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The mapping of an n-dimensional uniform dependence algorithm onto a linear
processor array can be considered as a linear transformation problem.  However, to
find a linear space-optimal transformation is difficult because the conditions for
checking a correct mapping and the space cost function do not have closed-form
expressions, especially when the index set J of an n-dimensional algorithm is of an
arbitrary bounded convex index set.  In this paper, we propose an enumeration
method to find a space-optimal PE allocation vector for mapping an n-dimensional
uniform dependence algorithm with an arbitrary bounded convex index set onto a
linear processor array, assuming that a linear schedule is given a priori.
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1. INTRODUCTION

Usually the performance of an algorithm on a processor array is measured by
two cost parameters: the space cost and the time cost.  The space cost is the number
of processing elements (PEs) used to implement the algorithm on the processor
array, and the time cost is the total execution time needed to execute the algorithm
on the processor array.  The space cost is directly determined by the PE allocation
function, and the time cost is determined by the scheduling function.  In this paper,
we address the space-optimal mapping problem of uniform dependence algorithms
onto linear processor arrays.

Uniform dependence algorithms [1] are characterized by uniform data depen-
dencies and unit-time computation.  Informally, a uniform dependence algorithm
is represented by a subset (called index set) of multidimensional integer points
(called index points) and a finite set of constant data dependence vectors.  The
index set of an algorithm is a finite convex subset of Zn [2].  The minimal convex
polytope or convex hull R bounding the index set is usually a nondegenerated
convex polytope in Rn.  We call n the dimension of the index set and the algorithm
an n-dimensional uniform dependence algorithm.
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Previous research on space-optimal mapping of n-dimensional uniform depen-
dence algorithms onto k-dimension processor arrays can be divided into two cat-
egories.  The first category focuses on the mapping of n-dimensional algorithms
onto (n – 1)-dimensional processor arrays.  There are two types of space-optimal
designs for this group: nonlinear space-optimal design and linear space-optimal
design.  A nonlinear space-optimal design uses nonlinear processor assignment
such that the number of PEs used is equal to the maximum number of simul-
taneously executable index points allowed by the given linear schedule [3-8].  A
linear space-optimal design uses linear processor assignment such that the number
of PEs used is equal to the minimum number of PEs that such a linear projection
function can give [9,10].

The second category focuses on the mapping of n-dimensional uniform de-
pendence algorithms onto k-dimensional processor arrays, k < n – 1.  Most works
dealing with optimal lower dimensional processor array design have focused on
linear time-optimal and linear space-optimal designs.  In [11, 12], methods to
design asymptotically linear space-optimal arrays were proposed.  In [13, 14],
Ganapathy and Wah proposed a generalized parameter method (GPM) to
synthesize lower dimensional systolic arrays from n-dimensional uniform recur-
rences.  They proposed an enumeration search procedure to find an optimal
design which is either linear time-optimal, linear space-optimal, or the optimal of
the product of space and time.  However, there are some drawbacks in using the
GPM to find an optimal design for mapping an n-dimensional uniform
dependence algorithm with an arbitrary bounded convex index set into a processor
array.  In the GPM method, the objective function must be derived by the user.
In most cases, objective functions expressed in terms of the parameters of the
GPM are difficult to derive since this depends on the size and the shape of the
index set.

In this paper, we formulate the space-optimal objective function directly in
terms of the PE allocation vector and propose an enumeration procedure for linear
mapping of an n-dimensional uniform dependence algorithm with an arbitrary
bounded convex index set onto a linear processor array.  The enumeration procedure
finds a space-optimal PE allocation vector for the mapping, assuming that a valid
linear schedule has been given a prior.  Based on this approach, a tool called
SODTLA (Space-Optimal Design Tool for Linear Array) was developed to find
a space-optimal PE allocation vector without intervention by the user.  Given the
specifications of the index set, the data dependence vectors, the linear schedule,
and I/O space [15] for each variable of the algorithm, SODTLA automatically
finds a linear space-optimal array with a minimum number of PEs used for a
uniform dependence algorithm with an arbitrary bounded convex index set.  In our
approach, the problem of minimizing the number of PEs used is reduced to the
problem of minimizing the norm (length) of the PE allocation vector S, where the
norm is defined with respect to a dual body R*, and R* is derived from the index
set J of the n-dimensional uniform dependence algorithm.  Two lower bounds on
the norm of PE allocation vectors, one for an arbitrary convex index set and the
other one for a constant-bounded index set [16], are also derived for use in the
enumeration procedure.
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In the next section, we will formulate the space-optimal linear array problem
and describe the target linear array model.  In Section 3, we will show that the number
of PEs used for a PE allocation vector S is related to the norm of S.  In Section
4, we will propose an enumeration procedure to find the space-optimal allocation
vector.  We also will derive some lower bounds on the norm of PE allocation
vectors in this section.  In addition, the maximum bounding box which bounds the
values of the entries of all feasible PE allocation vectors will also be derived here.
Finally, some concluding remarks will be given in Section 5.

2. FORMULATION OF THE SPACE-OPTIMAL LINEAR
ARRAY PROBLEM

The mapping of an n-dimensional uniform dependence algorithm onto a
1-dimensional processor array can be considered as a linear transformation problem.
The linear transformation is represented by a 2 × n matrix, the first row of which
denotes the linear scheduling vector (Λ), and the second row of which con-
stitutes the linear PE allocation vector (S).  This linear transformation maps the
index set of a uniform dependence algorithm to a 1-dimensional time domain and
a 1-dimensional space domain.  The computation of an index pointin x  in index set
J is scheduled for execution on the PE at location Sx  at time Λx .

