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Global stabilization of axial compressors using nonlinear
cancellation and backstepping designs

DER-CHERNG LIAwt and lENG TZE HUANGt

Issues concerning the global stabilization ofaxial compressors are presented. Instead of
locally stabilizing the bifurcated rotating stall equilibria to avoid suddern performance
drop, control schemes are proposed to globally stabilize the unstalled nominal operating
points. These are achieved by employing nonlinear cancellation and backstepping
designs via either throttle or direct mass flow rate control if the compressor character­
istic satisfies the 'left-tilt' property. The designs not only guarantee a safe operation
close to the maximum achievable pressure rise, but the bifurcated system equilibria are
also found 10 be stabilized due to the elimination of the jump phenomenon. Though both
throttle and direct mass flow rate control schemes can be implemented for global
stabilization, numerical simulations demonstrate that direct mass flow rate control
achieves better post-stall system behaviour.

Nomenclature

A amplitude of the first angular mode of rotat­
ing wave.

C:1P non-dimensional pressure rise within the
plenum.

me non-dimensional compressor mass flow rate.
B Greitzer B-parameter, proportional to rotor

speed.
a a geometry-related constant.

W scaling parameter for normalized velocities.
mT non-dimensional throttle mass flow rate.
Css non-dimensional axisymmetric compressor

characteristic.
c; derivative of Css function with its own argu­

ment.
F non-dimensional throttle function.
I control parameter of throttle function.

I. Introduction

Axial flow compressors are widely utilized in both aero­
space and industrial applications because of their poten­
tial of high efficient operations. The efficiency of an

Received 3 February 1997. Revised 17 December 1997. Accepted 22
December 1997.

t Department of Electrical and Control Engineering, National
Chiao Tung University, Hsinchu, 30039 Taiwan, ROC. Fax: 886-3­
5715886. e-mail: dcliaw@nctu.edu.tw.

engine is heavily dependent on compressing the air
prior to combustion to a high pressure condition
(Kerrebrock 1992). However, when a compressor oper­
ates close to the peak of its achievable pressure rise, two
aerodynamic instabilities are likely to occur which
reduce its performance drastically. One is the so-called
'rotating stall', which refers to a dynamic instability that
occurs when a non-axisymmetric flow pattern develops
in the blade passages of a compressor stage. The other is
surge behaviour, which denotes a large amplitude, axi­
symmetric oscillation in the overall pumping system.

Conventionally, a stall (or surge) line is drawn to
provide a boundary of safe operation for compressors.
It is obvious that such a restriction of the feasible oper­
ating region unduly restricts the capabilities of jet
engines. Therefore, recently various control schemes
have been proposed to enable compressors to operate
safely beyond the stall line thereby increasing its effi­
ciency (Paduano et al. 1993, Liaw and Abed 1996,
Krstic et al. 1995b). Among these, bifurcation theory
is successfully applied to stabilize the stalled branch,
which results in a smooth behaviour rather than an
abrupt drop of performance. Hence, the feasible oper­
ating region can be effectively enlarged (Liaw and Abed
1996). An experimental study of that design was also
carried out to demonstrate the applicability to the real
compressors (Badmus et al. 1993).

A Lyapunov function based backstepping design has
been proposed to achieve global stabilization for com-
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1346 Der-Cherng Liaw and Jeng Tze Huang

plenum

Figure I. Schematic diagram of axial flow compression
system.

(2)

(3)

throttle

exitduet

compressor

dme = -.6.P + --!... J2n Css(me + WA sin 0) dO,
dr 2" °

d.6.P I {' '}-- = -2 Ine - lilT ,
dl 4B

~ inlet duct

I

where the definitions of the quantities are given in the
Nomenclature.

