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Recursive Wiener Filter for Motion Parameter
Estimation in Three-Parameter Motion Model

Pei-Chuan Liu and Wen-Thong Chang

Abstract—Motion compensation is used to reduce the displaced on the luminance comparison is used as the basic mechanism
frame difference (DFD) during the video coding. To increase the g iteratively derive the motion parameters.
accuracy of the point correspondence during the compensation, a 4 pinck-based coding, common parameters are derived for
three-parameter motion model is considered. The matching error block of pixels with the ai L h | disol d
can be significantly reduced as compared with that of the two- @ DlOCK of pixels with the aim to minimize the total displace
parameter block matching. To derive the parameters, a partial frame differences. With two parameters, the full search and
full search method is used. The full search is used when the zoomother simplified searches such as three-step, conjugate gra-
value is set at one. Otherwise, the gradient-based algorithm is dient etc. are widely used to derive the parameter values
used. Since the DFD is a nonlinear function of the image gradients ’ ; !
and the motion parameters, a linearized model is considered. To extend these 'search methgds to the three-parametgr CASE,
To eliminate the linearization error, Wiener filtering is used to however, e_xtenswe computathn for 'nterpc’lat'O”_Of pixels
smoothen the DFD to improve the convergence condition of the corresponding to all the possible zoom values is needed.
iterative gradient search. To make the gradient-based search Thus, to efficiently derive the values of these parameters, a
more robust to the gradient variation, several gradient estimation partial full search is used. The full search is applied when
methods are also compared. . . .

the zoom value is set at one. Otherwise, the gradient-based

search is used. The gradient-based method is based on a signal
representation model that describes the signal luminance as a

. . . _function of the motion parameters and the signal gradient. In
N video coding, temporal redundancy is removed wit rSN

I. INTRODUCTION

. . Th X h b , a first-order gradient-based algorithm was considered.
I motion compensation. The motion phenomenon bEtweeryy;, st order approximation, the displaced frame dif-
image Ol.)JeCtS in the image sequence is usuglly descrlb@ ence (DFD) is described as the product of the image
with motion parameters that relate the coordinates of tfadient and the parameter estimation error. This parameter
same objects in different frames. The two-parameter moti

. S ) Ltimation error is defined as the difference between the true
model for video coding is based on the assumption of two-

. . . . . rameter val nd th rren im ne. By iterativel
dimensional (2-D) translation motion. In many cases, it is ngta ameter value and the current estimated one. By iteratively

L . . minimizing the DFD, the parameter estimation error can be
sufficient to describe the motion phenomenon due to the three- ) ) )
%radually reduced to derive the desired motion parameters. The

dimensional (3-D) motion of objects or the zoom and pa erformance with this first-order gradient search, however, is
of the camera. Thus the advantage of motion compensat% 9 ' '

cannot be fully utilized. For this, a three-parameter motio & very satisfactory [1]. Variation of the parameters during

model is investigated in this paper to show how the use gr s.teharcg- proces?hm comt?]"noglyt seen andthsometlmes the
one extra parameter can improve the motion compensation gorithm diverges. Thus, methods to improve th€ convergence

reduce the bit rate condition of the gradient method are of importance for the

The three-parameter motion model was proposed in [1] Wimree-parameter case.

one parameter to describe the ratio of focal lengths before! N€ Problems with the gradient-based method can be due

and after zooming and two parameters to describe the ggnmany factors such as the signal model, the image gradient,
or translation motion of the camera. In [2], a four-paramet@d the linearization process, etc. For this reason, it is not
motion model is discussed. With four parameters, rotatiG@mmonly used in the two-parameter case. To improve the
effect is also considered. Since motion is a relative movemdiftrformance of [1], solutions to the above three factors are
of objects and the camera, these parameters can also be G9&gidered in this paper. To deal with the high-order expansion
objects. The purpose of this paper is to discuss methods Itde Purpose is to make the observed DFD better fits the
derive the parameters in a three_parameter mode'_ Sim”arliﬂﬁarized model that describes the relation between the DFD

the two-parameter case [3]-[12], point correspondence bagéyl the motion parameters.
The Wiener filtering [5]-[9] is based on the use of the
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The motion parameters in the three-parameter motion model,
however, are correlated. Therefore, the correlation matrix of
the parameter errors is considered. Also, to make the gradient-
based method more robust to the variation of the gradient
estimation, another consideration is the estimation of the pixel
gradients. The effect of the gradient accuracy on the parameter
estimation is profound. Several gradient estimation methods
are compared to make the algorithm more stable to the gradient
variation.

For these regions containing edges and object boundaries,
divergence of the gradient search still cannot be avoided. One
of the reasons is that, in these areas, the assumed signal model (@
does not fit the actual data, since one extra zoom factor is
still not enough to describe the point movement. To deal
with such situations, we degenerate the three-parameter model
to the two-parameter model. Thus a full search with zoom
factor set at one is used. With the partial full search method,
the minimum DFD from the two searches, the gradient-based
search and the full search, is used during the coding. With
zoom factor set at one, the result is the same as that of the two-
parameter block matching. Thus, the three-parameter model
is used as another extra computation seeking a zoom value
to improve the coding performance of the two-parameter full
search.