The linear array model used in this paper is depicted as follows.  We assume
that the linear array model has enough processors and data links required to
implement the n-dimensional uniform dependence algorithm.  For each data
dependence vector d  in an n-dimensional uniform dependence algorithm, there
exists a directed data link between any two adjacent PEs at location p and at
location p + 1.  Assume that the evaluation of a computation by a PE takes unit
time.  Then, the number of buffers on the link(s) of length Sd is Λd  – 1.  This
linear array model is the same as that in [11, 13-15, 17, 18], which represents the
typical properties of VLSI processor arrays, namely, simple and regular intercon-
nection patterns between PEs.  Since this model does not allow data broadcast-
ing, the distance traveled by a data token along data link(s) must be less than the
number of buffers on the data link(s), i.e., Sd ≤ Λd  for each data dependence
vector d .

Observe that the PE allocation vector S is the normal vector of the parallel
hyperplanes covering the index set J, and that Sx  represents an index of a PE ex-
ecuting the computation of the index point x  ∈ J.  Given the PE allocation vector
S, to count the number of parallel hyperplanes covering J, the greatest common
divisor of the entries of S must be equal to one.  Also, notice that the number of
PEs used to implement an n-dimensional uniform dependence algorithm for a
given PE allocation vector S is equal to p(S) = 1 +    maxx1, x2 ∈ J S(x1 – x2) .

When mapping an n-dimensional uniform dependence algorithm onto a linear

array, a correct linear transformation   Λ
S  must satisfy the following conditions:

Precedence Constraint: For all data dependence vectors d , Λd  ≥ 1.  This means
that a computation is executed only after all the computations on which it
depends have been executed.
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Computation constraint:  For any two index points x1, x2 ∈ J, x1 ≠ x2 if and only
if Λx1 ≠ Λx2 or Sx1 ≠ Sx2.  This means that no two computations are executed
at the same PE at the same time step.

Data Link Constraint:  There is no data collision in the data links of the linear
processor array.

To identify a linear transformation without violating the computation con-
straint and the data link constraint, various closed form conditions were derived in
[11, 13-19].  However, no general closed form conditions were derived for an
arbitrary bounded convex index set in their papers.  Thus, we use the unified approach
proposed in [15] for the checking of the computation constraint and the data link
constraint.  It is the same as the one of checking the existence of non-zero integer
solutions x  to a generic problem:

  Bx = 0

  – a < x < a . (2.1)

In the case of checking a computation constraint, B is the linear transforma-
tion matrix T, and –   a < x < a  specifies the size of the index set J of the algorithm.
In the case of checking a data link constraint, B is a matrix whose columns are the
displacement (i.e., directional distances) of the data elements in the I/O space along
each dimension, and –   a < x < a  specifies the size of the I/O space.  To elaborate,
we formulate the space-optimal linear array problem as follows.

Space-optimal linear array problem:  Given an n-dimensional uniform dependence
algorithm with index set J, dependence matrix D = [d1, …,  dm], I/O space for
each variable, and a linear schedule vector Λ, find a PE allocation vector S
∈ Z1×n such that it minimizes

  max S(x1 – x2)

subject to 

    ΛD ≥ 1
Solving the generic problem (2.1) to check

the computation constraint and the data link constraint
gcd (s1, …, sn) = 1

Sdi ≤ Λdi, i = 1, …, m

x1, x2 ∈ J

S ∈ Z 1 × n

where the index set J = {xAx ≤ b, A ∈ Za×n, b ∈ Za, x ∈ Zn} is a convex polytope.
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In the following discussion, we will call a PE allocation vector a feasible

allocation vector if   Λ
S  is a correct mapping for a given linear schedule Λ.  In the

next section, we will show that the number of PEs used for an allocation vector S
is related to a norm defined with respect to a dual body R*, which is derived
from index set J.

3. DISTANCE FUNCTION AND PE ALLOCATION VECTOR

First, we will present the concept of a norm used in this paper.  A norm is
used to measure the length of a vector.  Usually, a norm can be defined by the
concept of Distance function.  A distance function f of a vector x  with respect to
a convex, compact and symmetric set R* is defined as follows [20, p. 110]:

   f (x) = minl{l > 0 x / l ∈ R*} . (3.1)

Geometrically, f(x ) is the minimum scaling factor for R* to contain the vector
x .  From this definition of f(x ), we see that the minimum value of l occurs when
x /l is the point on the boundary of R*.  For example [21], the distance function
f(x ) of a vector x  = (x1, …, xn)T with respect to R* = {(r1, … , rn)||r1… +rn ≤ 1}
in Rn is the l1-norm ||x|| =    Σ i = 1

n xi.  See Fig. 1 for the case n = 2.

Fig. 1.  The distance function f((x1, x2)T) =    Σ i = 1
2 xi or the l1-norm with respect to

R* = {(r1, r2) –1 ≤ r1 + r2 ≤ 1, –1 ≤ r1 – r2 ≤ 1}.
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Given the index set J, the R* of the distance function f(x ) can be derived as
follows.  Let R be the minimal convex polytope bounding index set J of a uniform
dependence algorithm.  The difference body of R is defined as

   (R – R) = {(x1 – x2) x1 , x2 ∈ R} . (3.2)

The dual body R* of (R – R) is convex and symmetric about the origin and
is defined as

   R* = {η xTη ≤ 1, ∀x ∈ (R – R)} . (3.3)

In [9], Wong and Delosme used f(x ) to derive the upper bound of the length
of the optimal projection vector.

