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Recursive Wiener Filter for Motion Parameter
Estimation in Three-Parameter Motion Model

Pei-Chuan Liu and Wen-Thong Chang

Abstract—Motion compensation is used to reduce the displaced
frame difference (DFD) during the video coding. To increase the
accuracy of the point correspondence during the compensation, a
three-parameter motion model is considered. The matching error
can be significantly reduced as compared with that of the two-
parameter block matching. To derive the parameters, a partial
full search method is used. The full search is used when the zoom
value is set at one. Otherwise, the gradient-based algorithm is
used. Since the DFD is a nonlinear function of the image gradients
and the motion parameters, a linearized model is considered.
To eliminate the linearization error, Wiener filtering is used to
smoothen the DFD to improve the convergence condition of the
iterative gradient search. To make the gradient-based search
more robust to the gradient variation, several gradient estimation
methods are also compared.

I. INTRODUCTION

I N video coding, temporal redundancy is removed with
motion compensation. The motion phenomenon between

image objects in the image sequence is usually described
with motion parameters that relate the coordinates of the
same objects in different frames. The two-parameter motion
model for video coding is based on the assumption of two-
dimensional (2-D) translation motion. In many cases, it is not
sufficient to describe the motion phenomenon due to the three-
dimensional (3-D) motion of objects or the zoom and pan
of the camera. Thus the advantage of motion compensation
cannot be fully utilized. For this, a three-parameter motion
model is investigated in this paper to show how the use of
one extra parameter can improve the motion compensation to
reduce the bit rate.

The three-parameter motion model was proposed in [1] with
one parameter to describe the ratio of focal lengths before
and after zooming and two parameters to describe the pan
or translation motion of the camera. In [2], a four-parameter
motion model is discussed. With four parameters, rotation
effect is also considered. Since motion is a relative movement
of objects and the camera, these parameters can also be used
to describe the motion phenomenon of objects between two
consecutive frames due to the 3-D motion of the moving
objects. The purpose of this paper is to discuss methods to
derive the parameters in a three-parameter model. Similar to
the two-parameter case [3]–[12], point correspondence based
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on the luminance comparison is used as the basic mechanism
to iteratively derive the motion parameters.

For block-based coding, common parameters are derived for
a block of pixels with the aim to minimize the total displaced
frame differences. With two parameters, the full search and
other simplified searches such as three-step, conjugate gra-
dient, etc., are widely used to derive the parameter values.
To extend these search methods to the three-parameter case,
however, extensive computation for interpolation of pixels
corresponding to all the possible zoom values is needed.
Thus, to efficiently derive the values of these parameters, a
partial full search is used. The full search is applied when
the zoom value is set at one. Otherwise, the gradient-based
search is used. The gradient-based method is based on a signal
representation model that describes the signal luminance as a
function of the motion parameters and the signal gradient. In
[1], a first-order gradient-based algorithm was considered.

With first-order approximation, the displaced frame dif-
ference (DFD) is described as the product of the image
gradient and the parameter estimation error. This parameter
estimation error is defined as the difference between the true
parameter value and the current estimated one. By iteratively
minimizing the DFD, the parameter estimation error can be
gradually reduced to derive the desired motion parameters. The
performance with this first-order gradient search, however, is
not very satisfactory [1]. Variation of the parameters during
the search process is commonly seen and sometimes the
algorithm diverges. Thus, methods to improve the convergence
condition of the gradient method are of importance for the
three-parameter case.

The problems with the gradient-based method can be due
to many factors such as the signal model, the image gradient,
and the linearization process, etc. For this reason, it is not
commonly used in the two-parameter case. To improve the
performance of [1], solutions to the above three factors are
considered in this paper. To deal with the high-order expansion
terms during the linearization, the Wiener filtering is used to
smoothen the DFD when linearization of the model is used.
The purpose is to make the observed DFD better fits the
linearized model that describes the relation between the DFD
and the motion parameters.