In the dynamical equations above, equation (2) is
obtained from a momentum balance and implies that
the acceleration of the fluid in the inlet and outlet
ducts is proportional to the difference between the press­
ure rise across the compressor and the pressure rise in
the plenum. The variable of integration 0 represents the
angular displacement from a reference stationary with
the first harmonic mode of the stall wave (Moore and
Greitzer 1986). Moreover, equation (I) determines the
rate of the amplitude A(I), while equation (3) governs
the change rate of the plenum pressure. In this paper,
the non-dimensional throttle mass flow, mT, is taken as

pressor dynamics (Krstic et al. 1995b). However, the
scheme was designed only for cubic compressor charac­
teristics. Inspired by the works of Krstic et al. (1995b),
in this paper we try to extend the study to the more
general compression systems. There are three major dif­
ferences between the works of Krstic et al. (1995b) and
the study of this paper. Firstly, Krstic et al. tried to
stabilize globally a priori known stalled equilibria,
while we focus on the global stabilization of the
unstalled operating points. Secondly, Krstic et al. only
dealt with the compression systems with cubic com­
pressor characteristics. In this paper, we only require
the compressor characteristics to possess the so-called
'left-tilt' property. Thirdly, instead of using the throttle
as the sole actuator, in this paper two types of actuators
arc considered for the implementation of the design.
One is the modulation of the mass flow directly and
the other is the setting of the throttle. The implementa­
tion of the former actuator can be carried out in several
ways (Hendricks and Gysling 1994).

The paper is organized as follows. rn section 2, the
Moorc-Grcitzer model (Moore and Greitzer 1986) for a
compression system is recalled. A brief description of
compressor dynamics is also given to highlight the moti­
vation of the paper. It is followed by the stabilization
design of the unstalled equilibria via nonlinear cancella­
tion and the backstepping control schemes. In the pro­
posed designs, nonlinear dynamics are suitably cancelled
to attain global stability for the unstalled system equili­
bria. The cubic compressor model is adopted in section 4
to demonstrate the validity of the designs. Finally, a
conclusion is given in section 5.

2. Dynamical equations for axial flow compression
systems

Conccptually, a compression system can be represented
by a series of components comprising inlet duct, com­
pressor, exit duct, plenum, and throttle as depicted in
figure I. In the practical application, the plenum repre­
sents the combustion chamber, while the throttle repre­
sents the first-stage turbine nozzles, The air flow is
normally designed to be axisymmetric in an axial com­
pressor. Though the flow within a compression system is
distributed in nature and can only be described fully by
partial differential equations, however, a lumped-par­
ameter third-order ordinary differential equation
(ODE) model introduced by Moore and Greitzer
(1986) captures the most essential features of com­
pressor dynamics. To adopt the notation of Liaw and
Abed (1996), the model can be represented as

which is the same as the one in McCaughan (1989). The
axisymmetric compressor characteristic CssO is often a
S-shaped function and is modelled as a cubic polynomial
(Moore and Greitzer 1986). Based on the cubic com­
pressor characteristic of Moore and Greitzer (1986), a
bifurcation analysis of the compression system (I )-(3)
was studied by McCaughan (1989). A more general
study was later investigated by Liaw and Abed (1992)
without the assumption of cubic compressor character­
istics.

Normally, the compression system is required to
operate at the so-called 'unstalled equilibrium', i.e.
A = O. Denote x°(-y) = (0,me(-y) , .6.p(-y»T as such an
equilibrium point for given throttle parameter ...,. The
values of m~(-y) and Do pO (-y) can then be obtained
from setting the right-hand side of equations (I)-(3) to

. hi' hi ·0 (A .4})1/2zero. ThIS leads to t e re ations IpS: Ine = ..., tsr:
and Dopo = Css(m~). It means that the unstalled equi­
librium occurs at the intersection of the CssO and the
F(·) function graphed in the .6.p-me phase plane. Thus,
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Global stabilization of axial compressors 1347

where mT is replaced by equation (4) and II denotes the
applied control input. The linearization of system (5)-(7)
at (0, nIt fl.pO)Tgives

3. Global stabilization

In this section, we consider employing nonlinear cancel­
lation and backstepping control schemes to globally sta­
bilize the unstalled compressor dynamics so that the
coexistence of multiple equilibria can be annihilated.
Two types of actuators are considered for the study.
One is the direct mass flow rate control (Hendricks
and Gysling 1994), and the other is the dynamic setting
of throttle. Detailed designs are given as follows.

strates the jumping behaviour of stable system equilibria
near the stall inception point where the solid lines (resp.
dotted lines) denote the stable (resp. unstable) system
equilibria.