To consider the use of the three-parameter motion model,
the rest of this paper is organized as follows. In Section i
we first briefly review the three-parameter motion model. The
signal representation model that describes the relation betweeparticular point(X;,Y;Z;) has moved to a new position
the motion parameters and the displaced frame difference(is,, Y, Z,) with
derived. Then, in Section lll, the Wiener-based algorithm for

(b)
g. 1. The simulated image (a) Laboratory and (b) Mickey.

parameter estimation is analyzed. Estimation of the related Xo =Xy +dX
correlation matrices is also discussed. The effect of gradient Yo =Y, +dY
on the estimation accuracy is discussed in Section IV; the Z, =7, +dZ 2)

combination of the gradient-based method and the degenerate

two-parameter full search and its use for video coding affhere (dX, dY,dZ) is the 3-D motion vector in the object

also'shown in this section. Finally, a conclusion is made gbace. According to the camera projection rule, in the image
Section V. space, we have

[I. THE SIGNAL REPRESENTATION MODEL wn=F-X1/Z4 ynw=F-Y1/Z

Based on the Taylor series expansion, a signal representatiora
model is derived. The first-order signal representation mode

desc_nbes the displaced frame _d|ffe_rence as a function of the wo=F-Xo/Zs yo=F Ys/Zo. 3)
gradient and the parameter estimation error plus an expansion
error. From (2) and (3), the relation betweén;, y;) and(z2,y2) is
A. The Three-Parameter Motion Model Lo =121 + az

The three-parameter motion model can be described as the Y2 = a1y a3 (4)
transformation of the coordinate _

with
(72,92) = A(z1,91) = (a1z1 +az, a1y +a3) (1)
k=dz/~

where (z1,11) and (x2,y2) are the coordinates of an image _ /11 i
point before and after movement in the image space. The ar =1/(1+k)
parameter;; describes zooming effect arnd andagz describe ax =F/(1+k)-dX/Z;
panning phenomenon. When the parameter = 1, the az=F/(1+k)-dY/Z,.

three-parameter model will degenerate to the traditional two-
parameter motion model with, = dz and a3 = dy. To Equation (4) describes the relation between the coordinates
show the relation betwedm:, y1) and(z2, ), assuming that of image points and the three parameters to be estimated.
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Fig. 2. The relationship of the mean and variance of the expansion emversus the parameter estimation errgr for image “Laboratory.” (a) The
distribution of mean. (b) The distribution of variance (wherg and u3 are set to be zero).

B. The Signal Representation Model with the gradients w.r.t. the coordinateand y. By defining
Based on the above motion model, we then discuss e ¥') = A(z,y), we have
S|gqal that is useq to descr.lbe the relatlonsr_np between the as,, as, o' 9S8, Oy
luminance at two image points and the motion parameters. 5 =957 3 5 D (9)
Based on this signal representation model, many algorithms @i lpo.e LGl pg e Y Olilpg e
can be derived to estimate the motion parameters from the Ox' —y 9z _ 1 9z' _ 0
luminance signal. Let the luminance at posit{any) in frame day das das
k be denoted a$;.(x, y). If the motion model is assumed to be ay' oy 0 Ay 1 10
Alz,y) = (a12+ a2, a1y + a3), then the relationship between day B day daz (10)
Si(z,y) and Sy41(z,y) can be described as
Thus
Sk-l—l(xvy) = Sk(A(‘Tvy)) (5) R
R DFD(z, ) = Si(A(z,9)) - S (4(z,))
The DFD is relative toi;, a2, and as as ) )
=Gz + Guy)(ar — 1) + Gu(a2 — a2)
DFD(z, ) = Siy1(2.9) - Sk (Alz,)) + Gylas — s) +7(2,9)
=Spt+1(z,y) — Se(be + a0, 81y + d3)  (6) =(Gor + Gyy)ur + Gouz + Gyus + (2, y)
(11)

where a1, a-, and a3 are the current estimate of the true

motion parameters,,as, andas. If a;,d., andas approach where (G, G,) = (0S,/dz',8S,/dy’) are directional gra-

a1, a2, andag, respectively, then DFD will approach to zerogjent functions and, is the estimation error defined as the
That is the DFD is seen as the result of the estimation erigierence between; and é;.

of the motion parameters. Using the first-order Taylor seriesEquaﬁOn (11) describes the DFD as a function of the
expansion, the luminance function at point= A(x,y) with  parameter errot;, u, and us. This equation is valid only
estimatede = (a1, 42, d3) can be evaluated with respect tQyhen these parameter errors are within a certain range. Under

the true motion parameter; as this condition, the expansion errocan be treated as a random

5 99 process with zero mean. To see this phenomenon, the mean
Si(Alz, ) = Su(A(z,y)) +Z 5 (a; — a;) +r(z,y) and variance of this expansion erzor as a fupctlompfar_e

i1 9% p, e shown in Fig. 2 for the real image “laboratory” for 900 pixels

(7) Wwith u, andug set to zero. From Fig. 2, it can be seen that
for |u1| < 0.13,r can be treated as a random process with zero
where 7(z,y) denotes the sum of the high-order expansiomean. Fig. 3 shows this phenomenon as a functiomofThe
terms in this Taylor series expansion and is called as thenge ofus (or uz) can be within about 13 pixels. Out of these
expansion error in the following. ranges, the expansion errowill not be a random process and
Substitute (7) into (5) and (6), we have this signal representation model will not be feasible.
. . The expansion error in this signal model is also affected
DFD(z,y) = Gar(z,y)(a1 — 41) + Gaz(w, y) (a2 — G2) by the accuracy of the gradient. This effect is especially