The Wiener filtering [5]–[9] is based on the use of the
second-order statistics. Thus, the correlation functions of the
parameter estimation errors and the random process that mod-
els the high-order expansion terms are considered. In the two-
parameter model, the motion parameters are usually assumed
uncorrelated and a constant diagonal correlation matrix is used.
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The motion parameters in the three-parameter motion model,
however, are correlated. Therefore, the correlation matrix of
the parameter errors is considered. Also, to make the gradient-
based method more robust to the variation of the gradient
estimation, another consideration is the estimation of the pixel
gradients. The effect of the gradient accuracy on the parameter
estimation is profound. Several gradient estimation methods
are compared to make the algorithm more stable to the gradient
variation.

For these regions containing edges and object boundaries,
divergence of the gradient search still cannot be avoided. One
of the reasons is that, in these areas, the assumed signal model
does not fit the actual data, since one extra zoom factor is
still not enough to describe the point movement. To deal
with such situations, we degenerate the three-parameter model
to the two-parameter model. Thus a full search with zoom
factor set at one is used. With the partial full search method,
the minimum DFD from the two searches, the gradient-based
search and the full search, is used during the coding. With
zoom factor set at one, the result is the same as that of the two-
parameter block matching. Thus, the three-parameter model
is used as another extra computation seeking a zoom value
to improve the coding performance of the two-parameter full
search.

To consider the use of the three-parameter motion model,
the rest of this paper is organized as follows. In Section II
we first briefly review the three-parameter motion model. The
signal representation model that describes the relation between
the motion parameters and the displaced frame difference is
derived. Then, in Section III, the Wiener-based algorithm for
parameter estimation is analyzed. Estimation of the related
correlation matrices is also discussed. The effect of gradient
on the estimation accuracy is discussed in Section IV; the
combination of the gradient-based method and the degenerate
two-parameter full search and its use for video coding are
also shown in this section. Finally, a conclusion is made in
Section V.

II. THE SIGNAL REPRESENTATIONMODEL

Based on the Taylor series expansion, a signal representation
model is derived. The first-order signal representation model
describes the displaced frame difference as a function of the
gradient and the parameter estimation error plus an expansion
error.

A. The Three-Parameter Motion Model

The three-parameter motion model can be described as the
transformation of the coordinate

(1)

where and are the coordinates of an image
point before and after movement in the image space. The
parameter describes zooming effect and and describe
panning phenomenon. When the parameter the
three-parameter model will degenerate to the traditional two-
parameter motion model with and To
show the relation between and assuming that

(a)

(b)

Fig. 1. The simulated image (a) Laboratory and (b) Mickey.

a particular point has moved to a new position
with

(2)

where is the 3-D motion vector in the object
space. According to the camera projection rule, in the image
space, we have

and

(3)

From (2) and (3), the relation between and is

(4)

with

Equation (4) describes the relation between the coordinates
of image points and the three parameters to be estimated.
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(a) (b)

Fig. 2. The relationship of the mean and variance of the expansion errorr versus the parameter estimation erroru1 for image “Laboratory.” (a) The
distribution of mean. (b) The distribution of variance (whereu2 and u3 are set to be zero).

B. The Signal Representation Model

Based on the above motion model, we then discuss the
signal that is used to describe the relationship between the
luminance at two image points and the motion parameters.
Based on this signal representation model, many algorithms
can be derived to estimate the motion parameters from the
luminance signal. Let the luminance at position in frame

be denoted as If the motion model is assumed to be
then the relationship between

and can be described as

(5)

The DFD is relative to and as

(6)

where and are the current estimate of the true
motion parameters and . If and approach

and , respectively, then DFD will approach to zero.
That is the DFD is seen as the result of the estimation error
of the motion parameters. Using the first-order Taylor series
expansion, the luminance function at point with
estimated can be evaluated with respect to
the true motion parameter as

(7)

where denotes the sum of the high-order expansion
terms in this Taylor series expansion and is called as the
expansion error in the following.