The main goal of this study is to design a suitable
control law for eliminating the coexistence of multiple
system equilibria and guaranteeing the stability of the
unique system equilibrium for alii> IC' By continuity,
such design might also prevent the jumping behaviour
for I being close to IC with I < Ic' Details are given in
the next section.

3.1. Direct mass fiow rate control

First, we consider applying the technique of
Proposition 6.3 of Byrnes and Isidori (1991) for global
stabilization of compression systems with control input
appearing at the mass flow dynamics only.
Implementation of such a control algorithm is found
to be carried out in a variety of ways (Hendricks and
Gysling 1994).

Denote (0, 1l1~, fl.pO)T the unstalled operating point.
Let the system state variation be given by XI = A,

x2 = me - nl~,X3 = fl.P - fl.p o. System (1)-(3) becomes

(5)

(6)

(8)

(7)

dX
dI = AX + BII,

dXI a Jh.o ..dt = 7rW ° Css(me + x2 + WXI sm 0) sin OdO,

dX2 °dt = -x3 - fl.p

I J2~+ 27r ° Css(lil~ + x2 + WXI sin 0) dO + II,

dX3 I .° nO 1(2dt = 4B2 {X2 + me -,(X3 + fl.r) },

as the throttle control parameter I continuously varies,
the nominal operating points will trace out a branch of
unstalled equilibria in the phase plane. Moreover, there
usually exist other equilibrium branches, the so-called
'stalled equilibria', i.e. the equilibrium solutions of
system (I )-(3) with A of O.

From Liaw and Abed's work (1996), the linearization
of system (1)-(3), with lilT as in equation (4), shows that
the nominal point is locally asymptotically stable
(resp. unstable) for C;s(m~) < 0 (resp. C;Am~) > 0).
Moreover, the nominal unstalled points are found to
lose linear stability at the point with C;s(m~) = O. The
operating point with C;,(lil~) = 0 is the so-called 'stall
inception point' at which the unstalled and the stalled
equilibria joined as a consequence of the occurrence of
stationary bifurcation. When the system operates at a
point close to the stall inception point, a perturbation
of the throttle control value might lead the compression
system to exhibit a jump from a stable operation to a
further stable stalled equilibrium. This results in a
suddern change of the pressure rise and the occurrence
of rotating stall in the real operation. Moreover, the
system might also run into rotating stall for large
enough disturbance due to the coexistence of multiple
equilibria.

For illustrations, typical bifurcation diagrams and
timing responses for a cubic compressor characteristic
defined as in equation (36) of section 4 are depicted in
figures 2 and 3. In figure 2 (a), the solid lines represent
the stable equilibria while the dotted lines denote the
unstable equilibria as the throttle setting varies.
Denote Is and Ic the values of I a t which the com­
pression system exhibits saddle-node bifurcation and
stationary bifurcation, respectively (McCaughan 1989).
The throttle control functions for I = Is and 1= Ic are
depicted in figure 2 (a) as two dash-dotted lines.
Multiple system equilibria are observed to coexist for
IC ~ I ~ Is' For instance, the two transient trajectories
denoted as I and 2 in figure: 2 (a) go to different final
states for the same value of the throttle control value.
The jump behaviour associated with trajectory 2 is
obviously caused by a large disturbance of the initial
condition. When such a jumping phenomenon occurs,
the system state eventually settles down to an equili­
birum with a finite amplitude of stall wave and a
much lower pressure rise instead of returning back to
the original unstalled equilibrium as trajectory I does, as
depicted in figure 2 (b) and 2 (d). The jumping behav­
iour, as discussed above, might also attribute to a per­
turbation of the throttle control value as depicted in
figure 3. In figure 3 (a), the system jumps to a stable
stalled equilibrium along trajectory 3 for the perturbed
control value 1< IC, as depicted in figures 3 (b)-3 (d).
The bifurcation diagram as depicted in figure 4 demon-
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1348 Der-Cherng Liaw and Jeng Tze Huang
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Figure 2. Time response of uncontrolled pre-stall behaviour.
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Figure 3. Time response of uncontrolled post-stall behaviour.
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1350 Der-Cherng Liaw and Jeng Tze Huang
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Figure 4. Bifurcation diagram of uncontrolled compressor dynamics.