Observe that the number of PEs used to implement an n-dimensional uniform
dependence algorithm for a given PE allocation vector S is equal to p(S) = 1 +

   maxx1, x2 ∈ J S(x1 – x2) . In [22], we derived that f(Λ) =    maxx1, x2 ∈ J Λ(x1 – x2)  for a given
linear schedule vector Λ.  Thus, f(S) =    maxx1, x2 ∈ J S(x1 – x2)  for a given PE allocation
vector S.  Since S, x1, and x2 are integer vectors, f(S) is an integer number.
Therefore, f(S) + 1 is the number of PEs used for the PE allocation vector S, where
the greatest common divisor of its entries is equal to one.  We will give an example
to illustrate the above argument.

Example 1: In the LU decomposition problem, a given matrix C is decomposed
into C = L ⋅ U, where L is a lower triangular, and U is an upper triangular matrix.
This problem can be formulated as a 3-dimensional uniform dependence algorithm
[23] with index set J = {(i, j, k)1 ≤ i, j, k ≤ N, 0 ≤ i – k ≤ N – 1, 0 ≤ j – k ≤ N –
1} and dependence matrix D = [   d1 d2 d3], where  d1

T  = (1, 0, 0),  d2
T  = (0, 1, 0) and

 d3
T  = (0, 0, 1).  In Fig. 2, we show the minimal convex polytope R bounding the index

Fig. 2. The minimal convex polytope R bounding the index set J of the LU-decomposition
problem.
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set J.  Notice that the index set J is the integer points in R.  In Fig. 4, we show the
difference body (R – R) of R, and the dual body R* is shown in Fig. 5.  Let allocation
vectors S1 = (1, 1, 1) and S2 = (2, 2, 2).  From Fig. 3, we see that the number of
hyperplanes (PEs) with normal vector S1 covering the index points of index set J
is equal to 9 + 1 = 10.  Since  ξ T  = (1/9. 1/9, 1/9) is the intersection point of vector
S1 and the boundary of R*, we can find f(S1) = 9 from Fig. 5 and check that p(S1)
= 1 + f(S1).  For S2, the number of hyperplanes is numbered in the sequence 0, 2,
4, 6, 8, 10, 12, 14, 16, 18.  Therefore, f(S2) = 18 and the number of hyperplanes
covering the index points of index set J is 19, which is incorrect.  Consequently, S2
(whose components have a greatest common divisor not equal to one) will not be
considered as a PE allocation vector.  End of example.

Fig. 3. The index set of the LU-decomposition problem (N = 4) and the hyperplanes with
normal vector S1 = (1, 1, 1).
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Fig. 4.  The difference body (R – R) of the convex polytope R in Fig. 2.

Fig. 5.  The dual body R* of the difference body (R – R).
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Since computational conflict free and link conflict free checking does not have
a closed linear form expression, we use an enumeration procedure to find the
space-optimal PE allocation vector S.  Notice that we only need to enumerate the
PE allocation vectors S with the greatest common divisor of the entries being
equal to one.  In the next section, we will show how the PE allocation vectors for
the n-dimensional uniform dependence algorithm can be enumerated.

4. FINDING AN OPTIMAL ALLOCATION VECTOR

In this section, we will propose an enumeration procedure to find a space-
optimal allocation vector S.  Since the number of PEs used for an allocation vector
S is related to the norm of S with respect to R*, we need to enumerate the allocation
vectors S in an increasing order of their norms in order to find the space-optimal
allocation vector.  In the following discussion, we will give the method used to
enumerate the PE allocation vectors S.  To simplify the explanation, we use the
following notation: if polyhedron P = {x Ax  ≤ b , x  ∈ Rn}, then k ⋅ P denotes the
polyhedron {x Ax  ≤ kb , x  ∈ Rn}.  Since f(S) is the minimum scaling factor for dual
body R* to contain vector S, S is on the boundary of the convex polytope f(S) ⋅
R*.  Therefore, an integer point S with norm f(S) = k is on the boundary of the
convex polytope k ⋅ R*.

4.1 Minimum Bounding Box

Since an integer point S with norm f(S) = k is on the boundary of the convex
polytope k ⋅ R*, we need to enumerate all such integer points on the boundary of
k ⋅ R*.  However, enumerating those integer points on the boundary of convex
polytope k ⋅ R* is not an easy task.  We will describe a method for enumerating
these integer points as follows.  Assume that R* has h boundary hyperplanes   υo

Tx
= 1, i = 1, …, h.  Clearly, the integer points on the boundary of k ⋅ R* are on the
hyperplanes defined by equations   υo

Tx  = k, i = 1, …, h, but only a small fraction
of the integer points on the boundary hyperplane    υo

Tx  = k have norm equal to k.
Therefore, we must limit the range of enumeration in order to prune most of the
integer points with norm greater than k.  Since k ⋅ R* is a convex polytope, we can
use a minimum bounding box B = {(x1, …, xn)li ≤ xi ≤ ui, i = 1, …, n; ui > li} bound-
ing the convex polytope k ⋅ R* to limit the enumeration of all integer points on the
boundary of k ⋅ R*.  Let B1 be the minimum bounding box of R*.  Since k ⋅ R*
can be obtained by enlarging R* by a factor k, k ⋅ R* has the minimum bounding
box k ⋅ B1.  The minimum bounding box B1 of R* can be easily obtained from
the difference body (R – R) due to the vertex-boundary relationship between the
difference body (R – R) and its dual body R*.  The vertex-boundary relationship
can be derived by means of the following lemmas.  These lemmas are stated here
without proof; for details see [22].  Lemma 4.1 concerns the construction of the
difference body (R – R) from a convex polytope R.

Lemma 4.1:  Let R = {x li ≤  ai
Tx  ≤ ui, ai  ∈ Zn, x  ∈ Rn, li, ui ∈ Z, ui > li, i = 1, …,

q}.  Let (R – R) = {(x  – x ′)x , x ′ ∈ R} be the difference body of R.  Then (R – R)
= {x li – ui ≤  ai

Tx  ≤ ui – li, ai  ∈ Zn, x  ∈ Rn, li, ui ∈ Z, ui > li, i = 1, …, q}.
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Lemma 4.2 states that there is a one-to-one correspondence between a
vertex of the difference body of (R – R) and a boundary on the dual body R* of
(R – R).