Substitute (7) into (5) and (6), we have

(8)

To describe (8) directly from the image signal, the gradients
with respect to (w.r.t.) the motion parameters can be replaced

with the gradients w.r.t. the coordinateand . By defining
, we have

(9)

(10)

Thus

(11)

where are directional gra-
dient functions and is the estimation error defined as the
difference between and

Equation (11) describes the DFD as a function of the
parameter error and . This equation is valid only
when these parameter errors are within a certain range. Under
this condition, the expansion errorcan be treated as a random
process with zero mean. To see this phenomenon, the mean
and variance of this expansion error as a function ofare
shown in Fig. 2 for the real image “laboratory” for 900 pixels
with and set to zero. From Fig. 2, it can be seen that
for can be treated as a random process with zero
mean. Fig. 3 shows this phenomenon as a function of. The
range of (or ) can be within about 13 pixels. Out of these
ranges, the expansion errorwill not be a random process and
this signal representation model will not be feasible.

The expansion error in this signal model is also affected
by the accuracy of the gradient. This effect is especially
large for pixels with large coordinates. The product term

can be treated as the first-order
estimate of the DFD value. Therefore, a small estimation error
in gradient will generate large estimation error in DFD. When
compared with the true DFD, the result is a large expansion
error. So the expansion error can be seen as the error in the
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(a) (b)

Fig. 3. The relationship of the mean and variance of the expansion errorr versus the parameter estimation erroru2 for image “Laboratory.” (a) The
distribution of mean. (b) The distribution of variance (whereu1 and u3 are set to be zero).

estimation of the DFD with gradient and parameter estimation
error and

Actually, from (11), it is found that the three-parameter sig-
nal representation model is similar to the two-parameter model.
As derived in [5], the two-parameter signal representation
model is

(12)

with and as the and directional estimation error.
Since and , it can be
seen that (11) and (12) are similar. The difference between
(11) and (12) is the description of the motion phenomenon.
The underlying search procedure for point correspondence
is the same. Both equations indicate that DFD due to the
discrepancy in point correspondence is the product of gradient
and parameter estimation errors. Therefore, the characteristics
of the expansion error and are the same. Based
on this fact, those features and assumptions proposed in [5]
and [6] for the two-parameter case are still valid for the
three-parameter case.

For points of signals, (11) can be written in a matrix
form as

(13)

with

...
...

and

...
...

...

where

— is the true motion parameter vector;
— is the estimated motion pa-

rameter vector at iteration;
— is the estimation error vector.

From (13), it can be seen that the estimation errorbetween
the true value and the estimated one is embedded in the
displaced frame difference and is not explicitly calculatable
due to the error process. In [1], a direct pseudo-inverse is
used to calculate by neglecting the high-order expansion
error . In this paper, we consider a more rigorous approach
by modeling these expansion errors as random variables.

III. T HE WIENER-BASED ESTIMATION METHOD

In the previous section, a signal model has been described.
If the expansion error is neglected, the estimation process
becomes a simple pseudo-inverse computation as shown in
[1]. To obtain better estimation, however, this random error
should be considered. To recover signal from random noise,
the Wiener filter has been shown to be very effective. From
the signal model, the desired signal is and the observed
signal is . The purpose is to recover from , that is, to
calculate the estimated DFD from the true DFD. Therefore, in
the following, we first derive the Wiener filtering process to
show that can indeed be recovered from To estimate

from the knowledge of is essential. If is known,
then, the two processes can be combined into one. For most
applications, however, is usually unknown and an additional
estimation procedure is needed.