where

(tC,~,(lil~) 0 0

A=
0 C:s(lil~) -I

0
I ,

482 882 (~pO)lf2

and

(10)

(9) It is easy to check that system (5)-(7) is linearly
uncontrollable by using the PBH test (e.g. Kailath
1980). Moreover, XI = 0 always makes the right-hand
side of equation (5) zero. That means the system (5)­
(7) has an invariant manifold with XI = 0 disregarding
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Global stabilization of axial compressors 1351

From the definition of 17, we have m~ + WXI sin e­
(mt + 17) = 2(m~ - nIt) > O. This implies that

+ J~ [Css(m~ + WXI sin e)
11"-0\

- Css(m~ - WXI sine)Jxl sinede}. (13)

for all 17 > O.

the value of u. However, it is known that a system is
nonlinearly stabilizable if it belongs to the family of the
so-called minimum phase nonlinear systems (lsidori
1989). Interestingly, by some reasonable assumptions
on the CssO functions made in the following, the com­
pression systems are found to belong to such a family.

It is known that the axisymmetric compressor char­
acteristic Css is a S-shaped function of the mass flow rate
(Moore and Greitzer 1986). This implies that the char­
acteristic function CssO has a local maximum. Denote
mt the value of mass flux at which Css has its local
maximum value. We have the following result.

Lemma 1: Suppose m~ :::: m~. Then we have XIXI ::; 0
for equation (5) with X2 = 0 if the following two con­
ditions hold:

(i) Css(~) is a monotonically decreasing function for
~::::mt·

(ii) Css satisfies the 'left-tilt' property:

Moreover, XIXI = 0 only occurs at XI = O.

Proof: It is clear that equation (5) with X2 = 0 can be
written as

XI = ...!::..-Jh CsAm~ + WXl sin e) sin ede
1rW 0

= ...!::..- J~ {Css(m~ + WXI sin e)
1rW 0

- CsAm~ - WXI sin e)} sin ede. (II)

First, we consider the case of which m~ - I WXII :::: mt.
Then we have

XI'X'I = 1rC:V 1:{Css(m~: + WXI sin e)

-Css(m~- W:xlsine)}xlsinede. (12)

Since liJ~ - IWXll :::: mt, it is obvious that we have
Xl,XI ::; 0 and XIXI = 0 only occurs at XI = 0 if condition
(i) holds.

Next, we consider the case of which
m~ - IWXII < mt· To facilitate the proof, in the fol­
lowing we only concern ourselves with the case of
Xl :::: O. It is not difficult to construct a similar proof
for the case of Xl < O.

Let 17 = mt - m~ + WXl sine and

e l = sin- l ((m~ - mt)/(Wxl))

for Xl > O. Since m~ - WXI < mt, el is always solvable.
Moreover, it is obvious that 17 > 0 for e l ::; e ::; tt - el •

We then have

and the equality holds only for XI = 0 if the character­
istic function Css satisfies condition (i) of Lemma 1.
Now, it is not difficult to check from equation (13)
that XIXI ::; 0 and XIXI = 0 only occurs at Xl = 0 if
both conditions (i) and (ii) hold. 0

Suppose X2 is selected as the output of system (5)-(7).
Since X2 and X3 are controllable state variables by the
control input u, we then have just shown that the zero
dynamics of system (5)-(7), i.e. equation (5) with X2 = 0,
is globally stable. Motivated by the stabilization results
of Isidori (1989), we can construct a global stabilization
control law for system (5)-(7) via nonlinear cancellation.
Details are given as follows.

Suppose the compressor characteristic function Css is
a C l function. By Mean Value Theorem (e.g. Courant
and John 1989), for given X2 we then have

Css(m~ + X2 + WXI sin e)

= CsAm~ + WXl sin e) + C;s(nl~ + WXI sin e+ (X2) . X2

( 15)

for some (E [0, I]. Now, we construct an energy-like
Lyapunov function for system (5)-(7) as

V(x)=!(xi+x~+4B2x~), (16)

where X = (Xl,X2,X3)T. Taking the derivative of Vex)
along trajectories of system (5)-(7), we have
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1352 Der-Cherng Liaw and Jeng Tze Huang

(21)

