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Subwavelength spatial solitons of TE mode
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Abstract

The wave equation of TE subwavelength beam propagations in a nonlinear planar waveguide is derived. This equation
contains more higher-order linear and nonlinear terms than the nonlinear Schrodinger equation. The analytic solution of TE¨
subwavelength spatial soliton is found to be the same as the conventional spatial soliton in amplitude but different in phase.
The numerical results show that the analytic solution is stable. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Spatial solitons in a nonlinear planar waveguide due to
the balance of the diffraction and the self-focusing have

w xbeen studied both theoretically and experimentally 1,2 .
The propagation of spatial solitons are commonly de-

Ž .scribed by the nonlinear Schrodinger equation NSE which¨
is derived by making the paraxial approximation. How-
ever, when a beam width is as narrow as one wavelength
or less the validity of the paraxial approximation becomes
questionable. To resolve this problem, the full-vector non-

w xlinear Maxwell’s equations was solved 3,4 , but it is very
time consuming. In addition, some researchers suggest
considering the additional terms in NSE to enhance the

w xvalidity of the wave equation 5,6 . It is shown that when
the additional terms including a polarization-dependent
correction to the soliton propagation constant exists, the
dynamics of a narrow spatial soliton with an arbitrary

w xpolarization will be influenced 5 . By using the wave
w xequation of TM mode in Ref. 5 , they analyze the effects

of those addition terms on the shapes of bright and dark
w xsolitons of TM mode with a fixed polarization 6 .

In this paper, we will derive the propagation equation
for a TE subwavelength beam in a nonlinear planar wave-
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w xguide by the iteration method 7 . The derived equation
contains more higher-order linear and nonlinear terms than
the NSE. An analytic solution of the subwavelength spatial
soliton of TE mode can be found and the numerical results
show that this analytic solution is stable.

2. Derivation of the wave equation

We now derive the wave equation which can describe
the propagations of subwavelength beams of TE mode in a
nonlinear planar waveguide. The electric field E of the
light obeys the vector wave equation

v 2n2 v 2 102
= Ey Eq P q = =PP s0, 1Ž .Ž .NL NL2 2 2c c ´ n ´0 0 0

where ´ is the vacuum permittivity, n is linear refrac-0 0

tive index, v is the light frequency, c is the velocity of
light in vacuum, and P is the third-order nonlinearNL

polarization and

3´0 Ž3. )P s x vsv qv yv E E E ,Ž .Ž . ÝNL i , j ,k , l j k l j k li 4 j ,k , l

Ž3.Ž .where x v is the third-order susceptibility, i, j, k, and
l refer to the Cartesian components of the fields.
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For a TE mode of the planar waveguide, we consider
the propagation of one-dimensional beam along z-direc-
tion with a uniform field in the y-direction. The electric

w xfield of the light can be taken as 5

E x , z syA x , z exp ik z , 2Ž . Ž . Ž .Ž .ˆ y 0

Ž . Ž .where A x, z is the envelope and k s n vrc is they 0 0

propagation constant. The total refractive index is given by
< < 2 < < 2nsn qn E sn qn A , where n is the Kerr co-0 2 0 2 y 2

Ž (3) .efficient and n s 3x r8n .2 y y y y 0
Ž . Ž .Substituting Eq. 2 into Eq. 1 , we obtain

E 1 E 2 1 E 2
2< <i A q A qg A A sy A 3Ž .y y y y y2 2E z 2k 2kE x E z0 0

Ž .where gsk n rn . To normalize Eq. 3 , we make the0 2 0

following transformations:

P' n0 0
A x , z s u h ,j ss u h ,j , 4aŽ . Ž . Ž . Ž .y (N n2

xsw h , 4bŽ .0

zsL j 4cŽ .d

wŽ . Ž 2 2 .x1r2where the parameter Ns n P r k w n is the2 0 0 0 0

order of the spatial soliton and Ns1 for the fundamental
soliton, w sw r1.763 and w is the full width at the half0 F F

Ž .maximum FWHM of the beam, P is peak power of the0
Ž .incident beam, the parameter ss1rk w s0.28 l rw0 0 0 F

and l s2prk is the wavelength of the light in the0 0

waveguide, and L sk w2 is the diffraction length. Byd 0 0
Ž . Ž . Ž . Ž .using Eqs. 4a , 4b and 4c , Eq. 3 can be normalized

to:

E i E 2 is 2 E 2
2< <us uq i u uq u. 5Ž .2 2Ej 2 2Eh Ej

3. Iterative method

Now we use the iterative method to replace the second
Ž 2 2.derivative E rEj u term by the higher order diffraction

Ž .linear and nonlinear terms, such that the wave equation
can be simplified without making the paraxial approxima-

Ž 2 2.tion. First, neglecting the second derivative E rEj u in
Ž .Eq. 5 and assigning the equation remaining as the wave

equation of the zero order approximation:

E u
sH , 6Ž .ž /Ej 0

where

i E 2
2< <Hs uq i u u. 7Ž .22 Eh

Fig. 1. Power evolution of the beam shape for the TE soliton at
Ž . Ž . Ž . Ž . Ž .zr z s0 dashed curve , zr z s10 solid curve , zr z s0 0 0

Ž .20 thick solid curve .

which is the well-known NSE for spatial soliton propaga-
Ž .tions. By differentiating Eq. 6 with respect to j , the

Ž 2 2.second derivative E rEj u can be approximated to:

E 2 E H
u s , 8Ž .2ž / EjEj

1

which is assigned as the first order approximation. Substi-
Ž . Ž .tuting Eq. 8 into Eq. 5 , we obtain the wave equation of

the first order approximation:

E u is 2 E 2

sHq u . 9Ž .2ž / ž /Ej 2 Ej1 1

The process repeats until the expression of the second
Ž 2 2.derivative E rEj u does not change for the required

order, so that we can obtain an accurate wave equation that
includes only the first distance derivative without making
the paraxial approximation.

If we only take into account up to terms of the order of
2 Ž 2 2.s , the second derivative E rEj u does not change after

one iteration:

22 4 2E 1 E E u E u
2

)< <u sy uy2 u y u2 4 2 ž /ž / ž /4 EhEj Eh Eh
1

2
E u

4< <y2 uy u u. 10Ž .
Eh
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Fig. 2. The phase versus propagation distance for the TE soliton
Ž .with higher-order terms solid curve and without higher-order

Ž .terms dashed curve .

Ž . Ž .Substituting Eq. 10 back into Eq. 5 , we obtain the
wave equation of the second order approximation:

2 2 4E u i E s 1 E
2< <s uq i u uq i y u2 4Ej 2 2 4Eh Eh

222E u E u E u
2 4

)< < < <y2 u y u y2 uy u u .2 ž /ž / Eh EhEh

11Ž .

For higher-order approximation, we should have s 4r4
terms. These terms are much smaller than s 2r2 terms

2 Ž . 2when s r2<1. Therefore, Eq. 11 is valid when s r2
is sufficient smaller than unit.

4. Solution and discussion

Ž .We have found that the Eq. 11 has a spatial soliton
solution and it is:

u j ,h ssech h exp idjr2 , 12Ž . Ž . Ž . Ž .
Ž 2 .where ds1y s r4 . To numerically simulate the soli-

Ž .ton propagation governedly that Eq. 11 is indeed an exact

Ž . 2solution for Eq. 11 , we take w s0.6l , i.e., s r2fF 0
Ž .0.1. We use split-step Fourier method to solve Eq. 12 .

Fig. 1 shows the evolution of the pulse shape for spatial
soliton of TE mode in a nonlinear planar waveguide. It is
seen that the beam propagates undistortedly over 20 z ,0

Ž .and z s pr2 L is the spatial soliton period. In Fig. 2,0 d

we show the phase versus propagation distance. The change
of this phase is consistent with the analytic result. There-
fore, the analytic soliton with a modified phase in a soliton
solution.

5. Conclusion

In conclusion, we have derived an accurate wave equa-
tion from the Maxwell’s equations beyond paraxial ap-
proximation by the iterative method for the subwavelength
optical beam propagation in a nonlinear planar waveguide.
The derived equation of the TE mode contains more
higher-order linear and nonlinear terms than the nonlinear
Schrodinger equation. We have found an analytic spatial¨
soliton solution from the derived equation, and the ampli-
tude of spatial soliton is the same as that of the conven-
tional spatial soliton but its phase becomes smaller. The
numerical results show that this spatial soliton is stable for
the subwavelength optical beam propagation in a nonlinear
planar waveguide.
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