4. In this section, three protection methods are given to
why the diagonal Hessian matrix is not a good approxima- further improve the proposed second-order learning
tion of the original Hessian matrix. This theoretically algorithm. Conclusion and discussion are presented in
explains why the existing second-order learning algorithms Section 5.
based on the diagonal Hessian matrix do not display the
expected advantages over Newton’s method as mentioned
in the second point of the last paragraph. To overcome this 2, Block Hessian matrix of multilayer perceptrons
drawback, and avoid the large computation load of the
whole Hessian matrix, we propose a better approximation 2,1. Network computation of Hessian matrix based on
of the Hessian matrix, called the block-diagonal Hessian order-based derivative
matrix or block Hessian matrix{,, for short. The block
Hessian matrix keeps the singularity of the original Hessian  The gradient-descent-based BP learning method was
matrix. Also, we show that the block Hessian matrix of a widely used for training the MLP. Although the gradient-
MLP is linearly dependent with the matrix formed by the descent (or steepest-descent) method is one of the simplest
gradients of the output error functida of this MLP, VE. optimization techniques, it is not a very effective one.
This dependency property makes the equatita= 0, the Numerical optimization theory provides a rich and robust
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set of techniques which can be applied to neural networksto  We shall then use order-based derivative (Werbos, 1990;
improve learning rates. The gradient-descent method con-Piche, 1994) to derive the Hessian matrixgoivith respect
siders only the first-order derivative of an error function. It to connection Weightwj(i') andvv(rﬁ?1 according to Eq. (2). We
is helpful to take into account higher-order derivatives. shall see that the use of order-based derivative can lead to a
Using Taylor's series expansion on the error function network implementation of the Hessian matrix; i.e. the com-
E(w) of a MLP around the current poimt, in the weight putation of the Hessian matrix can be proceeded through the
space, we have forward and backward data flow in a MLP network. Order-
based derivative is defined as the deviation of a function,
E(w) = E(wo) + (W — wo) ' VE(wo) E(z1,25,...,2,), with respect to the deviations of a set of
variables, £,,2,,...,2,}, where this set of variables form a
order set; i.e. any variable;, is a function of variables
{z1,25,...,Zi_1}. Due to the nest relationship in this set of
variables, the total derivative &{(z;,,,...,2,) with respect

50— W) HWo)(w — ) + -, ®

whereH(wg) is called Hessian matrix and is the second-
order derivative evaluated aty:

toz,j=1,2,..,n — 1 can be obtained recursively, based on

9°E the order relationship of the set of dependent variables
= 2 v — ’
H(wo) =V E(W)|W=Wo orH;j = W, AW @ {z1,2,,...,2,}. The approach to such a recursive computation

] o . ) is called an order-based-derivative scheme. The reader is
To find the minimum ofE(w), we set its gradient to zero:  yeferred to (Piche, 1994) for a detailed example. According
VE(W) = VE(Wo) + H(Wg)(W — Wo) + -+ =0 ©) to the types of ordering, two kinds of order-based deriva-
tives, forward and backward, can be distinguished. The con-
If we ignore the third- and higher-order terms, we obtain  cept of an order-based derivative is similar to that of a
1 partial derivative formed by chain rule with ordinary deri-
W =Wo —H ~(wo) VE(Wo) “) vatives. However, the former uses more precise notation to
or usingk to indicate thekth updating step, we obtain distinguish the value and ordering of a derivative, which are
_ easily mixed up in the notation of partial derivative. Hence,
WD =wl —H 1(W(k))VE(W(k)) ®) as compared with using chain rule to derive first-order deri-
This is called Newton’s method of weight updating. vatives in a backpropagation algorithm, the concept of
Newton’s method uses the second-order derivative in order-based derivative is more suitable for deriving com-
addition to the gradient to determine the next updating plex and higher-order derivatives, such as the second-order
direction and step size. It can converge quadratically when derivatives in the Hessian matrix of a MLP.
close to a solution of a convex function. However, there are At first, we use the backward scheme to derive the first-
several drawbacks for Newton’s method as mentioned in the order order-based derivative Bfwith respect tow;:
last section. In this subsection, we shall derive a network a%gﬂ) + +
computation scheme with forward—backward signal propa- 9 E: 9" E =(f’(nef'“))z§'))£ (8)
gation to simplify the computation of Hessian matrix of the aV\’,(il) 3Wj(il) 3%(|+l) 3%'“ )
MLP. We shall also study the important properties of _ + I+ 1)y
. ) . wherel =1,2,-- L — 1, and(d E)/(a;-( ) is computed by
Hessian matrix of the MLP, and then propose an approxi- the following backpropagation rule
mated matrix that keeps the important properties of the
original one. aTE 9 D pAs+D) g+
Consider a MLP network with. layers. For notation m: $+ 2 $W )
clarity, let # denote the number of nodes in thé layer B
of the MLP forl = 1,2,--,L. The input of thgth node in the wheres = L,--,( + 1) andj = 1,--,#s. Notice that
(I + 1)th layer is represented by flét”, and the output by (97%* )/(92%)=0if s= L, and ¢E)/(92”) = 0 if s # L.
# Next, we find the second-order order-based derivative of
A9 = fnef *9) = 1( S w2 6)  Ewith respect tar and another connection weight®, by
k=1 computing the order-based derivative of Eq. (8) with respect
to W), assumingp = I:

wheref(-) is an activation function, an;) is the connection
weight between th&th node in layel and thejth node in gt ot gt ItE
layer| 4+ 1. The output error function of the MLP is defined E= (f '(ne‘,(I 7))

by ' owibhowd) ~ owiBh aZ'

1 ﬁEL L) 2 +L 8+—E .f’(neél*‘l)).z(') (10)
=g, 1(%( %) Q) A '
j=

wherez" is thejth network output for the currentinput and  where the terni(a * )/(awiW][(a * E)/(97' * )] can be com-
d; is the corresponding desired output. puted by the order-based derivative of Eq. (9) and has the
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Fig. 1. Network for computing the order-based derivati(ﬂe%%—‘s))/(éw(n% using the forward propagation rule, where each node performs the opefation,
which computes the product néfnet), where net is the net input of the node.