A. The Wiener-Based Algorithm

Based on the representation model derived in Section II-B,
(13) may be rewritten as

(14)

where is an matrix and is an
identity matrix. The Wiener-based algorithm is to find a
linear estimator to operate on the displaced frame difference

to estimate the term with the criterion that the mean
square value is minimized. If is known,
minimization of is essentially equivalent to
minimization of Let the linear estimator be
denoted as according to the Wiener-based process [5], [6],
the linear estimator can be described as

(15)
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where and
Because is an identity

matrix, (15) can be written as

(16)

Equation (16) is the Wiener-based estimation algorithm for
the three-parameter motion model. In this algorithm,is
assumed to be a known constant. From (16), it can be seen that
the functionality of the Wiener filter is to use the knowledge of

and to estimate form Its performance
is entirely dominated by the knowledge of these three matrices.
Therefore, to discuss the performance of the Wiener filter, we
need to first discuss the estimation of these three matrices.

B. The Estimation of

As discussed in Section II-B, the characteristics of the
expansion errors in the signal representation models for the
two-parameter and the three-parameter cases are similar. In
[6], for the two-parameter model, the assumption thatis
uncorrelated with has been made based on the observation
that the expansion error is a random signal with zero mean.
For the three-parameter model, as derived in Section II-B, the
expansion error is still a random signal with zero mean when
the estimation error is small. Therefore, the assumption that the
random signal is uncorrelated with the signal is still made
in this three-parameter model. With

(16) will be

(17)

The matrix represents the statistics of the high-order
expansion terms. If the estimation process can gradually con-
verge, the high-order expansion error will gradually decrease
and the matrix will approach to a zero matrix. The
operation matrix will become an identity
matrix and the process can be simplified to be a pseudo-inverse
method. Therefore, the effectiveness of the Wiener filter is in
the initial phase of the estimation process where the estimation
error is still not very small.

After the filtering process, the estimated displaced frame
difference is then used to calculate the desiredwith the
knowledge of . That is

(18)

and

(19)

The Wiener-based algorithm will become

(20)

C. The Estimation of

Actually, it is the correlation matrix that is needed.
By assuming that the gradient is known, we then estimate
the correlation matrix From this, it can be seen that the
Wiener filter itself is a function of the gradient. To evaluate
the performance of the Wiener filter, both the knowledge of
the gradient and the correlation matrix are important.
For the two-parameter motion model in [5], the estimation
errors and are assumed to be zero mean processes and
are uncorrelated to each other. The corresponding correlation
matrix is assumed to be a diagonal identity matrix scaled
by a constant variance In [6], this assumption is also made
but the variance is made adaptive in each iteration. But in
the three-parameter motion model, there exists a strong rela-
tionship among the parameters and The correlations
among and are usually unknown and are dependent
on the motion phenomenon. Thus, in this paper, the matrix

is estimated with

(21)

where is the estimated parameter error in theth iteration
and

D. The Estimation of

In [5], the high-order expansion error in (12) for each
image point is assumed to be an independent, identical, and
zero mean process. In [6], a better assumption is made.
The variance of the expansion error is assumed to be a
function of the gradient and the estimation error From
the second-order Taylor series expansion, the variance
of the expansion error for each image point is estimated
as This error model can
reasonably describe the variance of the expansion error when
the parameter estimation error is small. When the parameter
estimation error is large, the error term will be significant and
the spatial correlation among a block of pixels do exist. In this
case, the estimation of the matrix is of importance. Our
approach is to use as the initial estimate of With
this, the estimate of the current expansion error will be

(22)

where and are from the new correspond-
ing points obtained by With this

is estimated as The new esti-
mated is then used in the Wiener filter to estimate the
new The initial is assumed to be with
proportional to the initial frame difference.

E. The Estimation Procedure of the Wiener-Based Algorithm

Based on the derivations in the above sections, the estima-
tion procedure of the Wiener-based algorithm can be organized
as in the following.
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1) Set the initial values of and .
2) Identify the corresponding points with

.
3) Interpolate the pixel values of the new corresponding

points with bilinear interpolation and estimate the gra-
dients and

4) Calculate the corresponding DFD. If DFD is less than a
threshold, the process terminates.

5) Test the feasibility of the signal representation model for
each new corresponding point.

if threshold, then
else
and then let and

6) Calculate the correlation matrices and accord-
ing to (22) and (23).