+ Gos(z,y)ag — az) +7(z,y) large for pixels with large coordinates. The product term

Sy, (Gox+Gyy)ur+Grus+Gyus can be treated as the first-order
Go,(2,y) = da; : (8)  estimate of the DFD value. Therefore, a small estimation error
- pee in gradient will generate large estimation error in DFD. When

To describe (8) directly from the image signal, the gradientdmpared with the true DFD, the result is a large expansion
with respect to (w.r.t.) the motion parameters can be replacedgtor. So the expansion error can be seen as the error in the
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Fig. 3. The relationship of the mean and variance of the expansion erersus the parameter estimation erigr for image “Laboratory.” (a) The
distribution of mean. (b) The distribution of variance (wherg and u3 are set to be zero).

estimation of the DFD with gradient and parameter estimationFrom (13), it can be seen that the estimation earbetween
error uy, us, and ug. the true value and the estimated one is embedded in the
Actually, from (11), it is found that the three-parameter sigdisplaced frame difference and is not explicitly calculatable
nal representation model is similar to the two-parameter modéle to the error procesk. In [1], a direct pseudo-inverse is
As derived in [5], the two-parameter signal representatiarsed to calculate; by neglecting the high-order expansion
model is error R. In this paper, we consider a more rigorous approach
DFD(z,y) = Gous + Gyuy + ' (z,y) (12) by modeling these expansion errors as random variables.

thh u, andu, as thex andy directional estimgtion error. . THE WIENER-BASED ESTIMATION METHOD
Since u, = wixr + ue and u, = w1y + us, it can be ] . ) )
seen that (11) and (12) are similar. The difference betweenln the previous section, a signal model has been described.

(11) and (12) is the description of the motion phenomenoﬁ.the expansion error is neglected, the estimation process

The underlying search procedure for point corresponderfd@comes a simple pseudo-inverse computation as shown in
is the same. Both equations indicate that DFD due to thH- To obtain better estimation, however, this random error
discrepancy in point correspondence is the product of gradi§fou!d be considered. To recover signal from random noise,
and parameter estimation errors. Therefore, the characteristis Wiener filter has been shown to be very effective. From
of the expansion error(«, y) and(z, ) are the same. Basedth€ signal model, the desired signal@: and the observed

on this fact, those features and assumptions proposed in s{qnal isD. The purpose is to recovéfu from D, thatis, to
and [6] for the two-parameter case are still valid for th&d culate the estimated DFD from the true DFD. Therefore, in

three-parameter case the following, we first derive the Wiener filtering process to
For N points of signals, (11) can be written in a matri>§h°W thatGw can indeed be re_covered f_rom. Tq estimate
u from Gu, the knowledge of@ is essential. IfG is known,

form as
() then, the two processes can be combined into one. For most
D= G(A - A¥ ) +R=Gu+R (13)  applications, howevef is usually unknown and an additional
with estimation procedure is needed.
(r) ,(p) A2 (P
DFD(xl Y1 ) 7(351 Y1 A. The Wiener-Based Algorithm
_ |DFD (xép)7y§p)) r |” (xgp)wgp)) Based on the representation model derived in Section II-B,
: : (13) may be rewritten as
DFD (28, y¥") P+ D=Qe+R (14)
and wheree = Gu is an N x 1 matrix andQ is an N x N
Gt +G oy Go Go identity matrix. The Wiener-based algorithm is to find a
Gwr2+G wmy G o G linear estimator to operate on the displaced frame difference
G= ’ . ; N D to estimate the terne with the criterion that the mean
: : : square valueE{||e — €®||?} is minimized. If G is known,
Guman TG muy Go Gyo minimization of £{||e — ¢'||?} is essentially equivalent to
where minimization of E{|lu — u||?}. Let the linear estimator be

denoted ad., according to the Wiener-based process [5], [6],

— A= T is the true motion parameter vector; . ) )
(a1, a2, as] P the linear estimator can be described as

— Alp) = [a? a8 a)7 is the estimated motion pa-
rameter vector at iteratiop; L= (P.Q" +P.r)(QP.Q" + Pr+ QP.g + PLQ")
— u = [ug,u,us]’ is the estimation error vector. (15)

-1
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where P, = E{ee’} = GP,GY Pr = E{RR"} and C. The Estimation oP, = E{uu’}
P.r = E{eR'} = GE{uR"}. BecauseQ is an identity

. - Actually, it is the correlation matrixP. that is needed.
matrix, (15) can be written as