following backward form At first, we have

+[8)  #s-1) s) -1 s
ot (a*E) MY oAt 5+ (aﬂz) 0*79_ s 0% a4V oz

= — +
owhh & oY awdh  awd)

L\ 92 029w\ a2 D
#s+1) #(sz_l) o4y ogd
S + + ' S)
d , 0"E = wy f'(net”) + — (12
R W ALY 2 e e
k=1 mn GZ|(<
(11) wherep + 1 < s= L. Notice that ifs= p + 1 then Eq. (12)
becomes
wheres = L — 1,-,( + 1) andj = 1, #s Notice that o Z°*Y  aZP™" () m=j 13
the initial state of Eq. (11) ats = L s aw® W@ ) o m+],

[0 @wiI(a ™ E)(33°)] = [0 Wil
The first term of the right-hand side (RHS) of Eq. (11) is and ifs # p + 1 then the term(aq-(s))/(avﬁn%) in Eq. (12) is
the same as the formula in the normal backpropagation zero.
algorithm, whereas the second term can be viewed as the The formula in Eq. (12) can be represented in a network-
bias term of thgth node in thesth layer of a MLP. If the operation form to simplify the computation. Consider a
differential of the activation functiohwith respecttoitsnet  node in a MLP whose output iés). The order-based deri-
input can be expressed as a function of its ouui()“&tthen vative of this node’s output with respect to the connection
calculating the bias term in Eq. (11) needs only computation weightwif) in layerp, i.e. (3% Z9)/(awh)) , is equal to the
of the order-based derivative[(a+)/(avv(”))]q(s). For output activation value of the network shown in Fig. 1, when
example, if f(neh=[2/(1+exp(—NneP)] —1=z (ie. we let the inputs, nff"¥=1 and néf*Y=0,j#m,
sigmoidal function), then f/(net)z()\/Z)(l—qz), and forward propagate through the network. The network
(@) (ow)]f ' (neh = —kz,-[(a*z,-)/(aw)]. Hence to compute  shown in Fig. 1 has the same topology as the original
Eg. (11) in backward direction, we need to compute MLP whose Hessian matrix is to be computed, whereas
[0 )(owWEmZY , fors=L, L — 1, p+ 1. We shall  their node functions are different as indicated in Fig. 1.
then derive an algorithm for computing the bias term in From Eq. (12) and Fig. 1, we find that each forward
Eq. (11) in the form of network operations like the propagation starting from themth node of the
backpropagation algorithm. Since this algorithm performs (p+ 1)th layer can compute all the terms (zifg-(s))/(aw(rﬁ%),
forward propagation on the network, it is called the for n = 1,--#p, wherep + 1 = s = L. Moreover, for a
forward propagation rule. This forward propagation rule specific ) the vector [(a*4-‘5))/(avv(,ﬁ?1)]n:1_..,#p is
can also be used to compute the first term of the RHS of proportional to [zﬁp)]nzl,...'#p. The forward propagation
Eqg. (10). rule in Eq. (12) can be used to compute the first term of
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Table 1 W(l) (Z)W(E) W(2) W@ w® w®
The sizes of the networks to be propagated and the obtained columns of mn - Tk TRk T8k - Tt T2 T3
Hessian matrix for each forward—backward propagation on the MLP, w®
N mn
53,31 “’/_(2)
Time Subnetwork size for Columns tk
forward—backward propagation computed in W,(;k)
Hessian matrix }—I w®@
— 3k
1st time (1—»3—-1)+3<—3«1) a;: 5 columns ’ 3)
2nd time (1-3—-1)+ (83«31 ay 5 columns W
3rd time (1-3—-1)+(3—3<1) as 5 columns w3
4th time 1—1)+@B<1) bi: 3 columns 12
5th time 1= 1)+ (B<1) b,: 3 columns Wg)
6th time 1-1)+@B<1) b3 3 columns ’
7th time @)+ (1) cy: 3 columns ~
88,8, b b by, ¢

Here, considering the first forward—backward propagation for example,

(1—-3—1)+ (3« 3 < 1) means the signals flow forward from a  Fig. 2. Form of resultant Hessian matrix after seven times of forward—
layer-two node to the three layer-three nodes, and to the single output backward propagation on the MLMs33, wherem = 1,23, n =
node in layer four, and then the signals flow backward from the single 1,2....5, andk = 1,2,3.

output node to the three layer-three nodes, and finally to the three layer-

two nodes. The second and third cycles of forward—backward propagation . .
are performed on similar subnetworks, but they start at a different node in resultant Hessian matrix after the seven cycles of