Lemma 4.2:  Let (R – R) be the difference body of a convex set R. Let  υ1 , …,  υh

be the h vertices of the convex body (R – R).  Let C = {η   υi
Tη ≤ 1, i = 1, …, h, where

υi is a vertex of (R – R)}.  Let R* = {η   xTη  ≤ 1, ∀x  ∈ (R – R)}.  Then C = R*.

From Lemma 4.2, we see that the dual body R* is the convex polytope
defined by a set of linear inequalities,   υi

Tη  ≤ 1, i = 1, …, h.  The coefficients
υi of the linear inequalities correspond to the vertices of the difference body
(R – R).  Therefore, the dual body k ⋅ R* is the convex polytope defined by a set
of linear inequalities,   υi

Tη  ≤ k, i = 1, …, h.  The following lemma states that the
dual R** of the dual body R* is the difference body (R – R) with respect to R*.

Lemma 4.3:  Let (R – R) be the difference body of a convex set R. Let R* = {η   xTη
≤ 1, ∀x  ∈ (R – R)} be the dual body of (R – R). Let R** = {η′ηΤ η′ ≤ 1, ∀η ∈ R*}
be the dual body of R*. Then (R – R) = R**.

From Lemma 4.3 and Lemma 4.2, we see that the difference body (R – R)
is a convex polytope defined by a set of linear inequalities,  wi

Tx  ≤ 1, i = 1, …, a,
where the wi ’s correspond to the vertices of the dual body R*. Therefore, the
minimum bounding box B1 can be easily computed as follows.  Let ui = maxj{wijwij

is the ith entry of vector  wj }, and let li = minj{wijwij is the ith entry of vector  wj }.
Observe that, from Lemma 4.1, there is an even number of linear inequalities –1
≤  wi

Tx  ≤ 1 defining (R – R).  Thus, li = –ui.  Therefore, the minimum bounding box
B1 of R* is the set {(x1, …, xn)–ui ≤ xi ≤ ui, i = 1, …, n}, and the minimum bounding
box k ⋅ B1 of k ⋅ R* is the set {(x1, …, xn)–k ⋅ ui ≤ xi ≤ k ⋅ ui, i = 1, …, n}.

Using the concept of the minimum bounding box k ⋅ B1 of the dual body k
⋅ R*, the PE allocation vectors S can be enumerated as follows.  The minimum
bounding box k ⋅ B1 of k ⋅ R* is constructed step by step with value k in an increas-
ing order.  First, an initial minimum bounding box k1 ⋅ B1 is obtained, where k1 is
the lower bound of the number of PEs used for the n-dimensional uniform depen-
dence algorithm.  All the integer points within the bounding box k1 ⋅ B1 are enu-
merated.  If there does not exist a feasible integer point (feasible PE allocation
vector), then another minimum bounding box k2 ⋅ B1 of k2 ⋅ R* is constructed.  Then,
the integer points in the region k2 ⋅ B1 – k1 ⋅ B1 are enumerated.  The enumera-
tion of the integer points in ki+1 ⋅ B1 – ki ⋅ B1, i = 1, … is repeated until a feasible
integer point is found.  When a feasible integer point S with the smallest norm f(S)
among the other feasible integer points is found in ki+1 ⋅ B1 – ki ⋅ B1, the norm f(S)
is compared to ki+1.  If ki < f(S) ≤ ki+1, then the optimal allocation vector S is found.
Otherwise, a minimum bounding box f(S) ⋅ B1 is constructed, and all integer points
S1 in f(S) ⋅ B1 – ki+1 ⋅ B1 with norm f(S1) less than f(S) are enumerated.  This is due
to the fact that the minimum bounding box ki+1 ⋅ B1 contains all integer points S2
with f(S2) ≤ ki+1 and may contain an integer point S3 with norm f(S3) > ki+1.  Therefore,
an additional check is necessary to find the optimal allocation vector.
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Since the integer points in region ki+1 ⋅ B1 – ki ⋅ B1 need to be enumerated,
we partition this bounded region into subregions as follows.  Assume that ki ⋅ B1
= {(x1, …, xn)li ≤ xi ≤ ui, i = 1, …, n; ui > li} and ki+1 ⋅ B1 = {(x1, …, xn)li

′ ≤ xi ≤
ui

′ , i = 1, …, n; ui
′  > li

′}.  Since the minimum bounding box ki ⋅ B1 of ki ⋅ R* is a
hyperparallelepiped, there are exactly 2n boundary hyperplanes xi = li and xi = ui,
i = 1, …, n for ki ⋅ B1.  Therefore, the bounded region ki+1 ⋅ B1 – ki ⋅ B1 can be
partitioned into subregions SB2r–1 and SB2r, r = 1, …, n according to the 2n
boundary hyperplanes, where SB2r–1 = {(x1, …, xj, …, xn)lj ≤ xj ≤ uj, if j < r; uj +
1 ≤ xj ≤   u j

′ , if j = r; l j
′  ≤ xj ≤   u j

′ , if j > r} and SB2r = {(x1, …, xj, …, xn)lj ≤ xj ≤
uj, if j < r; l j

′  ≤ xj ≤ lj – 1, if j = r; l j
′  ≤ xj ≤   u j

′ , if j > r}, r = 1, …, n.  Obviously,
SBp ∩ SBq = ∅, p ≠ q, and p, q ∈ [1, 2n], and ki ⋅ Bi ∩ SBp = ∅, p = 1, …, 2n.  Furthermore,
the union of ki ⋅ Bi and SBp, p = 1, …, 2n is equal to ki+1 ⋅ B1.  Therefore, we can
enumerate the integer points in ki+1 ⋅ B1 – ki ⋅ B1 by enumerating the integer
points in the 2n subregions SBp, p = 1, …, 2n.  Since the linear arrays with respect
to allocation vectors S and –S are the same except that the directions of the data
links and the numbering of the PE indices are reversed, only half of the integer points
in ki+1 ⋅ B1 – ki ⋅ B1 need to be enumerated.  Since li = –ui, i = 1, …, n, enumerating
the integer points in n subregions SB2i–1, i = 1, …, n, is sufficient.

