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Modular Recurrent Neural Networks
for Mandarin Syllable Recognition
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Abstract—A new modular recurrent neural network (MRNN)-
based speech-recognition method that can recognize the entire
vocabulary of 1280 highly confusable Mandarin syllables is pro-
posed in this paper. The basic idea is to first split the complicated
task, in both feature and temporal domains, into several much
simpler subtasks involving subsyllable and tone discrimination,
and then to use two weighting RNN’s to generate several dynamic
weighting functions to integrate the subsolutions into a complete
solution. The novelty of the proposed method lies mainly in the
use of appropriate a priori linguistic knowledge of simpleinitial -
final structures of Mandarin syllables in the architecture design
of the MRNN. The resulting MRNN is therefore effective and
efficient in discriminating among highly confusable Mandarin
syllables. Thus both the time-alignment and scaling problems of
the ANN-based approach for large-vocabulary speech-recognition
can be addressed. Experimental results show that the proposed
method and its extensions, the reverse-time MRNN (Rev-MRNN)
and bidirection MRNN (Bi-MRNN), all outperform an advanced
HMM method trained with the MCE/GPD algorithm in both
recognition-rate and system complexity.

Index Terms—Mandarin speech recognition, MCE/GPD algo-
rithms, modular recurrent neural networks.

I. INTRODUCTION

I N the past decade, many methods have been proposed
for large-vocabulary speech-recognition. Among them, the

most widely used and successful is the hidden Markov model
(HMM)-based approach. In this approach, each class is rep-
resented by an HMM model trained usually by the maximum
likelihood (ML) algorithm [1], which maximizes the within-
class likelihood for each class without considering competition
among hostile classes. The recent research trend in this ap-
proach is thus to eliminate this drawback by increasing the
HMMs’ discrimination abilities through the use of competitive
training. Many discriminative training algorithms have been
proposed. They include the maximum mutual information
(MMI) algorithm [2], the maximuma posteriori (MAP) al-
gorithm [3], and the minimum classification error/generalized
probabilistic descent (MCE/GPD) algorithm [4], [5]. Simu-
lation results have confirmed that better recognition perfor-
mances can usually be achieved by these advanced HMM
methods.

Along with the HMM approach, the artificial neural network
(ANN)-based approach is also attractive because ANN’s
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have the distinction of possessing high discrimination ability
obtained through competitive training [6], [7]. Although
many ANN-based methods have been proposed previously
for speech recognition, only few of them are suitable for
large-vocabulary applications because of the scaling and
time-alignment problems. The scaling problem holds that
an ANN structure that is effective for small-vocabulary
speech-recognition is not guaranteed to also be effective
for large-vocabulary applications simply because it has
been scaled-up. The time-alignment problem results mainly
from the use of ANN’s, which are designed for static
pattern recognition, to discriminate among dynamic speech
patterns. Among all successful ANN-based methods for large-
vocabulary speech recognition, hybrid HMM/ANN methods
[8]–[10] and modular neural network (MNN)-based methods
[11]–[12] are the most promising. We briefly review these
two methods as follows.

Hybrid HMM/ANN methods incorporate ANN-emission
probability estimators into the probabilistic frameworks of
HMM’s to relax some improper assumptions made by the
HMM methods. They can partially overcome the weakness
caused by noncompetitive training in conventional ML-trained
HMM’s. Many successful HMM/ANN methods [8]–[10] with
performances better than those of the conventional HMM
methods have been reported. Although they are all effective,
there is some room for performance improvement. These meth-
ods only use ANN’s as nonparametric probability function
approximators, and do not usea priori knowledge of specific
applications in their architecture designs to further improve
recognition performances. Specifically, ANN’s are only used
for the frame-level discrimination, not phone segment-level
or word-level discrimination, none of which uses full ability
of ANN’s. And ANN outputs cannot be directly used in
HMM’s as likelihood functions, they must be scaled according
to a priori probabilities in order to fit HMM requirements
[8]–[10]. Moreover, the scaling operation has no appropriate
interpretations to minimize error rates in realizing the final
goal of speech recognition. This may reduce its discrimination
ability.