layer two. forward—backward propagation is shown in Fig. 2. In
Fig. 2, columnsay, a,, as, by, by, bs, andc; correspond to
the RHS of Eqg. (10) and the second term of the RHS of the first, second,:--, and seventh cycle of forward—
Eq. (11). backward propagation, respectively. This correspondence
The computations of Egs. (10)—(12) are summarized asis also shown in Table 1. More clearly, the first cycle of
follows. In computing the element of Hessian matrix forward—backward propagation produces the five
(@ o E)(owdlowi?), we perform one forward propagation  columns of Hessian matrix indicated by in Fig. 2.
on the network in Fig. 1 starting from thth node in layer These five columns consist of the order-based
p+ 1 to obtain all the bias terms in Eq. (11) and the first derivatives, (6+6+E)/(6W(11)avxéip)), for n = 1.2...5,
term of the RHS of Eq. (10). Then according to Eq. (11) and where P} ={w{?, ..., wid, w3, ..., wig, wk}, wid, wil}
then Eg. (10), we perform one backward propagation pro- i.e. those weights shown on the right-hand side of the
cess on the original network to find all the terms in the Hessian matrix in Fig. 2. Similarly, the second and third
column of the Hessian matrix right below the term of cycles of forward—backward propagation produce those
(8+8+E)/(8V\/(n’3?16\l\éip)) ;i.e. the terms(a’La*E)/(avv(,ﬁ%avvj(i')) columns indicated bya, and a; in Fig. 2, respectively,
for all | = p. Repeat this process until all such terms in all each set including five columns. They consist of the
the columns of the Hessian matrix are obtained. Finally, we order-based  derivatives, (00" E)/(o 2}33w}i”)) and
can apply the symmetric property and the column propor- a*a*E/awgﬂawlﬁp), forn = 1,2,....,5. The fourth cycle of
tional property of the Hessian matrix of the MLP shown in forward—backward propagation produces the three columns
the following lemma to get all the other terms and obtain the of Hessian matrix indicated bi; in Fig. 2. These three
complete Hessian matrix. For a MLP with nodes, its columns consist of the order-based derivatives,
whole Hessian matrix can be obtained after oMy k) @ orEwdowP) , for k = 123, where
cycles of forward and backward propagation, wHeristhe  {w{P} ={w{?, ... .w3, i}, wi3, wid} .ie. those weights
number of input nodes. The forward—backward propagation shown on the corresponding right-hand side of the
corresponding to theth layer will produce #§ + 1)-# Hessian matrix in Fig. 2. Similarly, the fifth and sixth
columns in the Hessian matrix, in whichp#¢ 1) columns cycles of forward—backward propagation produce those
are linearly independent (as being shown in the next sub-columns indicated byb, and bz in Fig. 2, respectively,
section). Moreover, the network for a forward—backward each set including three columns. They consist of the
propagation will be getting smaller; i.e. the computation order-based derivatives, (a*a*E)/(a\Aéiavvjﬂp)) and
load is lessening as the forward—backward propagation (a*a*E)/(a\Aéi)awjﬁp’), for k = 1,2,3. Finally, the seventh
process proceeds. cycle of forward—backward propagation produces the
As an example, in computing the Hessian matrix of a three columns of Hessian matrix indicated dyin Fig. 2.
four-layer fully-connected MLP with structuréNsss; These three columns consist of the order-based derivatives,
(meaning that the node number of each layer is 5, 3, 3, 1,(@* 9 "E)/(awi)ow®), for k = 12,3, where
respectively, from the input layer), the sizes of the networks {\Nj(ip)} ={w(131>w(132>w(1’°2} Hence, in Fig. 2, all the elements
to be propagated and the obtained columns of Hessianin the columns indicated by, a,, as, by, b,, bs, andc; are
matrix for each cycle of forward—backward propagation computed by seven cycles of forward—backward propaga-
are listed in Table 1. Correspondingly, the form of the tion. The rest of the elements of the Hessian matrix (i.e. the
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upper-left empty part in the Hessian matrix shown in Fig. 2) isE= (]JZ)Z?LI(;(") —d)?. Assume the differential of the
can be obtained directly from the computed elements by node activation function of the MLP can be expressed as a
using the symmetric property of Hessian matrix shown in function of the node output (e.g. assume the activation func-

Section 2.2.

2.2. Block Hessian matrix and its properties

tion is a sigmoidal function). Then the Hessian matrixzof
with respect to the connections weights of the MLP is a
singular matrix.

In this subsection, we shall study some properties of the Proof. We shall first show that for a fixeth, we have

Hessian matrix of the MLP based on the order-based-

[0 /(oWSII(a T E)/(aw{")] = A}z, wherea| is a constant

derivative formulas derived in the last subsection. Consider determined by the forward—backward propagation compu-

a MLP network withL layers, each layer containing an
extra node (called ‘threshold node’) with fixed activation
value — 1 to provide the threshold value for each node in
the next layer. At first, we show that the Hessian matrix

tation between layer 2 and layer 1. From the forward
propagation rule in Eq. (12), we know that" ;»(S))/(aw(n%) is
proportional tazy”, and the proportional constant, sgy, is
dependent on the node output in concern,zf.sé.Hence we

derived from the order-based-derivative scheme in the lasthave (a* Z%)/(awi) = c92". Considering Eq. (11) for
subsection keeps the symmetric property of a Hessiancomputing[o ™ /(awim][(a* E)/(92%)], sincef’(nefs*?) is

matrix.
Lemma 1 The matrix whose elements are given in Eq. (10)
is symmetric, i.e.

o+ o+
’ 0] ’ )E(Z(L))
Wi awibh

wherez® is the output vector of the MLP.

ot ot
5, e )=
awibhow

n

(14)

Proof. Let E(w®,---w®) represent the error function
EizV) expressed in terms of connection weight vectors,
w® =[], for s = 1, L. According to the concept of
order-based derivative, we have

aTEEY) o -
— E(W(l) W(L)) (15)
I I L 1
i) i)
and
ot ot ?
E(Z(L)) — E(W(l), --',W(L)) (16)
awiphows) owibhows)
Similarly, we can obtain
at ot ?
E(ZV) = E W(l), "',W(L) 17
aWj(iI)(")W(rﬁ% ( ) av\é:)av\éﬁ% ( ) ( )

Since the derivative ordering is changeable for partial
derivative,Eq. (16) is equal to Eq. (17), i.e.

E(Y) =

+ oo+ +
at 9 9 a)E(Z(L)) (18)

+
awibhow) owi owih

This completes the proof.

Notice that the change of derivative ordering in Lemma 1
(see Eg. (14) might not be allowed by other forms of
derivatives, e.g[(0*/9z)(3/z)]E # g(a/ai)(aﬂazi)]E and
[0 /owiIo ™ /(6ZP)]E # [0 T /(Z™)][0 T /(aWED]E.

The following theorem shows an important property of
the Hessian matrix of the MLP.

Theorem 1.Consider a MLP network whose error function

a function of£*"?, the second term of the RHS of Eq. (11)
is proportional toz. Also, sinced ™ /owipya* E/oZ") is
proportional toz§11), the first term of the RHS of Eq. (11)
is also proportional to ZY. Hence the term
9™ lowih(0 " E/o2%) computed in Eq. (11) is proportional
to ZY. This results in the fact that the second term of the
RHS of Eq. (10) is proportional t&”, when Eq. (10) is
used to compute the terfa ™ /(awSH1[(a " E)/(aw{)]. Since
the first term of the RHS of Eq. (10) is also proportional to
ZV | we conclude that

+ o+

awinh ows)

where A}i is a constant determined by the forward—
backward propagation computation between layer 2 and
thejth node of layett + 1.

With the same reason as in the above analysis, we can
prove that the next column of the Hessian matrix associated
with the saman has the same property:

(19)

ot 9TE_
———n =A4j (20)
1 | “n+1
awﬁn)mrlawj(i)

foralll=1,--L—1andij=1,-#. From Egs. (19) and
(20), we find that there exist at least two columns in the
Hessian matrix which are linearly dependent, so the Hessian
matrix is singular. This completes the proof.