7) Calculate the estimation error and the new motion pa-
rameter according to (21).

go to step 2).

There are two purposes for the test measure in step 5). The
first one is to test the feasibility of the signal representation
model for a particular image point. This is because the signal
representation model is good for small perturbation. According
to our simulation, in area with large gradient the expansion
error is usually large. Also, because of the multiplication effect
of the coordinate as mentioned in Section II, the product term

is considered as the test value. If this product
term is large, the expansion error will not be a random signal
with zero mean distribution. Usually, large gradient implies
large variation in the image area. Therefore, the estimation
of gradient can be poor. In this case, the accuracy of the
parameter estimation may be affected. Although, with Wiener
filter, the product term can be recovered. To correctly
derive , a good estimate of is essential. For these two
reasons, a test measure as shown in step 5) is proposed to
exclude points that may affect the estimation accuracy of the
motion parameters. Simulations have indicated that if these
points are not included, the results will be more reliable. The
simulation results are shown in the following section. Based
on these seven steps, the Wiener-based algorithm is repeatedly
applied until the DFD is less than a threshold or a predefined
iteration number is reached.

IV. THE PERFORMANCE EVALUATION

In Section III, the Wiener-based algorithm has been derived
for the estimation of the three motion parameters. Due to the
characteristics of the motion model, the coordinates of the
new corresponding points are usually not integer and are not
available. For this, the bilinear interpolation is used to calculate
the luminance of these new corresponding points.

A. Performance Evaluation of the Wiener-Based Algorithm

The Wiener-based algorithm is derived from a signal rep-
resentation model based on the first-order Taylor series ex-
pansion. The first-order Taylor series expansion is feasible
only when the change of intensity is smooth. With Wiener
algorithm to filter out the expansion error, the result is the
product term From the gradient is estimated to

find the new corresponding points for subsequent iteration.
If the knowledge of is poor, will not be correct. In this
situation, the estimation will take longer time or even diverge.
To show that the Wiener filter can indeed recover from
the noise corrupted DFD as well as the effect of the gradient

on the accuracy of two synthetic images consisting of
Gaussian distributions are used for demonstration. The first
image contains three Gaussian distributions

The second image contains

From these two images, three motion parameters
and for

the six Gaussian distributions are observed. In this simulation,
the gradients are estimated with three different methods.

1) The optimum estimation:

where is the central point of the Gaussian distri-
bution and is the zooming factor. As indicated in step
2), the new corresponding points are usually not integer
for most digital images. For gradient, the nearest integer
points are used for estimation.

2) The six-point estimation:



LIU AND CHANG: RECURSIVE WIENER FILTER 1007

where and are the nearest integer points of
and

3) The two-point estimation:

The simulation results for these six Gaussian distributions
are shown in Table I and Fig. 4. Table I shows the estimated
motion parameters with the three different gradient estima-
tions. Fig. 4 shows the estimation of corresponding to the
movement of to All cases show that the Wiener
filter can indeed recover from the signal representation
model. As can be seen from Fig. 4, however, the effect of
the gradient is very significant. This indicates the importance
of the gradient estimation. For practical applications, gradient
estimation is a major problem that deserves special attention.
Whether or not the process will converge is largely dependent
on the gradient. In the following, we show the applications
for the real images. Two real images named as “Laboratory”
and “Mickey” as shown in Fig. 1 are used for simulation.
The zooming factor for image “Laboratory” is 1.065 or 0.94
depending on the choice of the reference image. The zooming
factor for image “Mickey” is 1.03 or 0.97. Since the gradient is
unknown, both the two-point estimation and the six-point esti-
mation are used. The simulation with “Mickey” at coordinate
( 4, 16) is shown in Fig. 5. The desired motion parameter is
(1.03, 2, 1). The result with two-point gradient estimation is
incorrect. With better six-point gradient estimation, however,
the parameter can be correctly derived. In both cases, the test
in step 5 is applied with set at zero and the threshold set
at 4 million. This means that these points not satisfying the
test are not used in the algorithm. This is just to exclude these
points that may have bad gradient estimation.