V(X) = xl.i·1 + X2.i-2 + 482
. X3'\:3

= 7r(~ {f:~ C,Jlil~ + WXI sin O)XI sin 0dO

+ J:~ x2C:,(IiI~ + Wx\ sin 0 + (X2)XI sin OdO}

. J2rr+ ~: ° [Css(Ii1~ + X2 + WXI sin 0)

- Css(lil~)] dO + X2U

-,X3((X3 + b.pO)I/2 - (b.pO)I/2), (17)

since b.po = C",(Ii1~) and m~ = ,(b.pO)I/2. From
Lemma I, we have

for all XI E R and the equality holds only at XI = 0 if
conditions of Lemma I hold. Moreover, it is not difficult
to check that -,x3((b.po + X3)1/2 - b.po) ::; 0 for all
x3 E R and the equality holds only at X3 = O. Thus,
V(x) in (17) will be a negative definite function if the
applied control input u is chosen so that VI defined
below is a function of X2 only as well as a negative
definite function of X2'

(18)

Obviously, one of such choices for u can be selected as

J
2~

U = -~ C:,(Ii1~ + WXI sin 0 + (X2)XI sin 0 dO
7rW ()

(19)

for all (Xi> X2, XJ) E R3 and V(x) = 0 only occurs at
x=O.

Employing Lyapunov stability criteria (e.g. Vidyasaga
1992), we have the next global stabilization result fol­
lowing directly from the discussions above,

Theorem 1: Suppose m~ 2: m~. Then the system equi­
librium (0, m~, b.pO) of the uncontrolled versionofsystem
(5)-(7) can be globally stabilized by the direct control of
mass flow rate if the compressor characteristic function
C" satisfies the two conditions of Lemma I.

Remark 1: The control input u to fulfil the nonlinear
cancellation as required by the global stabilization
design might seem to be very complicated and hard to
obtain. However, it is only for the proof of the existence
of a global stabilizer for general compressor dynamics.
In fact, especially for polynomial-type Css functions, it is
not difficult to calculate, For instance, to adopt the
cubic compressor characteristic function from Liaw
and Abeds' result (1996), the applied control input u
can be easily calculated as presented in section 4.

3.2. Throllle control

In this section, we extend the global design discussed
in section 3.1 to the case in which the throttle setting is
the only applied control input. The motivation of the
study is that the throttle control will be easier for prac­
tical implementations. However, the nonlinear dynamics
of a compression system is found not to be directly
cancelled by throttle control only. Motivated by Krstic
et al. (1995b), the backstepping control scheme is con­
sidered to fulfil the global stabilization design,

Similarly, denote XI = A, x2 = me - mt x3 = b.P­
b.pO and let, = ,0 + u. Here, u denotes the throttle
control input. The throttle controlled version of
system (I )-(3) becomes:

dXI a J2rr .° ,.-d = - C,,(me + X2 + WXI SIl1 0) SIl1 0 dO,
t 7rW 0

dX2 0 I r .0 '- = -X) - b.P +- Css(me + X2 + WXI SIl1 0) dO,
dt 27r °

(22)

Let the control input u be a function of XI and X2 to
make VI to be negative definite in X2 for all XI E R, We
then have

1/ ( .) - (Y f2rr . C ( .° W '£J)
.\ - 7rW Jo .\ I s" me + XI SIl1 (7

x sin OdO + VI (X2) - ,X3(X3 + b.pO)I/2

::;0 (20)

(23)

Following the backstepping design procedure (Krstic et
al. 1995a), we first try to globally stabilize the subsystem
(21)-(22) by treating X3 as a virtual control input.
According to the discussions in section 3.1, XJ can be
chosen such that for any XI E R the value of V2 defined
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Global stabilization of axial compressors 1353

below is a function of X2 only as well as a negative
definite function of X2'

V(XI,X2'~) = XIXI +X2X2 +4W .~~

=~ {J2~ XI CsAlil~ + WXI sin e) sin ede
7rW °
+ rXlx2C;s(m~ + (X2 + WXI sin e) sin ede}

- X2 X3d

The throttle control system (21)-(23) can then be
rewritten in the new coordinates (XI, X2'~) as

Denote X3d the designed virtual control X3 which makes
V2 to be a negative definite function of X2' It is obvious
that X3d is a function of XI and X2' Similarly, one such
choice of X3d can be obtained as

for some ( E [0, I] and ( is known to be a function of X2
(e.g. Courant and John 1989).