In the above theorem, we assume there are at least two
input nodes for a MLP. This assumption is always true if a
threshold node is added to each layer of the MLP. Many
existing literatures point out that the computation of the
Hessian matrix of a MLP is quite complex (Becker and
LeCun, 1989; LeCun, 1989), partly because of the large
size of the Hessian matrix, and to the lack of its network
implementation (such as the form we derived earlier). To
simplify the computation, the diagonal terms of the Hessian
matrix were usually used to approximate the whole Hessian
matrix. From the aforementioned analysis, we clearly see
that such approximation is improper, since the singular
property of the true Hessian matrix of a MLP is not



Yi-Jen Wang, Chin-Teng Lin/Neural Networks 11 (1998) 1607-1622

1613

preserved by the approximating diagonal Hessian matrix. Proof. As we noted in the above thaHE)p) is a
This also explains why Newton’s method based on the (#(p+ l)—l)g#p) X (#pP + 1) — 1)(#p) matrix. Each
diagonal Hessian matrix cannot speed up the weight con-element obep) is computed by Eq. (10). To obtain a set

vergence in MLP learning efficiently (Battiti, 1992). The

of columns ofH f)p) corresponding to some fixad, for n =

network implementation of the Hessian matrix proposed 1,2...,#p, we need to compute the telaﬁ/avv(,ﬁﬁ(f’(nef))),
in the last subsection dose make its computation easier.for s=p + 1,...,L, which requires the computation of the

To further simplify the computation, we shall next derive
a block-diagonal Hessian matrix or block Hessian matrix,
H\, for short, to approximate the true Hessian matrx/n

order-based derivative * 2%)/(swif)) assuming the sigmoi-
dal activation function is used [see the first term of the RHS
of Eq. (10) and the second term of the RHS of Eq. (11)].

the block Hessian matrix, we consider only the second-order From the forward propagation rule in Eq. (12) with initial
order-based derivatives of the error function with res§>ect to valueZP, we have

the two weights in the same layes o™ E)/(awbiowi?),

+ A9
and let the other second-order order-based derivatives to%zcj@)ﬁ» forall p+l=s=L

zero,ie(0t ot E)/(avv(n‘%avvj(i')) = 0 for p # |. This reduces
the computation load of the Hessian matrix greatly. More

pwo) (22)

where ¢® is a constant determined by the connection

importantly, the block Hessian matrix keeps the singularity weights between the node with outpzi(ﬂ+ D and the node

property of the true Hessian matrix as shown in the
following.

with outputZ?, and is thus not a function f”. Hence,
when we compute some specific rovw-dag’) [i.e. the indexes

Consider a MLP with a thres_hold noo!e in each layer. The andj are fixed in Egs. (10)—(12)], the first term of the RHS
elements of the block Hessian matrix of the MLP are f Eq. (10) is proportional ta®.

arranged in the order of layer numbers and indexes of

We shall next show that the second term of Eq. (10) is

weights such that the derivatives with respect to the weights 5i50 proportional ta” when we compute some specific row

in the same layer flock together in a block lying along the
diagonal of the Hessian matrix, i.e.

THY o« o« .
H=| % = Hg’) ¢ * ,
k *k % *
Loxox o ox ox HETD
HY o 0o 0 0 ]
0 0 0 0
He=| 0 0 HP o0 o0 (21)
0 0 0 "~ 0
L0 0 0 0 HVY)

whereH® with dimension (# + 1) — 1)(#p) X (#(p + 1)
— 1)(#p) is the block corresponding to tipgth layer of the
MLP. Notice that ‘— 1’ in the term (#p + 1) — 1) is due to

of Hff’). This is achieved by showing that the first and second
terms of the RHS of Eq. (11) are both proportionatzZ{d.
With the same reason in deriving Eq. (22), we see that the
bias term [i.e. the second term of the RHS of Eq. (11)] is also
proportional toZP, and the proportion constant is deter-
mined by the forward—backward propagation computation
between nodenin layerp + 1 to the specific row position.
As to the first term of Eq. (11), it is obtained by the
backpropagation rule with initial value

at [oTE
owiEh\ 7"

where di is the kth component of the desired output.
According to Eg. (22), Eq. (23) is also proportionalzfﬂ.
Hence the first term of the RHS of Eq. (11) is also
proportional tozP.

This analysis proves that the order-based derivative com-
puted by Eqg. (11) and thus that computed by Eq. (10) are
proportional toaZ”. Hence for a specifim, the adjacent two
columns of theH P’ matrix are proportional & andz”, ,,
respectively. Since the full columns BE” are spanned by
the vectorda ™ /(owWPh][o * /(owP)E] and the earlier analy-

#L

=2

k=1

ot %)
a—rg)n(dk—é) (23)

the threshold node we assumed in each layer except thesis shows that they are also spanned by the vectors

output layer. Hence for the output layer—' 1’ should be
taken out; i.e. the dimension bff]L_l) is (HL)(#(L — 1)) X
(#L)(#(L — 1)). This notation simplification will also be
used throughout the following development.

The following theorem shows that the block Hessian
matrix of a MLP is singular.

Theorem 2 Under the same assumptions in Theorem 1,
each submatritH of the block Hessian matrixd,, is a
singular matrix withrank(H®)= #( + 1) — 1.

o /(owEhlla* /(ow™)E], for m = 1,-# (o + 1) — 1,
we can conclude that ra(ﬂif)p)) = #p+1)—1. This
completes the proof.