MNN-based methods use the “divide-and-conquer” princi-
ple to first decompose complicated large-vocabulary speech-
recognition tasks into subtasks involving subset recognition or
subunit recognition to then properly combine the results into a
complete solution. One merit of MNN-based methods is that
they provide interpretable and tractable ways to analyze the
internal operations of the neural networks rather than simply
taking them as black boxes. A key issue with MNN-based
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methods is proper use ofa priori domain knowledge in the
design of the MNN architecture [13] in order to efficiently
and effectively accomplish the main task of large-vocabulary
speech-recognition. Currently, this key issue is still not well
addressed in most MNN-based methods. Only few successful
systems have been reported in the literature. They include
the hierarchical mixture of experts (HME) [14]–[17], Meta-
Pi networks [18], [19], one-word-one-net neural networks
(OWON) [20], [21], and the hierarchical neural network
(HNN) [22]. One main drawback of those methods is that
they cannot solve the time-alignment problem by themselves.
Besides, HME, Meta-Pi, and OWON only decompose the
task in the feature domain, and ignore the rich information
contained in the temporal domain. And OWON and HNN are
inefficient, using too many subnetworks or parameters in their
MNN’s.

In this paper, a new speech recognition method based on
a modular recurrent neural network (MRNN) is proposed for
recognizing the entire vocabulary of 1280 highly confusable
isolated Mandarin syllables. It decomposes this complicated
task in both feature and temporal domains by first dividing
it into several subtasks involving subsyllable and tone dis-
criminations. And then uses two weighting RNN’s to generate
several dynamic weighting functions to integrate them. The
novelty of the work is its proper use of appropriatea priori
linguistic knowledge of Mandarin syllables’ structure in the
architecture design of the MRNN, which makes it effective and
efficient in discriminating among highly confusable Mandarin
syllables. The MRNN also solves time-alignment problem
effectively by allowing temporal variations in speech signals
and avoiding the time-consuming dynamic programming (DP)
procedure. Moreover, all RNN’ outputs are directly combined
to form discriminant functions for all 1280 syllables. This
makes it easy to design a discriminative training algorithm
to optimize the MRNN with a goal of maximizing the syllable
accuracy rate. The resulting MRNN is therefore suitable for
Mandarin syllable recognition.

The organization of this paper is as follows. Section II
provides background information about the task of recognizing
the entire vocabulary of 1280 isolated Mandarin syllables.
Section III presents the proposed method and its two exten-
sions, the reverse-time MRNN (Rev-MRNN) and bidirectional
MRNN (Bi-MRNN). A two-phase embedded training method
with both subsyllable-level and syllable-level MCE/GPD algo-
rithms is also described. Performance of the proposed method
is evaluated in Section IV. Some conclusions are given in the
last section.

II. BACKGROUND INFORMATION AND PROBLEM STATEMENT

Mandarin Chinese is a tonal language. There exist more
than 80 000 words, each composed of from one to sev-
eral characters. There are more than 10 000 commonly used
characters, each pronounced as a monosyllable with a tone
embedded in its fundamental frequency (F0) contour [23].
There are only about 1280 phonologically allowed syllables,
and these comprise the set of all legal combinations of
411 base-syllables and five tones. Recognition of these 1280