By assuming that the gradieti is known, we then estimate
o1 the correlation matrix?,. From this, it can be seen that the
L= (Pe+Per)(Pe+Pr+Per+Per) - (16) wiener filter itself is a function of the gradient. To evaluate
the performance of the Wiener filter, both the knowledge of
Equation (16) is the Wiener-based estimation algorithm f@he gradient@ and the correlation matri¥, are important.
the three-parameter motion model. In this algorith@,is  For the two-parameter motion model in [5], the estimation
assumed to be a known constant. From (16), it can be seen m%rsum and Uy are assumed to be zero mean processes and
the functionality of the Wiener filter is to use the knowledge ofre uncorrelated to each other. The corresponding correlation
P, Pg, andP.g to estimateGu form DFD. Its performance matrix P, is assumed to be a diagonal identity matrix scaled
is entirely dominated by the knowledge of these three matricqg,g, a constant variance?. In [6], this assumption is also made
Therefore, to discuss the performance of the Wiener filter, Wit the variances2 is made adaptive in each iteration. But in
need to first discuss the estimation of these three matriceSthe three_parameter motion mode|' there exists a Strong rela-
tionship among the parameters a-, andas. The correlations
B. The Estimation of’.r amongu , u2, andug are usually unknown and are dependent
ol the motion phenomenon. Thus, in this paper, the matrix

As discussed in Section II-B, the characteristics of t . ) .
is estimated with

expansion errors in the signal representation models for tﬁe
two-parameter and the three-parameter cases are similar. In pet) — P pw) | 1 ORI 1)
[6], for the two-parameter model, the assumption thais " p+1- " p

uncorrelated withr has been made based on the observatior}1 @ is th timated ¢ in Wi iterati
that the expansion error is a random signal with zero megh creu 1S the estimated parameter errorin Pl iteration

For the three-parameter model, as derived in Section II-B, tﬁ@d

expansion error is still a random signal with zero mean when . 001 0 0
the estimation error is small. Therefore, the assumption that the PY=10 10
random signat is uncorrelated with the signalis still made 0 01

in this three-parameter model. With{uR" } = E{Ru}” =
0, (16) will be D. The Estimation oPr = E{RR"}

In [5], the high-order expansion errarin (12) for each
image point is assumed to be an independent, identical, and

_ . ) zero mean process. In [6], a better assumption is made.
The matrix Pr represents the statistics of the hlgh—ordt-:ufhe variance of the expansion error is assumed to be a

expansion terms. If the estimation process can gradually cofqction of the gradient and the estimation errar From
verge, the h|g_h—order expansion error will gradually. decreage, <econd-order Taylor series expansion, the variarfce
and the matrixPp wil approiaf:h to a zero matrix. The o¢ e expansion error for each image point is estimated
operation matrixPe(P. + Pr) _ W!II_ become an |dent_|ty as o, = (Giyi 4 1/2G,0iGyyi)ot. This error model can
matrix and the process can be_ simplified to be a pseudo-ln_vel_régsonab'y describe the variance of the expansion error when
method. Therefore, the effectiveness of the Wiener filter is {ie narameter estimation error is small. When the parameter
the initial phase of the estimation process where the estimatiotyimation error is large, the error term will be significant and
error is still not very small. the spatial correlation among a block of pixels do exist. In this

_After the fil_tering process, the estimated displa_ced fran&%se the estimation of the matrl%(é”) is of importance. Our
differenceGu is then used to calculate the desiredvith the approach is to use® as the initial estimate ok +1). With

knowledge of¢G. That is this, the estimate of the current expansion error will be

e=Gu=LD = P.(P.+Pgr)"'D (18) RO — plotl) _ qlot1), () (22)

L=P/(P.+Pp) " (17)

where D@D and GV are from the new correspond-

and
ing points obtained byd®tY = AW 4 4@ With this
u=(G"Q) " G'P.(P. + Pr) D R(PH),IE’%’)I) is estimated aR®*V RP+DT The new esti-
-1 -1 matedP Y™ is then used in the Wiener filter to estimate the
=Gd"e) ¢"eP,G" (GP,G" +Pgr) D R - : ,
(@"6) (_1 + Pr) new u®+1). The initial P}’ is assumed to bed v, with a
=P,G" (GP,G" + Pg) D. (19) proportional to the initial frame difference.
The Wiener-based algorithm will become E. The Estimation Procedure of the Wiener-Based Algorithm
AL AP a 1 B Based on the derivations in the above sections, the estima-
A —AT = = (GTPRIG + P, l) GTPRID- tion procedure of the Wiener-based algorithm can be organized

(20) as in the following.
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1) Set the initial values of?,, Pr and A = [1,0,0]%. find the new corresponding points for subsequent iteration.

2) Identify the corresponding points witliz},2!) = If the knowledge ofG is poor,« will not be correct. In this
(a12; + az,a1y; + as). situation, the estimation will take longer time or even diverge.

3) Interpolate the pixel values of the new correspondinfp show that the Wiener filter can indeed reco¢é from
points with bilinear interpolation and estimate the grathe noise corrupted DFD as well as the effect of the gradient

dients G, and G,,. G on the accuracy ofi, two synthetic images consisting of

4) Calculate the corresponding DFD. If DFD is less than @aussian distributions are used for demonstration. The first
threshold, the process terminates. image contains three Gaussian distributions
Test the feasibility of the signal i | f

5) Test the feasibility o t_e signal representation model for —((& = 50)2 + (y + 50)2)
each new corresponding point. Sii(x,y) =255exp

if (Guw: + Gyy;)? > threshold, ther: = 0 200
elsec = 1 Sia(z,y) = 255 exp <—((3j + 00)
and then letl, < ¢G, andGy < G,

6) Calculate the correlation matric&%? andPg) accord- R —((z — 50)
ing to (22) and (23). S13(#,y) =255 exp

7) Calculate the estimation error and the new motion pa

rameter according to (21). The second image contains
go to step 2). ((x — 51)% + (y + 49)?