This theorem shows that each submatrix (block) of the
block Hessian matrix is singular. This obviously implies
that the whole block Hessian matrix is singular. Since the
rank ong’) is equal to the number of nodes in the layer next
to the layer corresponding " the equality in Theorem 2
usually holds, ie. rard®)=#p+1)—1. Further,
according to the property in Theorem 2, we can decompose
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the H(p) matrix into #p + 1) — 1 submatnces each with
dlmensmn (#0 + 1) — 1)(#p) X (#p). Matrix HP can thus
be represented by

#p+1) -1
HP? = > g®[0 1,29, 044114 (24)
k=1
wheren is the vector derived by Eq. (11) and Eq (19),

is a zero(row) vector containing(#p) zeros, and® is the
output (row) vector of layep.
From numerical optimization theory (Luenberger, 1984),

a system usually has no extreme points if its Hessian matrix
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is as X (#)#HpP + 1) — 1) matrix. Since rank{l) =
#p+ 1) — 1 = s, there exists a series of column operations
such that thes X 1 unit vector, [4,1,,...,1]", can be
spanned by the columns oM. Hence, the vector
VE® ={[(aT E)/(owi?)], -, [(9 Ey@mﬁ?p can also be
spanned by the columns of H and thus
ranH®, VEP] =s. This completes the proof
This theorem shows thatl® and VE® are linearly
dependent. This implies that the block Hessian mattix
is linearly dependent with

vE®D

is singular. However, since there are usually many extreme yg =

points in the error surface of a MLP, especially for large
networks, we expect that, andVE are linearly dependent.
Otherwise, theH, matrix cannot be used for second-order
approximation of theE function in finding the extreme
points of E by Newton’s method. The following theorem
proves this property.

vet—Y

since H, is composed ofHép) as defined in Eq. (21).
Theorems 2 and 3 show that the block Hessian matrix
Hy preserves the singularity and extreme-point properties
of the true Hessian matrid. Hence we can approxmate the

Theorem 3 Under the same assumptions in Theorem 1 and error function of a MLPE = — (1/2)2 1(2‘((” — d)?% by

assuming that the rank &f is #( + 1) — 1 and there is no
zero element iiVE®, then the rank of matrigH® ,VE®] is
also equal to #{+ 1) — 1, whereVE® is the grad|ent of
corresponding to layep.

Proof. By the backpropagation rule, we can derive

— Cmﬁf’)

BW( (25)

where nonzero constaat, is not a function of connection
weights of layer p. For convenience, we let
s=#p+1) — 1.Then Eg. (24) can be rewritten as

> ot E)"
= Z E(kp) [Okli <— =Osfk
ow®

where P = n(p)/ck, and
[(0" E)(@wy), - (0" EN(@w)].

By the symmetrlc property of a Hessian matrix, we have

(26)

[(6T E)/(awP)] " =

Ok—1
s +
(H(P))T_H(P)_ Z " E (E(P))T 27)
b/ =Mp = ow® k
k=1 k
05«

Notice that the matrix

3

)’

Ew)=EWy)+ AW VEWo)+ (/2) AW HyAw. In the
next section, we shall derive an efficient second-order
learning algorithm for the MLP by minimizing such an
approximated error function.

3. Second-order learning algorithm based on block
Hessian matrix

In this section, we shall develop a second-order learning
algorithm for the MLP based on the block Hessian matrix.
By making use of the properties of the block Hessian matrix,
this algorithm can reduce the computation load of the block
Hessian matrix, its inverse, and the process for finding the
least squares solution.

3.1. Inverse of block Hessian matrix

In using Newton’s method to minimize an error function
E approximated by the block Hessian matrix, we need to
solve the linear equationSE = — HpAw. SinceVE and
Hy are linear dependent as shown in the last section, we cannot
compute the inverse of the block Hessian mattik, *,
directly to solve the linear equation8E = — HpAw. To
address this problem, we apply the Levenberg—Marquardt
method to replacel, * by (\ + Hy) ™! (LeCun, 1989; Silva
and Almeida, 1990), wher is an arbitrary small positive
number. Hence, the problem now is to solve the linear equa-
tions, Aw N\ + HpWE e AwP =
— (N +HP)"WVEP p—=12 .| — 1. We shall next pro-
pose an algorithm to simplify the computation @fl +
Hf)”))‘l based on the special property of the block Hessian
matrix.
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According to Eq. (24), the inverse matr{x| + Hf)p))*l E .o according to

can be represented by

Hp+1)—1 AW = — HaVEa (32)

N +HP) = (N + > 20y, In using the above update rule, we usually find the average
k=1 gradient value oves training patterns to ge&¥E,y,, and the
-1 average ofs Hessian matrices corresponding to tke
zp),Oﬁ(p+ 1)—1—k]> (28) training patterns to geH,. From qualitative analysis,

since this approach smooths the update direction and size

forp=1,2,...L — 1. The inverse in Eq. (28) can be easily corresponding to each traipipg pattern, it cannot speed up
obtained by the matrix inverse lemma (Kailath, 1980). The theé convergence speed efficiently. o

matrix inverse lemma saysAf is an invertible matrix, and We shall now adopt the least squares (LS) estimation

andv are two column vectors then the following equality (€Chnique to derive a fast update rule faw. At first, we
holds apply Newton’s method on each individual training pattern

Al AY and produces gradient equations:
u)(v
C14+VIATTu H(x(i)lw(k))Aw = — VE(x(i) w(K)) 33)

Using Eg. (29) recursively, we can find the (f#¢ 1) — fori—1 2
D(#p) X #p + 1) — 1)(#p) inverse matrix of Eq. (28) ;
after #p + 1) — 1 iterations. It takes (#(+ 1) — 1)(#p)
iterations to compute such an inverse matrix in the normal H(x(1) (k) VE(X(L)w(K))
way. Hence, by making use of the singular propertwﬁ’?,

we reduce the computation load Ol —|—ng))‘1 by #p
times.

Another advantage of this method is that the computation
of the matrix inverse can be performed separately for dif- | H(X(s)lw(k)) VE(x(s)w(k))
ferentlayerp,p=1, 2,...,L — 1, due to its recursive form.

This can shorten the duty cycle of computation. Hence, with to obtain

the proposed computation method based on the matrix

inverse lemma, the use of the block Hessian matrix for Aw= — [HIH1+ +HSTHS} 71[HIVE1+ ---+HSTVES]

substituting the diagonal Hessian matrix in Newton's (35)

method can preserve the property of the true Hessian matrix

at the expense of only small extra computation load. whereH; = H(x(i)lw(k)) and VE, = E(x(|)|w(k)) To solve
Eg. (34), we need to f|no[)\|+H Hy+ - +Hg H]

3.2. Least squares update method according to the Levenberg—Marquardt method. By apply-
ing the matrix inverse lemma [Eq. (29)] recursively, this can

Consider that there arg1), x(2),--, X(s) training patterns  pe done incrementally for each availalble, i = 1,2,....s.
for training a MLP. The corresponding desired output Hence to solve Eq. (34), we need to find each Hessian
vectors ared(1), d(2),::-, d(s). The total error function to matrix and the Correspondir@{iTHi)_l, i=1,2,..5s For
be minimized is notation simplicity, we omit the subscript hereafter.