4.2 Lower Bounds on the Norm of PE Allocation Vectors

In the following discussion, we will derive lower bounds on the number of
PEs used (or lower bounds on the norm of the PE allocation vectors) for an
n-dimensional uniform dependence algorithm.  First, we will derive a lower bound
for the algorithm with an arbitrary bounded convex index set.  Then, a better
lower bound will be derived for the algorithm with a constant-bounded index
set [16].  The constant-bounded index set is defined as

J = {(j1, …, jn)0 ≤ ji ≤ µi, ji ∈ Z, µi ∈ N +, i = 1, …, n}.

We call µ = min{µii = 1, …, n} the slenderness of  the index set.

4.2.1 Lower Bound for Arbitrary Bounded Convex Index Set

In the following discussion, a lower bound for the algorithm with a arbitrary
bounded convex index set will be derived.  First, we will show that every integer
point S on the boundary of k ⋅ R* with equation    Σ j = 1

n αjxj = k, α  ∈ Z 
n and k ∈ Z

can be expressed as a linear combination of some vectors.  Clearly, this is the
problem of finding all the integer solutions of the diophantine equation

   Σ j = 1
n αjxj = k.  Using the following lemma in [24, p.192], all the integer solutions of

the diophantine equation    Σ j = 1
n αjxj = k can be found as follows.

Lemma 4.4:  Let Sol = {x  ∈ Z 
n    Σ j = 1

n αjxj = k, k ∈ Z}. If gcd(α1, …, αn)k, then there

exist n affinely independent points in Sol. Furthermore, Sol = {x x  =  k
H C1 + C2w,

w ∈ Z 
n–1, H = gcd(α1, …, αn), C1 ∈ Z 

n, C2 ∈ Z 
n×(n–1)}.
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Concerning the property of the integer solutions of the diophantine equa-
tion, we rephrase a theorem [24, p, 191] for the set Sol in Lemma 4.4.

Theorem 4.5: Sol ≠ ∅ if and only if k/H ∈ Z .

From Theorem 4.5 and Lemma 4.4, we can derive a lower bound on the norm
of the PE allocation vectors (or a lower bound on the number of PEs used) for an
n-dimensional uniform dependence algorithm as follows.  Assume that k ⋅ R* has
h boundary hyperplanes defined by    Σ j = 1

n aijxj = k, aij, k ∈ Z, i = 1, …, h.  Using

Lemma 4.4, all the integer solutions of    Σ j = 1
n aijxj = k are the set Sol = {x x  =  k

Hi
C1

+ C2w, w ∈ Z 
n–1}, where Hi = gcd(ai1, …, ain).  By Theorem 4.5, we have Sol ≠ ∅

if and only if  k
Hi

 ∈ Z.  As a consequence, the dual body k ⋅ R* may have integer

points S with norm equal to k on the boundary if  k
Hi

 ∈ Z for one of the boundary

hyperplane    Σ j = 1
n aijxj = k.  Therefore, the norm of any PE allocation vector S is

greater than or equal to the smallest positive integer k such that  k
Hi

 ∈ Z.  Notice
that if gcd(s1, …, sn) ≠ 1 for the PE allocation vector S, we can find a vector

  S
gcd (s1, …, sn)

 the norm of which is smaller than that of S.  This implies that an

allocation vector S whose components have a greatest common divisor not equal
to one will not be considered as a PE allocation vector.  From the above discussion,
we have the following theorem.

Theorem 4.6: Let R* be the dual body for index set J.  Assume that R* is defined
by equations    Σ j = 1

n aijxj ≤ 1, i = 1, …, h.  Let Hi = gcd(ai1, …, ain).  Then, a lower
bound on the number of PEs used for the n-dimensional uniform dependence
algorithm is equal to min{H1, …, Hh} + 1.

Theorem 4.6 states that the lower bound of the number of PEs used for the
n-dimensional uniform dependence algorithm can be found from the coefficient
vectors of the boundary equations of its dual body R*.  The following example
will be used to show that the lower bound on the number of PEs used for the
LU-decomposition algorithm is equal to N.

Example 2: The dual body R* of the LU-decomposition algorithm in Example 1
is defined by the following six boundary equations: (N – 1, N – 1, N – 1)x  = 1, (0,
N – 1, N – 1)x  = 1, (–N + 1, N – 1,0)x  = 1, (N – 1, N – 1, 0)x  = 1, (0, 0, N – 1)x
= 1, (N – 1, 0, N – 1)x  = 1.  Clearly, all of the greatest common divisors of the
above coefficient vectors of the boundary equations are equal to N – 1.  Since
min(N – 1, …, N – 1) = N – 1, the lower bound on the PEs used for the LU-
decomposition algorithm is equal to N.  End of example.
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4.2.2 Lower Bound for the Constant-Bounded Index Set

Since many n-dimensional uniform dependence algorithms (such as matrix
multiplication, the transitive closure problem, etc.) have a constant-bounded index
set, we will derive a better lower bound for these algorithms to reduce the time
needed to search the optimal allocation vector S.  Notice that a linear transforma-

tion T =   Λ
S  must satisfy the precedence constraint, computation constraint, and

data link constraint when mapping an n-dimensional uniform dependence
algorithm onto a linear array.  Thus, we can make use of these constraints to derive
a lower bound on the number of PEs used.  In this paper, the computation con-
straint is used to help us derive a lower bound on the number of PEs used for those
algorithms having a constant-bounded index set.  First, a theorem is rephrased
from [19] which is helpful in deriving the lower bound.