TABLE I
THE PHONETIC STRUCTURE OF MANDARIN SYLLABLES

TABLE II
22 CONTEXT-INDEPENDENT initials AND THEIR CORRESPONDING

SUBGROUPS. HERE �I DENOTES A NULL initial

syllables can thus be accomplished by combining the two
subtasks of recognizing the 411 base-syllables and five tones.
Although, from a vocabulary-size standpoint, the task seems to
be relatively simple when compared with that of recognizing
all English words, it is actually very difficult because the
vocabulary contains many highly confusable syllables. This
results mainly from the simpleinitial -final [or more roughly
the consonant-vowel (C-V)] structure of base-syllables. Table I
shows the phonetic structure of Mandarin syllables. Theinitial
of a base-syllable, if it exists, consists only of a single
consonant. There are a total of 22initials including a null
one (see Table II). Thefinal is composed of three components
including an optional preceding medial, a vowel nucleus, and
an optional nasal ending. A total of 39finals (see Table III)
form all legal concatenations of three medials, 17 vowels, and
two endings. With such a simple phonetic structure, all 411
base-syllables can be categorized into 39 confusing sets [23].
Like the English E-set, all base-syllables in each confusing
set differ only in their initial consonants and are therefore
difficult to distinguish among [24]–[25]. The A-set: [j-a], [ch-
a], [sh-a], [tz-a], [ts-a], [s-a], [g-a], [k-a], [h-a], [d-a], [t-a],
[n-a], [l-a], [b-a], [p-a], [m-a], [f-a] and the AN-set: [j-an],
[ch-an], [sh-an], [r-an], [tz-an], [ts-an], [s-an], [g-an], [k-an],
[h-an], [n-an], [b-an], [p-an], [m-an], [f-an] are two typical
examples. Moreover, considerable cross-confusion among the
base-syllables in these 39 confusing sets also exists [23]. For
examples, [l-i-an], [l-u-an] and [l-iu-an] differ only in their
medials; [k-en] and [k-eng] can only be distinguished by their
ending nasals; and so on.
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TABLE III
39 finals AND THEIR CORRESPONDING

SUBGROUPS. HERE �F DENOTES A NULL final

Currently, the dominant technology for approaching the task
is still HMM-based. Most HMM-based methods use the con-
ventional within-class training algorithm to separately generate
HMM models for each individual class without considering
competition with hostile classes. Leeet al.proposed an isolated
syllable-based dictation machine [23], [26]. The system was
then upgraded into a continuous-speech device [27], [28].
Some HMM-based Mandarin speech-recognition methods that
use the MCE/GPD discriminative training algorithm have
recently been reported [29], [30].

Many ANN-based isolated Mandarin syllable-recognition
methods have also been proposed. Wanget al. used a three-
stage HNN to recognize all 1300 isolated Mandarin syllables
[22]. Jouet al. used a OWON to recognize 408 isolated base-
syllables [20]. They all used high-dimensional input feature
vectors to represent whole-syllable (or subsyllable) patterns for
recognition. Preprocessing to time-normalize input utterances
was therefore needed. Chenet al.used a hierarchical recurrent
neural network (HRNN) to recognize 54 highly confusable
Mandarin syllables, all with nasal endings [31]. The HRNN
recognizer is a preliminary version of the MRNN recognizer
proposed in this study. It has a simpler structure and was used
only in a pilot study of 54-base-syllable recognition. A hybrid
approach that combines an ANN pattern recognizer and a DP
search was also presented recently [32].

Many methods for tone recognition have been proposed.
They include MLP-based methods for four-tone-recognition
of isolated Mandarin syllables [33], and HMM-based methods
for five-tone-recognition of continuous Mandarin speech [34].
A prosodic-model-based method [35] and a hybrid method
[36] have also been proposed.

III. T HE PROPOSEDMETHOD

An MRNN recognizer is proposed to discriminate among
the entire set of 1280 isolated Mandarin syllables. Fig. 1 shows
a block diagram of the MRNN recognizer. It decomposes the
task of recognizing 1280 syllables into four subtasks including
three discrimination subtasks and one integration subtask. The
three discrimination subtasks do the lower-level within-group
classifications for the three subsyllable groups of five tones,

Fig. 1. A block diagram of the proposed MRNN syllable-recognizer.