Lo Since H'H is singular, §I + H™H)™ is used to replace
Eota = = 2. Id(i) — 28 0)IP (30) (H™H) ™! as mentioned in the last subsection. To reduce the

2{2 computation load in solving Eq. (34), we use the block Hessian
matrix Hy, to approximateH as discussed in the previous
sections.

Consider the block Hessian matrixl, defined by
Egs. (21) and (24), which are repeated here,

A4+uv)t=A"1_ (29)
-, S. Then we solve the following combination
of equations in the LS sense,

AW = — (34)

where z2V(1), zY@2), -, zV(s) are the network output
vectors corresponding to the inpuigl), x(2),:-, X(s),
respectively. The concept of standard Newton’'s method is
to approximateEw by a second-order functiott g, as
follows

Hy = diagonal H®, H®@, - H{-~1} (36)
EtotaI(W(k) + AW) = EtotaI(W(k)) + (VEtotaI)TAW “ -1
1 . where HP =>¥CT9"4P [0 1,27, 045,114,
+ EAW Hiotal AW, (3D p=12,..., L—1. Due to the block structure of the block
Hessian matrix, the inverse @£l +HJH,) can be obtained
whereH y is the Hessian matrix oE, taking value at by finding the inverse of each block (corresponding to one
weights w(k). Then the minimum points oE. are  layer of the MLP), (Al +(H®?)THP)=Y as we did in

obtained approximately by finding the minimum points of Section 3.1. According to Lemma H;” is a symmetric
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matrix, i.e.(Hf)p))Tz Hf)p), so we have functions with different input—output dimensions as
T B O T ot -1 2 )y ONT examples to test the learning speed and_ convergence
HOYTHO — HOHPYT = P77 12001250 (00 accuracy of the proposed second-order learning algorithm.
It is noted that in applying Newton’s method to minimize
o1 #pt -1 B (T an error function, we simply I¥E = 0 [see Eq. (32)] and
=lIZPI" kzl e () (37) thus the found extreme point could be either a minimum

point or a maximum point. To avoid wrong convergent
forp=1,2,...L — 1. We can then apply the matrix inverse directions in using Newton’s method, we propose three
lemma to find protection methods, denoted by PT1, PT2 and PT3, respec-
Hp+1) -1 -1 tively. In the PT1 method, we compare the directions (signs)
(N +HPHEYHY 1= ()\I + [IZP)]2. Z 1rl(kp)(n(kp))T> of the computediw and — VE. If they are in the same
K=1 direction, then we adopt the updatev. Otherwise, we
(38) update the network weights according te VE. With the
) PT1 method, the network weights are updated by the general
recursively. _ _ gradient descent rule whei{w) is convex, and are updated
Let us now analyze the computation complexity of the by the proposed second-order learning algorithm wev)
above approach. Lef, = (#(p + 1) — By )(#p), whereB, = is concave. In the PT2 method, we reverse the sign of the
lifp#L—1andB,=0if p=L — 1. Forgeneral matrix  pjas term in Eq. (11), and keep the sign of the backpropaga-
muIt|pI|c_:at|oQ, th(_a nu[ntieg of multiplications need_gd iN" tion term in Eq. (11) unchanged. This make@v) become
comput|_r1%|-|Lb 'I'b is D | Si, and the number of additions  ¢qncave when it is convex to push the weights away from
needed i i=_1T(ni — 1)ni. However, if we take the su;gular the maximum points. WheE(w) is concave and near the
property of HpH, into account and computéd,Hp region VE =~ zero, since the backpropagation term in
according to E‘ﬂ' 37), thﬁrlumber of mult|pI2|cat|ons needed £q (11) is dominant (this can be proved by order analysis),
in computingH{Hy is > 5~ H{(#(p+ D —Bm+#+Ml,  the sign change of the bias term will not affect the curvature
anEi_l the ~ number ) of  additons needed is of E(w). The PT3 method is the simplest one; it ignores the
D 2P+ 1) - Bo)np +1np — }1]- Forexample, consider  hiag term in Eq. (11) and leaves only the backpropagation
a four-layer MLP with structursq;, wheren; = 4, n, = term. In the three protection methods, only PT1 computes
9,ng = 4T' The number of multiplications needed for com- e exact block Hessian matrix. However, the (approxi-
puting HpH,, using normal matrix multiplication is 64-  ated) block Hessian matrices computed in all the three
729 + 64 = 857, and the number of additions needed is methods own the properties mentioned in the three theorems
48 + 648+ 48 = 744. For the proposed simplified method, i, gection 2. Especially, these (approximated) block
the number of multiplications needed is{24 + 16 X 2) + Hessian matrices converge to the same curvature, which is

(3+9+81X3)+(4+4+16)= 317, and the number of  yetermined by the backpropagation term in Eq. (11), when
additions needed is 3% 251 + 19 = 305. Further, if the VE ~ zero.

symmetric property of thed, matrix is considered, the We shall next use three typical examples concerning
compu_tatlon qud analyzed previously can be c_ut in half_. single-input-single-output (SISO), multi-input-single-out-
~Again, the singular property of block Hessian matrix ¢ (vIS0), and multinput-multioutput (MIMO) systems,
simplifies the computation oHpHy, greatly in using the  regpectively, to verify the convergence speed and accuracy
LS method for updating network weights. Also, like the f the proposed second-order learning algorithm based on
analysis in Section 3.1, the r(n)a'%nx( inverse lemma reduces ihq plock Hessian matrix under the protections of PT1, PT2
the load in computinghl + (Hy) HE”) ™" by ny/#p times and PT3, respectively. (In the following, we shall call the
as compared with the normal approach. proposed second-order learning algorithm with the PT1,
PT2, and PT3 protection schemes as PT1, PT2, and PT3
methods, respectively, for short.) The performance will be
4. Simulations compared with that of the pure gradient descent rule (i.e.
backpropagation (BP) algorithm), Newton’'s method
In this section, we shall compare the performance of the computing the full Hessian matrixH( method), and the
proposed second-order learning algorithm in Section 3 to simplified Newton’s method computing only the diagonal
that of the pure gradient descent rule (backpropagation Hessian matrix i ; method). Here, the LS update method
algorithm), Newton’s method in which the whole Hessian proposed in Section 3.2 and the PT2 protection method are
matrix is computed, and a commonly used simplified also used in thél method.
Newton's method in which only the diagonal terms of the ~ Example 1 consider a four-layer MLP with structure
Hessian matrix are considered. The performance compari-N,3,; We fix the weights of this network (denoted by
son indexes are learning speed and convergence accuracyteaching MLP’), and use another MLP (denoted by ‘train-
Since the MLP is a universal approximator of continuous ing MLP’) with the same topology to learn the input—output
functions, we shall use three continuously differentiable relationship of the teaching MLP. The training data are