Lemma 4.7:  Let J = {(j1, …, jn)0 ≤ ji ≤ µi, ji ∈ Z, µi ∈ N +, i = 1, …, n} be the constant-

bounded index set of a uniform dependence algorithm.  Let T =   Λ
S  be the mapping

matrix, where Λ = (λ1, …, λn) ∈ Z1×n, and S = (s1, …, sn) ∈ Z1×n.  If T does not violate
the computation constraint, then the following inequality is true:

   Σ i = 1
n si ≥ (µ + 1)n – 2 / Σ j = 1

n λ i ,

where µ = min{µii = 1, …, n}.

From Lemma 4.7, we can see that    Σ i = 1
n si is the l1-norm.  In terms of the

concept of the distance function, it is known that the l1-norm is defined with
respect to a convex, compact, and symmetric set  R1

* = {(x1, …, xn)T|| x1+ … + xn≤
1} [21].  Notice that  R1

* is a convex polytope defined by 2n linear inequalities.  By
choosing l = ((µ + 1)n–2 – 1)/    Σ i = 1

n λi, all the integer points in l ⋅  R1
* are infeasible

allocation vectors and need not be enumerated in our enumeration procedure.
Let (R – R) be the difference-body with respect to the constant-bounded index set
J = {(j1, …, jn)0 ≤ ji ≤ µi, ji ∈ Z, µi ∈ N +, i = 1, …, n}, and let R* be the dual
body of (R – R).  By Lemmas 4.1, 4.2, and 4.3, we can find the minimum
bounding box B1 of R*, B1 = {(x1, …, xn)–1/µi ≤ xi ≤ 1/µi, i = 1, …, n}.  Since the
integer points in l ⋅  R1

* are infeasible allocation vectors, the lower bound k can
be determined by finding a minimum bounding box k ⋅ B1 such that k is the
maximum value for k ⋅ B1 contained in l ⋅  R1

*. Clearly, the 2n vertices υ ’s of the
convex polytope B1 are of the form (±1/µ1, …, ±1/µn).  Observe that, when enlarg-
ing B1 by a factor k to inscribe l ⋅  R1

*, all of the kυ ’s are on the boundary of l ⋅  R1
*.

Since the boundary of l ⋅  R1
* can be denoted by equation x1+ … +xn= l, we

have k(    Σ i = 1
n 1/µi) = l.  Thus, the lower bound k = l/(    Σ i = 1

n 1/µi).  From the above
discussion, we have the following theorem.

Theorem 4.8: Let J = {(j1, …, jn)0 ≤ ji ≤ µi, ji ∈ Z, µi ∈ N +, i = 1, …, n} be the con-

stant-bounded index set of a uniform dependence algorithm.  Let T =   Λ
S  be the
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mapping matrix, where Λ = (λ1, …, λn) ∈ Z1×n, and let S = (s1, …, sn) ∈ Z1×n.  The
lower bound on the number of PEs used is equal to

   ((µ + 1)n – 2 – 1) / ((Σ i = 1
n 1 / µi) (Σ i = 1

n λ i )) + 1 ,

where µ = min{µii = 1, …, n}. Furthermore, all integer points within k ⋅ B1 are
infeasible allocation vectors, where B1 is the boundary box of R* with respect to
the index set J.

Notice that for µi = N, i = 1, …, n, the lower bound is equal to ((N + 1)n–2

– 1)(N/(n    Σ i = 1
n λi)) + 1, which is of order O(Nn–1/(n    Σ i = 1

n λi)).  From Theorem
4.8, we see that the lower bound on the norm of the PE allocation vector will increase
if the sum of the absolute values of the entries of the linear schedule Λ decreases.
This means that the total execution time is expected to be shorter.  Furthermore,
given a linear schedule, the lower bound also increases if the dimension n of the
index set increases.  This means that the lower bound is bigger for mapping a higher
dimensional uniform dependence algorithm onto a linear array.

4.3 Maximum Bounding Box of the Entries of PE Allocation Vectors

Since the array model does not allow data broadcasting, the distance traveled
by a data token along data link(s) must be less than the number of buffers on the
data link(s), i.e., Sd≤ Λd  for each data dependence vector d . Due to this property,
there is a maximum bounding box Bmax which bounds the values of the entries of
the allocation vectors S.  The bounding box can be obtained as follows.  Let Λ =
(λ1, …, λn), S = (s1, …, sn), and dependence matrix D = [d1 …  dm], where  di

T  = (d1i,
…, dni).  For each i = 1, …, n, let ui = max{si || S  d j ≤ Λ  d j , j = 1, …, m}, and let
li = min{si || S  d j ≤ Λ  d j , j = 1, …, m}.  Then, the maximum bounding box Bmax is
the set {(x1, …, xn)li ≤ xi ≤ ui, i = 1, …, n}.

4.4 The Enumeration Procedure

Now, we will present the enumeration procedure for finding a space-optimal
allocation vector S as follows.  In this procedure, the function terminator(x, y, Bmax)
is used to test whether there are feasible allocation vectors in the region (y – x)
which needs to be enumerated.  If the function evaluates TRUE, then no allocation
vectors need to be enumerated.