Next, we define the error term ~ of X3 from the
designed function X3d, which makes V2 defined in
equation (24) to be a negative definite function of X2
only, by

(33)x sin ede + V2(X2)'

+X2 '~J2~[Css(m~ +x2 + WXI sine)
27r °

- Css(m~)] de - 4WX3d~

-,o((X3d + ~ + f1pO)I/2

- (f1pO) 1/2)~ - ~(X3d + ~ + f1pO) 1/2u. (31)

By using the definition of V2 as in equation (24), we have

V(XI,X2'~)= 7r7vrCss(lil~ + W"I sine)xl

x sinede+ V2(X2) - 4Fx3d~

-,O((X3d + ~ + f1PJ)I/2 - (f1pO)I/2)~

- ~(X3d + ~ + f1PJ) 1/2u. (32)

From the discussions above and those in section 3.\, the
function V3(XI, X2) defined below will be a negative defi­
nite function in both XI and X2 if X3d is selected to make
V2(X2) as in equation (24) be negative definite.

J
2~

V3(XI, X2) :=~ CsAm~ + WXI sin e)xl
7fW °

(26)

(24)

~:= X3 - X3d'

X3d = ~J2~ XI C;s(m~ + (X2 -+- WXI sin e) sin edIJ
7rW °

I f2~{C ' .° W . e)
-+- 27r Jo .<.<\X2 -i- me -l- XI Sill

- C<s(lil~)} dIJ -l- X2 (25)

Choose an energy-like Lyapunov function V(XI, X2,~)
as

The time derivative of V along trajectories of system
(27)-(29) is then calculated as

u = I 1/2 {-,o((X3d + ~ + f1PJ)I/2
(X3d + ~ + f1pO)

- (f1pO)I/2) - 4B2~3d + 0 (35)

if X3d + ~ + f1pO i= O. Similarly, by employing
Lyapunov stability criteria and the discussions above,
we have the next theorem.

Theorem 2: Suppose m~ ;:::: mt, Then the unstalled equi­
librium point (0,m~, f1pO) of the uncontrolled version of

First, it is observed from equation (31) that V(XI,X2'O
will be a negative definite function in XI, X2 and ~ if the
applied throttle control u is chosen so that

V4 := -,o((X3d + ~ + f1po) 1/2 _ (f1pO)I/2)~

- 4B2~3d~ - ~(X3d + ~ + f1pO)I/2 u (34)

is a function of ~ only as well as a negative definition of
~. From equation (34), one choice of such u can be
selected as

(29)

(27)

(28)

. \ {' ° ° 0)1/2}~ = 4B2 me + X2 -, (X3d + ~ + f1P

. I ( 0)1/2- X3d - -0 X3d + ~ + f1P u.
4B-

+ 2~ J:~ Css(m~ + X2 + WXI sin e) de,

J
2~

'~I =~ Css(m~+X2+ WXlsine)sinlJdlJ,
7rW °
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1354 Der-Cherng Liaw and Jeng Tze Huang

(38)

- 1.5(/h~ - I ?)X2 - 1.5(/i1~ - I )x~ - 0.5x~ + UI,

dX2 2 ·0 2 2 2-1- = -X3 - 0.75 W (me - I)X1 + (1.5 - 0.75 W XI
(/

C;s(me) = dC~s~me) = 1.5[1 - (me _ 1)2). (40)
me

It is not difficult to check that Css has a local maximum
at me = 2 by letting the right-hand side of equation (40)
be zero and checking the second derivative of Css with
respective to rile. That is, we have m~ = 2, Moreover,
we have negative values of C;s(mcl for all me > m~.

Furthermore, for 1] > 0 we have

Css(m~ -1]) - Css(m~ + 1]) = 1] + 1]3 > O. (41)

we have

Thus, the cubic compressor characteristic Css as in
equation (36) satisfies the two conditions of Lemma I.
According to Theorems I and 2, there exist both direct
mass flow and throttle control laws to globally or
near-globally stabilize all the unstalled equilibrium

(0, mt fJ.pO) of compression system with m~ 2: m~ and
m~ = "I(fJ.pO) 1/2 while fJ.pO = Css(m~) for given "I = "10.
Now, we can construct the stabilizing control laws by
following the derivations as in section 3. Details are
given as follows.