100 final-dependent (FD)initials, and 39 finals. Here the
100 FD initials form a complete, legal set expanded from
these 22 context-independentinitials (see Table II) according
to the seven broad-classes (see Table III) of their succeeding
finals. They are used to partially compensate the intrasyllable
coarticulation effect between theinitial and final segments
[27], [28], [30], [37]. The integration subtask does the upper-
level among-group classifications, as well as the discriminant-
function combinations required for final decision-making. As
shown in Fig. 1, each discrimination subtask is accomplished
using an RNN to generate within-group discriminant functions
for all subsyllables belonging to the group it is associated with.
The integration subtask is accomplished using two weighting
RNN’s and one discriminant-function combination module.
The first weighting RNN generates three primary dynamic
weighting functions for each of the three respective subsyllable
groups of five tones, 100 FDinitials, and 39 finals. The
second weighting RNN generates nine additional secondary
dynamic weighting functions for each of the nineinitial
subgroups that partition the set of 22 context-independent
initials (and the expansion set of 100 FDinitials) according
to the manner of articulation. Table II shows that these nine
initial subgroups include liquid, nasal, unvoiced and voiced
stops, unvoiced and voiced affricates, unvoiced and voiced
fricatives, and null. All these dynamic weighting functions
are used in the discriminant-function combination module to
combine subsyllable discriminant functions generated by those
three discrimination RNN’s in order to generate discriminant
functions for the entire set of 1280 syllables. All five RNN’s
have similar three-layer simple recurrent structures with all
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outputs from their hidden layers being fed back to themselves
as additional inputs [38]. All output-layer nodes in each RNN
use linear output functions, rather than the more commonly-
used sigmoid output functions. The operation of the MRNN
recognizer is described in more detail below.

To recognize an input test utterance, a discriminant function
is first defined for each of the 1280 syllables. For theth
syllable, which is composed of theth tone, the th FD initial
(belonging to the th initial subgroup), and theth final, its
discriminant function [5] can be expressed as

(1)

where is the feature-vector se-
quence of a test utterance of length
and are, respectively, theth output of the tone
RNN, the th output of theinitial RNN, and the th output
of the final RNN; and are
the corresponding three primary dynamic weighting functions
produced by the first weighting RNN; and is the th
secondary dynamic weighting function produced by the second
weighting RNN. The final decision rule then chooses the best
candidate syllable according to the maximum discriminant
function, i.e.,

(2)

It is worth noting that the proposed method can be con-
sidered as a generalization of the conventional hybrid NN/DP
method, which uses the set of much simpler weighting func-
tions given below

(3)

(4)

(5)

where is a constant weight determined by try-and-error for
properly combining the base-syllable and tone scores, and
is theinitial /final boundary determined by DP search. We also
note that the proposed MRNN has an architecture similar to
those of the recurrent HME’s proposed in [39]–[41], but they
function in very different ways.

To train the MRNN recognizer, a special two-phase embed-
ded training method with both subsyllable-level and syllable-
level MCE/GPD algorithms [5] was incorporated in it. It
uses the distributively-train-then-combine approach to first
train all constituent RNN’s separately in the first phase, and
then combine all RNN’s to form the whole MRNN syllable
recognition system and fine-tune in the second phase. We
chose this training method instead of direct whole-MRNN
training because, in the first phase, all MRNN modules can be
trained in parallel on only a small subset of the training data,

thus speeding up the training process. Beside, the MRNN is a
third-order system for which direct whole-MRNN training is
potentially unstable, and may lead to the training process fail
to converge. Moreover, direct whole-MRNN training would
suffer from so-called spatial crosstalk (or interference) [11],
and thus risk becoming trapped in local optima, resulting in
slow convergence, poor generalization, or even learning fail-
ure. Below, the two phases of the proposed training algorithm
are described in more detail.