collected by feeding random numbers uniformly distributed convergence curve of the BP algorithm after 400 iterations
in[ — 3.0, 3.0] to the teaching MLP and recording its output is shown in Fig. 3(c). It is observed that the convergence
values. A total of 60 training input—output pairs are accuracy of BP is smaller than that of PT2 by one order,
collected. The weights of the training MLP are initialized even after ten cycles of the learning iterations, which takes
randomly, and then updated by the six first-order and nearly the same actual computation time as PT1 and PT2.

Total error Total error

Total error
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Fig. 3. Convergence curves of various learning algorithmBxample 1
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second-order learning algorithms mentioned previously. Fig. 3(d) shows the learning curve of thigy method, which

The learning results are shown in Fig. 3. Fig. 3(a) and (b) displays poor convergence accuracy. The learning curve of
show, respectively, the convergence curves (accuracy) ofthe PT3 method is shown in Fig. 3(e), which is very similar
the PT1 and PT2 methods after 40 learning iterations. Theto that of the PT2 method in convergence speed and

Table 2

Range of weight variations and convergence accuracy of the training MLP under six different learning algorfxarsje 1wherew

vectors in layek, k = 1,2,3

Y means the weight

Method Iw® — w®o)l Iw® — w@l Iw® — w®l Epochs Error

PT1 0.4046 0.3313 0.8875 40 2.944101°%
PT2 0.3332 0.3255 0.7705 40 178610773
BP 0.0603 0.0454 0.1325 400 7.32010%°%
Hgq 0.2081 0.2807 0.0908 40 1.066 1073
PT3 0.3868 0.2959 0.8507 40 3.23010"°%
H 0.1571 0.0812 0.2189 40 8.1x10™*
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Fig. 4. Repeated tests of convergence accuracy of three learning algorithms: BP (solid line), PT2 (dotted line), and PT3 (brokEndimg)eril

accuracy. The learning curve of themethod under the PT2  Table 2 and Fig. 4, we find that the proposed block-Hessian-
protection is shown in Fig. 3(f). We observe that the pro- matrix-based second-order learning algorithm has much
posed second-order learning algorithm based on the blocklarger search range than the gradient descent method, and
Hessian matrix can achieve nearly the same convergencepreserves high convergence accuracy and speed.
accuracy as that of the Newton’s method that computes Example 2 consider the Vander Pol's equation,
the full Hessian matrix, although the former takes much y(x;,%,) = (1/20)(X;(1 — X3) — X,), which is a two-input—
less computation time per iteration than the latter. Table 2 single-output system. In this example, we use a MLP,
shows the moving distances of the weight vectors of the N3 053 with random initial weights to learn this system.
training MLP (the distance between the final and initial The training data are collected by randomly choosixg (
weight vectors) and convergence accuracy under differentx,) values uniformly distributed in | 2.5, 2.5]X [ — 2.5,
learning algorithms. To obtain reliable test results, we 2.5]. A total of 100 training data are used. The six learning
repeat the above test fifty times; at each time, the weightsalgorithms inExample lare used here again to train the
of the training MLP are re-initialized randomly. In the MLP. The results are shown in Fig. 5. Fig. 5(a) and (b)
repeated tests, we use the BP, PT2, and PT3 methods tehow the learning curves of PT1 and PT2, respectively. It
train the training MLP, and record the respective total appears that the PT2 methods still keeps high convergence
error after 40 (for PT2 and PT3) or 400 (for BP) iterations. accuracy and speed. The learning curve of BP after 800
The results are shown in Fig. 4. It is found that the mean of iterations is shown in Fig. 5(c). The whole actual learning
total errors for the PT2 method is 0.0064, and the standardtime of BP is larger than that of PT1 and PT2, but the
deviation is 0.0056; the mean of total errors for the PT3 convergence accuracy of BP is much worse than that of
method is 0.0151, and the standard deviation is 0.0183;PT1 and PT2. In using thel 4 method, we found that the
the mean of total errors for the BP method is 0.0669, and same\ value in Eg. (28) as that used in the PT1 and PT2
the standard deviation is 0.0437. These statistics numberanethods could not make théy method converge. Hence
are comparable to those in Table 2 in magnitude order. Fromwe reset the parametér from 0.5 X 10~* to 0.5. The

Table 3
Range of weight variations and convergence accuracy of the training MLP under six different learning algorfxarsjite 2wherew® means the weight
vectors in layek, k = 1,2,3

Method Iw® — w®o)l Iw® — w@l Iw® — w®ol Epochs Error

PT1 3.7414 32.1940 2.8925 160 3.92210%°Y
PT2 6.6627 18.9966 3.6575 80 4.8%910"-3
BP 1.9902 1.7518 2.5195 800 45461011
Hq 0.0939 0.0640 1.2062 80 1.454

PT3 7.5917 21.1058 1.9849 80 1.28010""Y

H 4.0045 24.8150 23.047 80 3.0581072




corresponding learning curve is shown in Fig. 5(d),
Displaying similar convergence accuracy and speed to the
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Fig. 5. Convergence curves of various learning algorithniSxample 2

BP method. The learning curves of the PT3 &hdhethods

are shown in Fig. 5(e) and (f), respectively, which are both

Example 3consider a system described by

(X1, %) = [

5

1e sin(x;) — cogX,)
< 4+ cogxp)

> . cos(xl)sin(sz)} ,

similar to the learning curve of PT2. Table 3 lists the range which is a two-input—two-output system, where the two
of weight variations and convergence accuracy under inputs

order learning algorithm, like thél method, shows the

largest search range on the weight space.