To further investigate the effect of the test measure, another
simulation is shown in Fig. 6. The image used for simulation
is the “Laboratory” and the desired motion parameter is (0.94,
2, 0). The coordinate of the test block is (0,4). In Fig. 6, the
six-point method is used for gradient estimation. If all points
are used set at one), however, the result is incorrect. If these
points not satisfying the measure are excluded, the algorithm
converges to the correct value. Two other simulation results
are shown in Tables II and III. Because the zooming parameter
will dominate the estimation process, the accuracy of a1 is
better than that of or .

The test in step 5) is applied in each iteration to examine
the appropriateness of the new corresponding points for use
in deriving the parameter estimation error. By excluding these
points not satisfying the test in step 5), the accuracy of the
Wiener algorithm can be increased. Generally, the block of an
image can be attributed to three different types.

Type 1: Area without zooming or translational phenome-
non.

Type 2: Smooth changing area with zooming or transla-
tional phenomenon.

Type 3: Abrupt changing area with zooming or transla-
tional phenomenon.

TABLE I
THE ESTIMATED MOTION PARAMETERS OF THETHREE SETS OF GAUSSIAN

DISTRIBUTIONS WITH DIFFERENT GRADIENT ESTIMATIONS. THE DESIRED

MOTION PARAMETER IS (a) (1.08, 1, 1) (b) (1.20, 3, 1),AND (c) (1.50, 5, 4)

(a)

(b)

(c)

For block in type 1, the estimated motion parameters will
be close to (1, 0, 0). For block in type 2, the estimated
motion parameters can be close to the desired ones with
our proposed Wiener-based method. Due to the truncation or
interpolation errors, the estimated motion parameters may be
slightly different from the desired ones. For block in type 3,
the estimated parameters generate a corresponding pixel at the
local minimum DFD, which may be away from the point with
global minimum DFD. This is the problem encountered by
most adaptive searching algorithms. To solve this problem,
the concept of simulated annealing algorithm with gradually
decreasing searching tap length may be useful. But this method
is different from our proposed Wiener-based method and
remains an interesting topic for further research.

B. The Combination of Gradient Search
and Full Search with

From the above discussions, it can be seen that for smooth
regions that fit the signal model, the Wiener-based method can
estimates the motion parameters with roughly three iterations.
But, for the areas with edges and object boundaries, the
gradient-based search will tend to diverge and result in higher
bit rates than with the two-parameter model. For these regions,
full search is used to find the motion parameters. Since a single
zoom parameter is still not enough to describe the motion
phenomenon, we choose to degenerate the three-parameter
model to the two-parameter model and use a full search
[12]–[14] with set at one to derive the other two parameters.
This degenerate case will correspond to the conventional two-
parameter block matching.

To see the performance of the combined method, the image
sequence “Football” is used for simulation. The number of
iteration of the gradient search is set at three and the search
window of the full search is 16 16. The simulation results
are shown in Tables IV–VII. Tables IV and VI show the mean
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(a)

(b)

(c)

Fig. 4. The estimated motion parameter (a)a1, (b) a2, and (c) a3 with
the three different gradient estimation methods forS11 andS21 [the desired
motion parameter is (1.08, 1, 1)].

absolute error of DFD for these 11 3 simulated blocks with
both the Wiener-based method and the block matching method.
The corresponding estimated zooming parameter with the
Wiener-based method for each block is presented in Tables V
and VII. From these results, we can classify the image blocks
into three categories.

(a)

(b)

(c)

Fig. 5. The estimated motion parameter (a)a1, (b) a2, and (c)a3 with the
two different gradient estimation methods at block(�4; 16) with the image
“Mickey” [the desired motion parameter is (1.03, 2, 1)].

A: Smooth area without zooming phenomenon.
B: Smooth area with zooming phenomenon.
C: Nonsmooth area or boundary area.