Case I. Direct mass flow rate control
First, consider the case of which UI i 0 and U2 = O.

Rewriting equation (37), we have

dXI . { ( .° )2 3 2 2}d/ = (!'XI 1.5 - 1.5 me - I - iiW X\

- I.5O'xIX2[X2 + 2(/i1~ - I)]. (42)

Thus, the value of VI defined in equation (18) is
obtained as

VI = -1.5O'xTx2[X2 + 2(m~ - I)J

+ X2 ' {-0.75 W2(m~ - I )XT

+ [1.5 - 0.75W2xT - 1.5(m~ - 1)21x2

- 1.5(m~ - I)x~ - 0.5x~ + UI}' (43)

globally stabilize unstalled system equilibria. First, we
check whether the conditions of Lemma I will hold for
the compressor characteristic Css as given in (36). By
taking the first derivative of CssCme) with respect to
me, we have

Choosing

III = 1.5O'xT[x2 + 2(m~ - I)J+ 0.75W2xT(m~ + X2 - I)

+ l.5(m~ - I)x~, (44)

VI (X2) = [1.5 - 1.5(m~ - I)2]X~ - 0.5x~. (45)

It is obvious that VI is a negative definite function of
X2 for all /i1~?: m~ = 2. Numerical simulations with
"I = 1.2 and "I = 1.281 are shown in figures 5 and 6,
respectively, to demonstrate the stabilization results of

(37)

(39)I (fJ. ° )1/2-482 P +x3 u2,

system (21)-(23) is near-globally stabilized by throttle if
the axisymmetric compressor characteristic Css satisfies
the two conditions of Lemma I.

Note that the total pressure rise fJ.P is known to be
fJ.p = fJ.po + X3d + E, which is a positive value in prac­
tical application. Thus, in the practical application the
throttle control input u as in equation (35) is always
solvable.

We have the specific compression system model as given
by

dXI _ . ( , .0 2 3 2.2
d/-a.\j{1.5-1.5 x2+ me- l ) -ii W xd,

4. Illustrative example

In the following, numerical simulations are presented to
demonstrate the application of the proposed control
algorithms to a given compressor dynamics. Here, we
adopt thc cubic axisymmetric compressor characteristic
from (Liaw and Abed 1996) as given by

C.,.,(/he) = 1.56 + 1.5(/he - I) - 0.5(lile - 1)3. (36)

d,\'3 I .° ° ° 1/2-1- =-2 {X2 + me - "I (X3 + fJ.P })(/ 48

where 1/1 and U2 denote the direct mass flow rate and
throttle control, respectively. In the following numerical
study, we assume only one of them will be in effect for
the control application.

The system equilibrium for unstalled operation (i.e.
A = 0) and stalled operation (i.e. A i 0), as depicted
in figure 2, are ob'tained by using the numerical con­
tinuation and bifurcation analysis code AUTO
(Doedel 1981). Here, the values of "I corresponding to
the occurrence of saddle-node bifurcation and sta­
tionary bifurcation are determined as "Is = 1.4638 and
"Ie = 1.254. Typical responses of the uncontrolled ver­
sion of system (37)-(39) are shown in figures 2 and 3,
where the system parameters are selected as a = 0.4114,
W = 1.0, and 8 =0.35. Detailed descriptions have been
presented in section 2 for illustrating the goal of this
study.