Table 4
Range of weight variations and convergence accuracy of the training MLP under six different learning algorfxarsjre 3wherew

vectors in layek, k = 1,2,3

are X;, Xy and
various learning algorithms. Again, the proposed second- (1/5)exd(sin(x;) — cogx,))/(4+ cogx,))] and

the two

outputs are

cosXy)-

sin(2xy). In this example, we use d; 75, MLP, which has
two output nodes, to learn the behavior of this system. The

Y means the weight

Method Iw® — w®)l Iw® — w@)l Iw® — w®o)I Epochs Error

PT1 6.0998 18.0398 5.4619 100 4.868310%4
PT2 3.5607 45,6548 7.3597 80 153910174
BP 2.3501 1.1166 1.8174 800 9.14110%"Y
Hy 0.2883 0.7666 0.6662 80 6.447

PT3 22.4823 49.1420 49.5137 80 6.9%910""1
H 8.1261 12.9116 67.3783 80 3.718107!
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Fig. 6. Convergence curves of various learning algorithmBExample 3

training data are obtained by randomly choosing &) first test, we train the MLP using BP until the learning curve
values uniformly distributed in - 1,1] X [ — 1,1]. A converges stably after about 100 epochs, and then apply PT2
total of 64 training patterns are used. Like the previous on the trained MLP for further training. The corresponding
two examples, six learning algorithms are used to train the learning curve is given in Fig. 7(a) showing that the PT2
MLP, and the results are shown in Fig. 6. The learning method can further reduce the network output error even
curves of PT1 and PT2 are shown in Fig. 6(a) and (b), after the BP learning. In the second test, we train the MLP
respectively. Again PT2 is found to be superior in conver- using PT2 first until converges and then using BP with the
gence accuracy and speed. Fig. 6(c) is the learning curve ofsame learning constant as that used for Fig. 6(c). The learn-
BP after 800 iterations, which takes longer actual computa- ing curve of this test is shown in Fig. 7(b), indicating that the
tion time, but achieves much worse accuracy than PT2. Thelearning constant is too large to keep the minimum point
learning curve of theHy method, as shown in Fig. 6(d), located by PT2. The third test is similar to the second one,
converges when the parameteris reset to be 1.0. The except that the learning constant of BP is reduced by 100
learning curves of the PT3 arld methods are shown in times. The corresponding learning curve is shown in
Fig. 6(e) and (f), respectively, which are both similar to Fig. 7(c), indicating that BP keeps the minimum point
the learning curve of PT2 again. The ranges of weight found by PT2 in this case. These tests show that the learning
variations and convergence accuracy of various learning constant affects the convergence accuracy of BP greatly.
algorithms are listed in Table 4. The aforementioned tests use some hybrid learning

To see the performance of the combination of different schemes, but the PT2 method still show the best
learning algorithms, we did the following extra tests. In the performance.
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locating better local minima than the normal back-
propagation algorithm. Simulation results also show that
the proposed approach has higher learning speed and
convergence accuracy than the diagonal-Hessian-
matrix method. This is consistent with our analysis
result in Section 2.2 that the diagonal Hessian matrix of a
MLP does not own the important properties of the
whole Hessian matrix. In other words, the diagonal
Hessian matrix of a MLP is an ill approximation of
the original Hessian matrix. On the contrary, the block
T L : A ] Hessian matrix discussed in this paper keeps the
(a) Epochs 1001 important properties of the original Hessian matrix.
Hence, the proposed block-Hessian-matrix approach
shows nearly the same convergence accuracy as the one
that computes the whole Hessian matrix; however, the
former needs much less computation power, and thus
has higher learning speed, than the latter. Moreover,
the proposed protection methods associated with the
i block-Hessian-matrix approach can avoid the problem of
wrong convergence directions in the normal Hessian-
matrix-based learning algorithms.

8.80

Total error
4.40

0.00

12.

Total error

e

| | . 5. Conclusion
1. 154. 308. 461,
(b) Epochs A novel second-order learning algorithm for the MLP has
been developed in this article, which represents an attractive
alternative to standard backpropagation algorithms. The
proposed second-order learning algorithm is a revised
Newton’s method, in which the computation of the Hessian
matrix of the MLP {) and its inverse is the kernel part.
Several techniques have been presented in developing this
oL algorithm, including the order-based-derivative approach to
deriving formulas foH, the network implementation ¢4,
a forward—backward propagation scheme for computing
the block Hessian matrix of the MLP to approximétethe
use of matrix inverse lemma to find the inverse of block
Hessian matrix, the least squares update method for
updating the weights of the MLP, and three protection
(e) Epochs methods to insure correct convergence directions. Further,
several lemmas and theorems have been provided to show
the important properties df, and verify that the proposed
block Hessian matrix is a good approximation léf The
theoretic analysis not only uncovers the nature of the
It is noted that the MLPs used in the earlier examples all Hessian matrix of the MLP, but also provides important
have more than two input nodes and use sigmoidal insight into developing an efficient second-order learning
activation functions, so their Hessian and block Hessian algorithm for the MLP. The proposed algorithm has solved
matrices are singular according to Theorems 1 and 2. Thisthe major drawbacks of the standard backpropagation
substantiates the legal usage of the proposed second-ordegilgorithm and of normal Newton’s method in training the
learning algorithm. The previous simulations lead to the MLP. Extensive computer simulations and performance
following discussions. Since the proposed block-Hessian- comparisons with backpropagation algorithm and other
matrix approach is a second-order learning algorithm with revised Newton’s methods have demonstrated the fast
quadratic convergence speed, it, unlike the normal back-learning speed and high convergence accuracy of the
propagation algorithm, can avoid the phenomena of being proposed learning algorithm. Formal mathematic analysis
trapped in the flat region of error surface. This property on the convergence speed and accuracy of the proposed
generates a higher learning speed and probabilities ofsecond-order learning algorithm protected by the

12.

Total error

| " ] +
1. 154. 308. 461.

Fig. 7. Convergence curves of hybrid learning algorithms of BP and PT2 in
Example 3
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