Procedure (Finding a space-optimal allocation vector S):

Input: Uniform dependence algorithm (J, D), where J is an arbitrary bounded convex
index set; the I/O space of each variable; and a linear schedule vector Λ ∈ Z1×n.
Output: An integer row vector S which is the space-optimal allocation vector.
Step 1: Construct the dual body R* from index set J (by Lemmas 4.1 and 4.2).
Step 2: Compute the minimum bounding box B1 of R*.  Compute the maximum
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bounding box Bmax for the values of the entries of the allocation vectors.
Step 3: Compute the lower bound, k1 + 1, on the number of PEs used by Theorem

4.6 for this n-dimensional uniform dependence algorithm.
Step 4: If terminator(NULL, k1 ⋅ B1, Bmax) = TRUE, then go to Step 12; else for

each integer point S in k1 ⋅ B1 for k1 ⋅ R*, check whether   Λ
S  is a correct

mapping.
Step 5: If feasible allocation vectors are found in Step 4, then set i = 0 and go to

Step 9.
Step 6: Set i = 1.
Step 7: Set ki+1 = ki + ∆k, where ∆k + 1 is the lower bound computed by Theorem

4.6.  Construct ki+1 ⋅ B1 for ki+1 ⋅ R*.  If terminator(ki ⋅ B1, ki+1 ⋅ B1, Bmax)
= TRUE, then go to Step 12; else for each integer point in ki+1 ⋅ B1 – ki

⋅ B1, check whether   Λ
S  is a correct mapping.

Step 8: If no feasible allocation vector S is found in Step 7, then set i = i + 1, and
go to Step 7.

Step 9: Let S be the feasible allocation vector such that f(S) is the smallest one of
these feasible allocation vectors.  If f(S) ≤ ki+1, then the optimal allocation
vector is S and stop.

Step 10: Construct f(S) ⋅ B1 for f(S) ⋅ R*.  For each integer point S1 in f(S) ⋅ B1

– ki+1 ⋅ B1 with f(S1) < f(S), check whether   Λ
S  is a correct mapping.

Step 11: If no feasible allocation vector S1 is found in Step 10, then the optimal
allocation vector is S.  Otherwise, the optimal allocation vector is S2
with f(S2) being the smallest one among the feasible allocation vectors S1
found in Step 10.  Set S = S2.  Stop.

Step 12: No optimal allocation vector for this linear schedule Λ.  Stop.

This enumeration procedure is applicable to a uniform dependence algorithm
with an arbitrary bounded convex index set.  For a uniform dependence algorithm
with a constant-bounded index set, a better lower bound can be computed by using
Theorem 4.8 and used in Step 3.  Since by Theorem 4.8, we know that all the integer
points in k1 ⋅ B1 are infeasible, Step 4 and Step 5 can be omitted.

In this enumeration procedure, Step 1 can be computed by finding all the

vertices of the difference body (R – R).  This requires O(  a
n  ⋅ n3) time complexity

if the convex polytope R is defined by a linear inequalities.  Furthermore, the
difference body (R – R) can be found by using Lemma 4.1 with O(a) time complexity.
In Step 2, the minimum bounding box B1 of R* can be found with O(a) time complexity
by using the vertex-boundary relationship between the difference body and dual
body.  Assume that there are h vertices of (R – R).  In Step 3, we need h ⋅ O(L)
time complexity, where O(L) is the time needed to compute the greatest common
divisor of the entries of the coefficient vector of the boundary equation of R* and
is polynomial [24, p.193] for a uniform dependence algorithm with an arbitrary
bounded convex index set.  The construction of the bounding box ki ⋅ B1 is easily
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obtained by simply multiplying the bounds li, ui of each axis xi of the bounding box
B1 of R* by ki.  This requires only 2n steps.  Since ∆k is the minimum enlarging
factor k for k ⋅ R* to contain integer points, the value ki+1 in Step 7 is set to ki +
∆k so that the procedure can enumerate the integer points in an area of ki+1 ⋅ B1

– ki ⋅ B1.  Since checking the feasibility of a mapping   Λ
S  is the most time consuming

operation and computing the norm f(S) of the allocation vector S requires solving

a linear program, we compute f(S) only when   Λ
S  is a feasible mapping, and the

allocation vector S with the smallest f(S) among those feasible allocation vectors
is kept for use in Step 9.  The same argument is also applied to Step 10, and all
the integer points in f(S) ⋅ B1 – ki+1 ⋅ B1 are enumerated in order to find the vector
S1 with the smallest f(S1) among the feasible allocation vectors in f(S) ⋅ B1 – ki+1
⋅ B1.  Actually, only half the integer points in region ki+1 ⋅ B1 – ki ⋅ B1 are enumerated.
Since the linear array model does not allow data broadcasting, most of the integer
points will be pruned away by the constraint Sd≤ Λd  for each data dependence
vector d  of the algorithm.

The method proposed by Ganapathy and Wah [13] is an enumeration
method.  The search space which they considered was defined on a coordinate
system with dependence vectors as basis vectors.  In their method, displacement
vectors κ are enumerated.  As  κT  = SD (see their paper [13, p.277] for details) where
S is the allocation vector and D is the dependence matrix, it is possible to
enumerate an integer vector κ, which results in a rational allocation vector S.  Notice
that a rational vector S implies that some index points are mapped to PE with its
index being a rational number, which is unreasonable.  Our method is also an
enumeration method.  However, our search space is defined on the standard basis.
Furthermore, the integer allocation vectors S are enumerated directly.

Our enumeration procedure was implemented as a design tool called
SODTLA.  We have applied SODTLA to algorithms for the transitive closure
problem provided in paper [13] and to algorithms for LU-decomposition and
band matrix-matrix multiplication problems.  The results obtained by SODTLA are
shown in the Appendix.