It is observed from figures 2 and 3 that compressors
will exhibit the jumping behaviour. In the following, we
will try to apply Theorems 1 and 2 as in section 3 to
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Figure 5. Time response of pre-stall behaviour with and without direct mass flow rate control.
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3 I 1
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2 - controlled
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Figure 6. Time response of post-stall behaviour with and without direct mass flow rate control.
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Global stabilization of axial compressors 1357

both pre-stall and post-stall behaviours via direct mass
flow rate control. In both figures 5 and 6, trajectories [
and 2 denote the timing responses of compression
system without and with control, respectively. As dis­
cussed in Liaw and Abed's (1996) work, the unstalled
equilibrium points (i.e. A = 0) after the stall inception
point, will become unstable since C;,(m~) > O.
Moreover, the system is found to be uncontrollable via

direct mass flow rate control. Thus, the timing response
of post-stall behaviour will eventually go to some c1ose­
by stalled operating point (i.e. A i= 0) even after adding
control as depicted in figure 6. However, there is a big
difference between the uncontrolled behaviour and con­
trolled behaviour. That is, as depicted in figure 7, there
will be no sudden pressure rise drop for the controlled
system as those found in the bifurcation diagram of the

2.5

-0.5

o .. __ "-----1

A

2

2.5

3

1.5

3.5

4,--,---,-----.----,------.
6P

0.5
-1 L-__--'--__---' ....L.J

o21.510.5
0"-'---'-----'-----'---'-----'
o

(a) (b)

Figure 7. Bifurcation diagram of compressor dynamics with direct mass flow rate control.
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Figure 8. Time response of pre-stall behaviour with and without throttle control.
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Figure 9. Time response of post-stall behaviour with and without throttle control.
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Figure 10. Bifurcation diagram of compressor dynamics with throttle control.

uncontrolled system as depicted in figure 4. In addition,
it is observed from figure 7 that all the stalled equilibria
are found to be asymptotically stable, which becomes a
by-product of the design. As shown in figure 7 (a), the
value of the pressure rise of the controlled operating
point after stall inception point is much higher than
that of the pre-stall equilibria. That means lots of con­
trol efforts might be consumed through direct mass flow
rate control input. This is impractical for real implemen-

tation. As discussed in section 2, the goals of this study
are only to eliminate the jump behaviour from the
unstalled operating point and to provide the global sta­
bility of the unstalled equilibria before the stall inception
point. The dynamical behaviour of post-stall operation,
which is not close to the stall inception point, is not of
interest in this paper. Thus, the proposed direct mass
flow rate control scheme is recommended for the global
stabilization of unstalled equilibria but not stalled ones.
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Global stabilization of axial compressors 1361

Case 2. Throttle control
Next, we consider employing a throttle control

scheme to globally stabilize the unstalled operating
points of system (37)-(39) with m~ 2: 2. Choose

X3d = -1.5axf[x2 + 2(/il~ - I)] - O. 75W2xf(m~ + X2 - I)

- 1.5(/il~ - I)x~. (46)

We then have V2(x) = VI (X2), where VI(X2) is deter­
mined in (43) above. Thus, we have the tracking error

~ = X3 - X3d

=X3 + 1.5axf[x2 + 2(m~ - I)] + 0.75W2Xf(m~ +.':2 - \)

+ l.5(m~ - I )x~ (47)

and the applied throttle control input U2 can be selected
as defined in equation (35) by substituting X3d and ~ with
those given in (46) and (47), respectively.

Numerical results for pre-stall and post-stall behav­
iour of the throttle controlled system are shown in
figures 8 and 9 to demonstrate the effectiveness of the
stabilization design. The static settings of throttle con­
trol parameter 'Yo are chosen as 1.2 and 1.281 for figures
8 and 9, respectively, which are the same as those dis­
cussed above. A bifurcation diagram of compressor
dynamics with throttle control is obtained in figure 10.
lt shows that there does not exist multiple system equi­
libria for all 'Y 2: 'Ye' In addition, there is no jumping
behaviour for the stable system equilibria which are
close to the stall inception point.

5. Conclusion

In this paper, we have proposed control schemes for the
global stabilization of unstalled compressor dynamics.
lt is demonstrated by the numerical example that not
only the global stabilization of unstalled compressor
dynamics has been successfully achieved, but also the
phenomena of abrupt change of pressure rise of the
stalled behaviour at the operating point near the stall
inception point has been eliminated. Though our design
of using throttle control is the same as that proposed by
Krstic et al. (I995b), however, there are two main differ­
ences between two studies. Firstly, we focus on the sta­
bilization design of the unstalled equilibrium branch but
not stalled ones as discussed in (Krstic et al. 1995b).
Secondly, we study the general stabilization problem
for compressor dynamics satisfying 'left-tilt' property
but not for a specific compression system only.
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