There are two purposes for the test measure in step 5). The )

first one is to test the feasibility of the signal representation 51)2

model for a particular image point. This is because the signal )

representation model is good for small perturbation. According 9

to our simulation, in area with large gradient the expansion —((& = 55)° + (y — 54)° )

error is usually large. Also, because of the multiplication effect 200 x (1.50)?

of the coordinate as mentioned in Section I, the product tenfjom these two images, three motion parametdss =

G,z + Gy, is considered as the test value. If this produqtl_()&l’l)TJl2 = (1.20,3,1)T and A3 = (1.50,5,4) for

term is large, the expansion error will not be a random sign@le six Gaussian distributions are observed. In this simulation,

with zero mean distribution. Usually, large gradient impliefhe gradients are estimated with three different methods.
large variation in the image area. Therefore, the estlmatlonl) The optimum estimation:

of gradient can be poor. In this case, the accuracy of the

Sa1(x.y) =255 exp < 300 x (1. 08

((x+47)* + (y -
200 x (1. 20

Sno(,4) =255 exp (

Sas(,4) = 255 exp (

parameter estimation may be affected. Although, with Wiener
filter, the product termGw can be recovered. To correctly
derive u, a good estimate off is essential. For these two
reasons, a test measure as shown in step 5) is proposed to
exclude points that may affect the estimation accuracy of the
motion parameters. Simulations have indicated that if these
points are not included, the results will be more reliable. The
simulation results are shown in the following section. Based
on these seven steps, the Wiener-based algorithm is repeatedly
applied until the DFD is less than a threshold or a predefined
iteration number is reached.

IV. THE PERFORMANCE EVALUATION

In Section 1ll, the Wiener-based algorithm has been derived
for the estimation of the three motion parameters. Due to the

characteristics of the motion model, the coordinates of the G (z;, ;)

new corresponding points are usually not integer and are not
available. For this, the bilinear interpolation is used to calculate
the luminance of these new corresponding points.

A. Performance Evaluation of the Wiener-Based Algorithm

The Wiener-based algorithm is derived from a signal rep- G,(z;, ;)

resentation model based on the first-order Taylor series ex-
pansion. The first-order Taylor series expansion is feasible
only when the change of intensity is smooth. With Wiener

algorithm to filter out the expansion error, the result is the

product termGu. From the gradientG,w is estimated to

G, yi) = 255 exp (‘“xi )l (e k)?))

200 x 72
200 x 72
2 Y
Gy(wi,y:) =255exp <_((3UZ _2J())O ifﬂyz k) ))
200 x 72

where (4, k) is the central point of the Gaussian distri-
bution andr is the zooming factor. As indicated in step
2), the new corresponding points are usually not integer
for most digital images. For gradient, the nearest integer
points are used for estimation.

2) The six-point estimation:

={Se(zil + 1, il = 1)

= S([ws] = L, [wi] — 1)}/4
+ {9k ([z] + 1, [w]) — Sk([wi] = 1, [wi)}/2
+ {5k ([w:] + 1, [ws] + 1)
= Si[wi] = 1, [wi] + 1)} /4
={Sk([zi] = 1, [l +1)
= Si([zs] = 1, [ws] —1)}/4
+ {5k (], [ys] +1) — Se([wa], [wi] — 1)}/2

+{Sk([zi] + 1, [l + 1)
= Si([wi] + 1, [w] —1)}/4
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where[z;] and [y;] are the nearest integer points of
and ;.
3) The two-point estimation:

TABLE |

1007

THE ESTIMATED MOTION PARAMETERS OF THE THREE SETS OF GAUSSIAN

DISTRIBUTIONS WITH DIFFERENT GRADIENT ESTIMATIONS. THE DESIRED

MoTion PARAMETER Is (a) (1.08, 1, 1) (b) (1.20, 3, 1D (c) (1.50, 5, 4)

estimated @; |estimated @, Jestimated a;
Go(wi,yi) = Sk([:] + 1, [wi]) — Sa[z:] — 1, [w:]) optimum 1081 0.964 0.970
Gy(zi,y) = Sul[zi], ] + 1) — Sa([w], [w:] = 1) 6-point 1.065 0.756 0.755
(i) = Suleal, ] + 1) = Sillail, f] = 1) ST T (N
The simulation results for these six Gaussian distributions @
are shown in Table | and Fig. 4. Table | shows the estimated : — ———
. . . . . estimated a; |estimated @, |estimated a;
motion parameters with the three different gradient estima- - T
. . . . . optimum 1.201 3.223 1.109
tions. Fig. 4 shows the estimation df corresponding to the b-point 1174 33582 1411
movement ofS;; to Se;. All cases show that the Wiener 2-point 1140 7338 1.096
filter can indeed recoveGu from the signal representation ®)
model. As can be seen from Fig. 4, however, the effect of
the gradlen_t is very S|gn|f|cant. Thls_mdlcate_s th_e importance estimated a, |cstimated a; Jestimated a;
of t.he grad!ent estimation. For practical appllcauorjs, grad|9nt optimum 1497 2910 4135
estimation is a major problem that deserves special attention.  ¢_point 1483 4.925 3512
Whether or not the process will converge is largely dependent  2-point 1.335 2.925 2.149