5. CONCLUSIONS

In this paper, we have proposed an enumeration method to find a space-
optimal allocation vector to map an n-dimensional uniform dependence algorithm
to a linear processor array.  Previous work on solving the space-optimal k-dimensional
processor array problem needs to derive the space-optimal objective function be-
forehand by users.  For different problems, formulation of the space-optimal objective
function is difficult and depends on the size and shape of the index set.  For a space-
optimal linear processor array problem, the space objective function is captured
by the concept of a norm in our method.  The norm is defined with respect to a
convex polytope R*, where R* is derived from the index set J of the algorithm.
This concept is applicable to an arbitrary bounded convex index set and can be
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adopted in order to avoid derivation of the space-optimal objective function by the
user.

For some real-time applications, execution time may be a critical factor in
designing a linear array.  Taking this into consideration, a linear schedule the
execution time of which satisfies the time requirement must be given beforehand.
In this situation, our approach can help users find a linear array with minimum
hardware complexity.

For use in the enumeration procedure, a lower bound on the norm of PE
allocation vectors for an arbitrary bounded convex index set has been derived.  A
better lower bound for a constant-bounded index set has also been derived.  How
to derive a better lower bound for an arbitrary bounded convex index set from the
computation constraint needs further study.  A possible solution is to find an
inscribed constant-bounded set with maximum slenderness.  Then, a better lower
bound for the arbitrary bounded index set can be obtained by using the constant-
bounded set as the new index set.  However, finding such an inscribed constant-
bounded set is not an easy task.

APPENDIX

In this appendix, we describe our application of SODTLA to finding optimal
allocation vectors for 20 algorithms with three problems which varied in size.  The
first nine algorithms were for the transitive closure problem. Algorithms 10 to 14
were for the LU-decomposition problem.  Algorithms 15 to 20 were for the band
matrix-matrix multiplication problem. We present the three problems in Table 1.
The results found by SODTLA are listed in Table 2. Listed in Table 1 are the
dependence matrix D, the index set J, and the I/O space Φ and the dependence
vector ϑV associated with each variable V of the algorithm.  Also listed in Table
1 is the dual body R* corresponding to the index set J.  In the band matrix-matrix
multiplication problem, the bandwith of matrix A was specified by the parameters
p1, p2, while for matrix B it was specified by q1, q2 and for matrix C it was specified
by r1, r2.  The bandwidth of matrix A was equal to p1 + p2 – 1, where p1 (p2) is
the number of band elements in each row (column) counted from the diagonal
element.  The same definitions were also applied to the bandwidths q1, q2, r1, and
r2 of matrices B and C.  The parameters r1 and r2 of matrix C could be determined
to be r1 = min(N3, p1 + q1 – 1) and r2 = min(N1, p2 + q2 – 1).  Notice that it is
not simple to express the dual body R* of the band matrix-matrix multiplication
problem in terms of the problem size parameters.  Table 2 shows the optimal alloca-
tion vector S and the optimal number of PEs found by SODTLA for the given
problem size parameters and linear schedule Λ.  The first nine algorithms of the
transitive closure problem were taken from Table 1 (p. 283) in a paper [13] by
Ganapathy and Wah.  The results of SODTLA are the same as those of the
enumeration procedure of the GPM method proposed by Ganapathy and Wah for
these nine algorithms.
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Table 2.  Results of SODTLA for the problems listed in Table 1.

i problem size linear schedule optimal allocation #PE
parameters A vector S

1 N = 3 (1, 1, 4) (–1, 0, 0) 2+1

2 N = 4 (1, 1, 5) (–1, 0, 0) 3+1

3 N = 8 (1, 1, 7) (–1, 0, 2) 21+1

4 N = 16 (2, 1, 8) (–2, 0, 1) 45+1

5 N = 32 (3, 1, 10) (–3, 0, 2) 155+1

6 N = 64 (5, 1, 13) (–5, 0, 1) 378+1

7 N = 100 (5, 1,  17) (–5, 0, 4) 891+1

8 N = 200 (8, 1, 22) (–8, 1, 5) 2786+1

9 N = 300 (9, 1, 28) (–9, 0, 8) 5083+1

10 N = 4 (1, 2, 1) (0, 2, –1) 6+1

11 N = 8 (6, 5, 1) (2, 0, –1) 14+1

12 N = 100 (5, 1, 27) (4, 0, –1) 396+1

13 N = 200 (8, 1, 23) (7, 0, –6) 1393+1

14 N = 300 (9, 1, 25) (–9, 0, 11) 3289+1

N1 = 5 N2 = 4 N3 = 3
15 p1 = 1 p2 = 5 q1 = 3 (1, 1, 4) (–1, 1, –1) 6+1

q2 = 1 r1 = 3 r2 = 5

N1 = 4 N2 = 4 N3 = 4
16 p1 = 2 p2 = 2 q1 = 3 (1, 1, 4) (1, –1, –1) 5+1

q2 = 2 r1 = 4 r2 = 3

N1 = 100 N2 = 100 N3 = 100
17 p1 = 2 p2 = 2 q1 = 3 (1, 2, 50) (–1, –1,  2) 5+1

q2 = 2 r1 = 4 r2 = 3

N1 = 6 N2 = 4 N3 = 6
18 p1 = 2 p2 = 3 q1 = 3 (1, 2, 4) (–1, –1, 2) 6+1

q2 = 2 r1 = 4 r2 = 4

N1 = 100 N2 = 100 N3 =  100
19 p1 =  25 p2 = 25 q1 = 10 (1, 3, 20) (–1, –2, 7) 480+1

q2 = 10 r1 = 34 r2 = 34

N1 = 50 N2 = 60 N3 = 80
20 p1 = 5 p2 = 10 q1 =  15 (5, 1, 15) (3, –1, –2) 67+1

q2 = 15 r1 = 19 r2 = 24
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