In case A, the two-parameter block matching search is
sufficient. The full search block matching method can derive
the best result. In Tables V and VII the blocks with zooming
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(a)

(b)

(c)

Fig. 6. The effect of test step 5 (a)a1, (b) a2, and (c)a3. The test is at
block (0,�4) with the image “Laboratory” [the desired motion parameter is
(0.94, 2, 0)].

parameter near one belong to this case. In case B, the use of
zoom factor is shown to be useful. The performance of the
Wiener-based gradient search is very stable. In case C, the
gradient-based method is not suitable. It usually diverges or
stays at a local minimum. In this case, point correspondence
is hard to achieve.

TABLE II
THE EFFECT OFTEST IN STEP 5) FOR THE BLOCK IN (0, �4) FOR THE IMAGE

“L ABORATORY.” THE DESIRED MOTION PARAMETER IS (0.94, 2, 0)

TABLE III
THE EFFECT OFTEST IN STEP 5) FOR THE BLOCK IN (68,�23) FOR THE IMAGE

“L ABORATORY.” THE DESIRED MOTION PARAMETER IS (1.065, 1, 2)

During the coding, one byte is used to code the extra
motion parameter. Thus, the coding gain is obtained with
significantly reduced DFD such that the reduction of bit rate
of the subsequent run-length code can compensate for this.
For this, with the combined method, only when the DFD with
the full search is larger than 1.5 times of the DFD with the
gradient-based method, will the zoom factor be considered.
To see the performance of the combined method, comparison
with the method using block matching only is made. In these
simulations the image sequences “Football” and “Tennis” are
used. With one extra byte for zooming factor, the value is from
0–2 with step size 1/128. The quantization step size of the DCT
coefficients is chosen as 24 for luminance component and 16
for chrominance component. The average bit rate, mean MAD,
and percentage of blocks coded with three parameters are listed
in Table VIII. In Fig. 7, the bits/pixel for each frame of the
sequence “Football” is shown. In Fig. 8, the percentage of
blocks that Wiener-based method is effective in the combined
method for the image sequence “Football” is shown. Similar
results for the sequence “Tennis” are shown in Figs. 9 and
10. According to these results it could be found that bit-rate
reduction with the combined method is quite significant. Also,
it can be seen that the zoom factor can be most effectively
derived in the smooth area. In the following, we discuss some
methods to simplify the computation of the Wiener-based
gradient search for these areas.

C. The Performance Comparison with Simplified Method

To see the effect of these correlation matrices on the per-
formance of the Wiener-based method, in the following, three
types of simplified Wiener-based methods are also studied.

1) The Type I Simplified Wiener-Based Algorithm:In this
simplification, the correlation matrix is assumed to be a
diagonal matrix. From this simplification, the influence of the
matrix on the performance of the Wiener algorithm can
be seen. The variance of the expansion error is assumed to be
a function of the gradient and the estimation error. From
the second-order Taylor series expansion [6], the variance
is estimated as

(23)
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TABLE IV
THE MAD OF THE CORRESPONDINGBLOCKS WITH WIENER-BASED/BLOCK-MATCHING METHOD. THESE 11� 3 BLOCKS ARE WITHIN (�216,�40) IN

THE x-DIRECTION AND (0, 48) IN THE y-DIRECTION. THE IMAGES ARE FRAME 1 AND FRAME 2 IN SEQUENCE “FOOTBALL”

TABLE V
THE CORRESPONDINGESTIMATED ZOOMING PARAMETER OF THE ABOVE 11�3 BLOCKS IN TABLE IV WITH WIENER-BASED METHOD

TABLE VI
THE MAD OF THE CORRESPONDINGBLOCKS WITH WIENER-BASED/BLOCK-MATCHING METHOD. THESE 11� 3 BLOCKS ARE WITHIN (�216,�40)IN

THE x-DIRECTION AND (0, 48) IN THE y-DIRECTION. THE IMAGES ARE FRAME 1 AND FRAME 5 IN SEQUENCE “FOOTBALL”