on the gradient. In the following, we show the applications
for the real images. Two real images named as “Laboratory”
and “Mickey” as shown in Fig. 1 are used for simulation.
The zooming factor for image “Laboratory” is 1.065 or 0.94 For block in type 1, the estimated motion parameters will
depending on the choice of the reference image. The zoomiog close to (1, 0, 0). For block in type 2, the estimated
factor for image “Mickey” is 1.03 or 0.97. Since the gradient isnotion parameters can be close to the desired ones with
unknown, both the two-point estimation and the six-point estur proposed Wiener-based method. Due to the truncation or
mation are used. The simulation with “Mickey” at coordinaténterpolation errors, the estimated motion parameters may be
(—4, 16) is shown in Fig. 5. The desired motion parameter #dightly different from the desired ones. For block in type 3,
(1.03, 2, 1). The result with two-point gradient estimation i#e estimated parameters generate a corresponding pixel at the
incorrect. With better six-point gradient estimation, howevelgcal minimum DFD, which may be away from the point with
the parameter can be correctly derived. In both cases, the gebal minimum DFD. This is the problem encountered by
in step 5 is applied with: set at zero and the threshold semost adaptive searching algorithms. To solve this problem,
at 4 million. This means that these points not satisfying ththe concept of simulated annealing algorithm with gradually
test are not used in the algorithm. This is just to exclude thedecreasing searching tap length may be useful. But this method
points that may have bad gradient estimation. is different from our proposed Wiener-based method and
To further investigate the effect of the test measure, anothlemains an interesting topic for further research.
simulation is shown in Fig. 6. The image used for simulation
is the “Laboratory” and the desired motion parameter is (0.94,
2, 0). The coordinate of the test block is (94). In Fig. 6, the B. The Combination of Gradient Search
six-point method is used for gradient estimation. If all pointand Full Search withz; = 1

are usedc set at one), however, the result is incorrect. If these From the above discussions, it can be seen that for smooth
points not satisfying the measure are excluded, the algorithgyions that fit the signal model, the Wiener-based method can
converges to the correct value. Two other simulation resuligtimates the motion parameters with roughly three iterations.
are shown in Tables Il and I1l. Because the zooming paramefgiit, for the areas with edges and object boundaries, the
will dominate the estimation process, the accuracy of al ggadient-based search will tend to diverge and result in higher
better than that ofi, or as. bit rates than with the two-parameter model. For these regions,
The test in step 5) is applied in each iteration to examifg|l search is used to find the motion parameters. Since a single
the appropriateness of the new corresponding points for yssom parameter is still not enough to describe the motion
in deriving the parameter estimation error. By excluding the?ﬁlenomenon, we choose to degenerate the three-parameter
points not satisfying the test in step 5), the accuracy of thgodel to the two-parameter model and use a full search
Wiener algorithm can be increased. Generally, the block of a1p]—[14] with a; set at one to derive the other two parameters.
image can be attributed to three different types. This degenerate case will correspond to the conventional two-
Type 1. Area without zooming or translational phenomesarameter block matching.
non. To see the performance of the combined method, the image
Type 2: Smooth changing area with zooming or translaequence “Football” is used for simulation. The number of
tional phenomenon. iteration of the gradient search is set at three and the search
Type 3: Abrupt changing area with zooming or translavindow of the full search is 16< 16. The simulation results
tional phenomenon. are shown in Tables IV-VII. Tables IV and VI show the mean

(©
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Fig. 4. The estimated motion parameter (a), (b) a2, and (c)as with
the three different gradient estimation methods$ei andS; [the desired

motion parameter is (1.08, 1, 1)].

absolute error of DFD for these 14 3 simulated blocks with

Fig. 5. The estimated motion parameter ¢a) (b) a2, and (c)as with the
two different gradient estimation methods at bldek4, 16) with the image
“Mickey” [the desired motion parameter is (1.03, 2, 1)].

A: Smooth area without zooming phenomenon.
both the Wiener-based method and the block matching methodB: Smooth area with zooming phenomenon.
The corresponding estimated zooming parameter with theC: Nonsmooth area or boundary area.