TABLE VII
THE CORRESPONDINGESTIMATED ZOOMING PARAMETER OF THE ABOVE 11� 3 BLOCKS IN TABLE VI WITH WIENER-BASED METHOD

TABLE VIII
THE AVERAGE OF MAD, BITS/PIXEL, AND PERCENTAGE OFBLOCK IN WHICH WIENER BASED METHOD IS

USED IN COMBINATIVE ALGORITHM FOR SIMULATED IMAGE SEQUENCE (a) “FOOTBALL” AND (b) “TENNIS”

(a)

(b)

2) The Type II Simplified Wiener-Based Algorithm:In this
simplification, the correlation matrix is assumed to be a
diagonal identity matrix scaled by a constant variance
With this simplification the algorithm is

(24)

3) The Type III Simplified Wiener-Based Algorithm:In this
type of filter, two simplifications are made. First, the cor-

relation matrix is assumed to be a diagonal identity
matrix scaled by a constant variance Second, the
correlation matrix is also assumed to be a diagonal identity
matrix scaled by the constant variance Both of these two
assumptions are the same as in [5].

The most simple one is the direct pseudo-inverse algorithm.
With direct pseudo-inverse, both the expansion error and the
correlation among the parameter errors are not considered. So,
totally five motion estimation methods are compared. They are:
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Fig. 7. The bits/pixel comparison for image sequence “Football.”

Fig. 8. Percentage of blocks that Wiener-based method is used in the combined estimation algorithm for image sequence “Football.”

1) the original Wiener-based algorithm: named as method1;

2) the type I simplified Wiener-based algorithm: named as
method2;

3) the type II simplified Wiener-based algorithm: named as
method3;

4) the type III simplified Wiener-based algorithm: named
as method4;

5) the direct pseudo-inverse algorithm as in [1]: named as
method5.

The simulation results for these five different algorithms
are shown in Tables IX, X and Fig. 11. In Tables IX and X,
the results of the estimated motion parameters for different
blocks with those five algorithms are shown. In Fig. 11, the

convergence curve for the five different algorithms for the
block in (0, 4) is shown. The test image is “laboratory” with
motion parameter (0.94, 2, 0). In all the simulations, the test
in step 5) is applied and the threshold is set at 4 000 000.
According to these results it could be found that to derive the
correct motion parameters, the processing of the expansion
error with Wiener filter is of use.

V. CONCLUSION

Three-parameter motion model is shown to be effective
for bit rate reduction. To reduce the parameter estimation
complexity, a gradient-based search algorithm is proposed.
The Wiener filter is shown to be effective in suppressing the
linearization error of the signal representation model on which



1012 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 8, DECEMBER 1998

Fig. 9. The bits/pixel comparison for image sequence “Tennis.”

Fig. 10. Percentage of blocks that Wiener-based method is used in the combined estimation algorithm for image sequence “Tennis.”

TABLE IX
THE COMPARISON OF FIVE DIFFERENT ALGORITHMS FOR

THE BLOCK IN (0, �4) FOR THE IMAGE “L ABORATORY.”
THE DESIRED MOTION PARAMETER IS (0.94, 2, 0)

the gradient algorithm is based. The improvement is seen
to be very significant as compared with the direct pseudo-
inverse. The effect of gradient accuracy is also shown to
be significant. Therefore, for application in the real image,

TABLE X
THE COMAPRISON OF 5 DIFFERENT ALGORITHMS FOR THE

BLOCK IN (68,�32) FOR THE IMAGE “L ABORATORY.”
THE DESIRED MOTION PARAMETER IS (1.065, 1, 2)

effective estimation of gradient is of importance. Similar to
the most gradient-based algorithms, to overcome the situations
with nonstationary data or boundary discontinuity is still a
problem for further research.
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Fig. 11. The estimated motion parameter (a)a1, (b) a2, and (c)a3 for five different methods for block in (0,�4) with simulated image “Laboratory”
[the desired motion parameter is (0.94, 2, 0)].
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