Wiener-based method for each block is presented in Tables Mn case A, the two-parameter block matching search is
and VII. From these results, we can classify the image blocksfficient. The full search block matching method can derive
into three categories. the best result. In Tables V and VIl the blocks with zooming
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Fig. 6. The effect of test step 5 (a), (b) a2, and (c)as. The test is at
block (0, —4) with the image “Laboratory” [the desired motion parameter i

(0.94, 2, 0)].
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TABLE 1l
THE EFFECT OF TEST IN STEP 5) FOR THE BLOCK IN (0, —4) FOR THE IMAGE
“L ABORATORY.” THE DESIRED MOTION PARAMETER Is (0.94, 2, 0)

1009

value of ¢ | estimated a; | estimated a, | estimated a;
1.0 1.00 1.07 -0.16
0.0 0.94 1.34 0.60

TABLE 1l

THE EFFECT OF TEST IN STEP 5) FOR THE BLOCK IN (68, —23) FOR THE IMAGE
“L ABORATORY.” THE DESIRED MOTION PARAMETER Is (1.065, 1, 2)

valuc of ¢ estimated q; | cstimated a, | cstimated a;
1.0 1.062 0.45 0.73
0.0 1.065 0.54 0.96

During the coding, one byte is used to code the extra
motion parameter. Thus, the coding gain is obtained with
significantly reduced DFD such that the reduction of bit rate
of the subsequent run-length code can compensate for this.
For this, with the combined method, only when the DFD with
the full search is larger than 1.5 times of the DFD with the
gradient-based method, will the zoom factor be considered.
To see the performance of the combined method, comparison
with the method using block matching only is made. In these
simulations the image sequences “Football” and “Tennis” are
used. With one extra byte for zooming factor, the value is from
0—2 with step size 1/128. The quantization step size of the DCT
coefficients is chosen as 24 for luminance component and 16
for chrominance component. The average bit rate, mean MAD,
and percentage of blocks coded with three parameters are listed
in Table VIII. In Fig. 7, the bits/pixel for each frame of the
sequence “Football” is shown. In Fig. 8, the percentage of
blocks that Wiener-based method is effective in the combined
method for the image sequence “Football” is shown. Similar
results for the sequence “Tennis” are shown in Figs. 9 and
10. According to these results it could be found that bit-rate
reduction with the combined method is quite significant. Also,
it can be seen that the zoom factor can be most effectively
derived in the smooth area. In the following, we discuss some
methods to simplify the computation of the Wiener-based
gradient search for these areas.

C. The Performance Comparison with Simplified Method

To see the effect of these correlation matrices on the per-
formance of the Wiener-based method, in the following, three
types of simplified Wiener-based methods are also studied.

1) The Type | Simplified Wiener-Based Algorithin: this
simplification, the correlation matri’r is assumed to be a
diagonal matrix. From this simplification, the influence of the
matrix Pr on the performance of the Wiener algorithm can
be seen. The variance of the expansion error is assumed to be

parameter near one belong to this case. In case B, the u
zoom factor is shown to be useful. The performance of the
Wiener-based gradient search is very stable. In case C,
gradient-based method is not suitable. It usually diverges or
stays at a local minimum. In this case, point correspondence
is hard to achieve.

oy = (G

2
Y

a f%mction of the gradient and the estimation ermorFrom
se 0 . . .
e second-order Taylor series expansion [6], the variafice
Eeestimated as

+1/2G00iGyyi) s (23)
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TABLE IV
THE MAD oF THE CORRESPONDINGBLOCKS WITH WIENER-BASED/BLOCK-MATCHING METHOD. THESE 11 X 3 BLocks ARE WITHIN (—216, —40) IN
THE 2-DIRECTION AND (0O, 48) IN THE y-DIRECTION. THE IMAGES ARE FRAME 1 AND FRAME 2 IN SEQUENCE “FOOTBALL”

36.10/5.08  [15.97/7.56  |16.12/23.97 {22.92.29.90 |8.01/5.03 12.55/10.94 |30.77/30.03 [18.86/12.38 |12.90/21.33 |22.79/24.16 [5.20/539

7.25/5.82 9.85/12.37 17.89/17.98 [18.85/27.07 {13.13/11.98 [4.51/4.91 4.24/427 11.62/12.93 [18.12/18.91 [15.19/17.40 |8.58/7.08

7.15/7.08 8.45/8.08 4.80/10.58 |5.53/8.79 13.94/8.54 [9.46/5.51 8.84/7.01 10.97/17.37 |13.52/13.65 18.26/8.14 9.12/7.23

TABLE V
THE CORRESPONDINGESTIMATED ZOOMING PARAMETER OF THE ABOVE 11x3 BLOCKS IN TABLE IV wiTH WIENER-BASED METHOD
1.007 1.016 1.089 1.121 0.961 1.041 1.130 1.049 1.170 1.189 1.245
1.039 1.094 1.100 1.122 1.151 1.081 0.983 1.098 1.179 1.108 1.012
1.046 1.099 t.116 1.127 1.151 1.067 1.026 1.127 1.174 1.149 1.025
TABLE VI

THE MAD ofF THE CORRESPONDINGBLOCKS WITH WIENER-BASED/BLOCK-MATCHING METHOD. THESE 11x 3 BLocks ARE WITHIN (—216, —40)N
THE 2-DIRECTION AND (0O, 48) IN THE y-DIRECTION. THE IMAGES ARE FRAME 1 AND FRAME 5 IN SEQUENCE “FOOTBALL”

6.04/5.65 9.22/5.98 19.25/20.51 |20.40/33.66 [20.40/40.02 }72.08/56.36 [19.67/16.94 |10.63/8.75 }14.93/23.20 |74.06/64.39 |37.26/37.92

9.36/7.71 12.50/9.98 |18.19/14.41 [16.84/46.82 [19.70/69.39 [14.58/88.23 |17.23/47.84 |21.34/18.53 [30.01/25.25 |42.46/68.62 |53.80/48.88

9.28/7.15 16.39/14.93 [12.31/11.51 [7.66/11.67 |16.57/36.69 |11.42/65.34 {11.13/35.03 [11.38/10.81 |25.00/28.86 |28.53/24 87 |17.69/13.93

TABLE VII
THE CORRESPONDINGESTIMATED ZOOMING PARAMETER OF THE ABOVE 11 X 3 BLocks IN TABLE VI wiTH WIENER-BASED METHOD
0.992 0.995 1.063 1.160 1.284 0.930 1.030 1.008 1.178 1.023 0.745
0.992 0.998 1.062 1.166 1.289 1.485 1.591 0.990 1.212 1.424 0.688
1.028 0.942 1.025 1.137 1.280 1.499 1.656 0.931 1.109 1.097 1.053
TABLE VI

THE AVERAGE OF MAD, BITS/PIXEL, AND PERCENTAGE OF BLock IN WHICH WIENER BASED METHOD Is
UsEeD IN COMBINATIVE ALGORITHM FOR SIMULATED IMAGE SEQUENCE (@) “FooTBALL” AND (b) “TENNIS’

Algorithm Average MAD Average bits/pixel  |Percent of block with
wiener
Block-matching 14.55 1.4549
method
Combinative method |13.21 1.3108 18
@)
Algorithm Average MAD Average bits/pixel Percent of block with
wicner
Block-matching 8.83 1.4709
method
Combinative method [8.54 1.4214 6
(b)

2) The Type Il Simplified Wiener-Based Algorithim this relation matrix P is assumed to be a diagonal identity
simplification, the correlation matrif’g is assumed to be amatrix I, scaled by a constant variane€’. Second, the
diagonal identity matrix - scaled by a constant variang®.  correlation matrixP, is also assumed to be a diagonal identity
With this simplificationPg = 021, the algorithm is matrix scaled by the constant variangg. Both of these two

assumptions are the same as in [5].
+(G"G + ng';l)_IGTD, (24) The most simple one is the direct pseudo-inverse algorithm.
With direct pseudo-inverse, both the expansion error and the

3) The Type Ill Simplified Wiener-Based Algorithrm this correlation among the parameter errors are not considered. So,

type of filter, two simplifications are made. First, the cortotally five motion estimation methods are compared. They are:

A(p-I—l) _ A(P)
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Fig. 7. The bits/pixel comparison for image sequence “Football.”
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Fig. 8. Percentage of blocks that Wiener-based method is used in the combined estimation algorithm for image sequence “Football.”

1)
2)

3)
4)

5)

the original Wiener-based algorithm: named as methoddgnvergence curve for the five different algorithms for the
the type | simplified Wiener-based algorithm: named &40ck in (0, —4) is shown. The test image is “laboratory” with
method2: motion parameter (0.94, 2, 0). In all the simulations, the test
. . ) . in step 5) is applied and the threshold is set at 4000 000.
the type Il simplified Wiener-based algorithm: named "’}&ccording to these results it could be found that to derive the
methods3; correct motion parameters, the processing of the expansion
the type lll simplified Wiener-based algorithm: nameeérror with Wiener filter is of use.
as method4;

the direct pseudo-inverse algorithm as in [1]: named as V. CONCLUSION

methods. Three-parameter motion model is shown to be effective

The simulation results for these five different algorithmfor bit rate reduction. To reduce the parameter estimation
are shown in Tables IX, X and Fig. 11. In Tables IX and Xcomplexity, a gradient-based search algorithm is proposed.
the results of the estimated motion parameters for differenihe Wiener filter is shown to be effective in suppressing the
blocks with those five algorithms are shown. In Fig. 11, thiinearization error of the signal representation model on which
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Fig. 9. The bits/pixel comparison for image sequence “Tennis.”
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Fig. 10. Percentage of blocks that Wiener-based method is used in the combined estimation algorithm for image sequence “Tennis.”

TABLE IX TABLE X

THE COMPARISON OF FIVE DIFFERENT ALGORITHMS FOR THE COMAPRISON OF 5 DIFFERENT ALGORITHMS FOR THE
THE BLock IN (0, —4) FOR THE IMAGE “L ABORATORY.” BLock IN (68, —32) FOR THE IMAGE “L ABORATORY.”

THE DESIRED MOTION PARAMETER IS (0.94, 2, 0) THE DESIRED MOTION PARAMETER |s (1.065, 1, 2)

algorithm estimated ¢, | estimated a, | estimated a; algorithm estimated @, | estimated a, | cstimated a;

method] 0.940 1.34 0.60 method1 1.065 0.54 0.96
mcthod2 0.966 1.02 -0.97 method2 1.053 -1.22 0.86
method3 0.965 0.58 -0.73 method3 1.220 -12.45 5.99
method4 1.706 1.29 543 method4 1.541 45.52 4.98
method5 1.695 1.27 5.34 method5 6.00 2100 28

the gradient algorithm is based. The improvement is seeffective estimation of gradient is of importance. Similar to
to be very significant as compared with the direct pseudtite most gradient-based algorithms, to overcome the situations
inverse. The effect of gradient accuracy is also shown tath nonstationary data or boundary discontinuity is still a
be significant. Therefore, for application in the real imaggroblem for further research.
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