In the first phase, distributive training, all three discrim-
ination RNN’s and the two weighting RNN’s are trained
separately. Preprocessing is first used to segment all training
syllable utterances intoinitial and final segments. Segmen-
tation is realized by using the HMM-based segmentation
method to find theinitial /final boundary for each training
utterance. Then, the boundary is relaxed allowing theinitial
and final segments to overlap by several frames, after which
the subsyllable-level MCE/GPD algorithms [5], [31] are used
to train the initial , final, and tone discrimination RNN’s
separately on theinitial segments, thefinal segments, and
the voiced segments, respectively. The voiced segment of
an utterance is defined as that portion of the pitch period
that can be reliably detected. At the same time, the two
weighting RNN’s are being independently trained by the error
backpropagation (EBP) algorithms [42] to generate appropriate
dynamic weighting functions for the three subsyllable groups
and nineinitial subgroups. “0 1” output target functions
determined according to the segmentation results are used for
all 12 dynamic weighting functions. It is worth noting that the
coarticulation effect between theinitial andfinal segments on
syllable recognition can be partially compensated for by using
overlappedinitial and final segments to train theinitial and
final RNN’s during the first training phase.

After training the five RNN’s, we then execute the second
phase, combining training. All five RNN’s are combined using
the discriminant-function combination module and then fine-
tuned using a “bootstrapping” procedure embedded within
a syllable-level MCE/GPD algorithm according to the dis-
criminant function defined in (1). In the bootstrap fine-tuning
procedure, all constituent RNN’s of the MRNN was distributed
into three parts and retrained part-by-part, i.e., we select
one part at a time for retraining and freeze the weights
of the other parts. Detailed derivations of the syllable-level
MCE/GPD training algorithms are given in the Appendix.
The reason for using a bootstrapping procedure rather than
direct whole-MRNN retraining is also to avoid encountering
instability in the training process. We note that the “01”
bounds of all dynamic weighting functions, set as learning
targets during first-phase training, are now relaxed and freed
of any manual control during the second-phase training. The
ultimate level that a dynamic weighting function can reach
is automatically determined by the syllable-level MCE/GPD
algorithm. This increases the discrimination capacity of the
MRNN syllable-recognizer by placing special emphases on
the most distinguishing parts of input test utterances for each
candidate syllable [24]–[25].

The basic MRNN syllable recognizer described above is
improved by first adding an additional Rev-MRNN syllable
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recognizer, and then combining these two MRNN’s into a
bidirectional syllable recognizer, i.e., the Bi-MRNN. The Rev-
MRNN is the same as the basic MRNN except that the
time scale was reversed, and is designed to utilize the right-
context information of speech signal instead of the left-context
information in the basic MRNN. Therefore, the Bi-MRNN
can explore the context-information of a speech signal in
both directions to further improve its performance [43]. Many
combination methods [43] can be used to form the Bi-MRNN
syllable recognizer. In this study, we used a simple combina-
tion method that directly averages the syllable discriminant
functions of the two MRNN syllable recognizers to form
the final syllable discriminant functions. The final syllable
discriminant function for theth syllable can thus be expressed
by

Bi-MRNN

MRNN Rev-MRNN

(6)

The Bi-MRNN are also trained by the above mentioned two-
phase embedded training method according to the discriminant
function defined in (6). Detailed derivations of the training
algorithms are similar to those given in the Appendix. Note
that although a simple averaging combination method is used
here, the basic MRNN and Rev-MRNN recognizers are of un-
equal importance in influencing the final syllable-recognition
decision. The syllable-level MCE/GPD algorithm will fine-
tune the Bi-MRNN syllable recognizer to automatically adjust
the dynamic weighting functions of the two MRNN’s to their
appropriate values.

Several distinctive characteristics of the MRNN recognizer
are given below.

• It is a frame-based recognition system. Recognition fea-
ture vectors are fed in frame-by-frame. No preprocessing
to time-normalize input test utterances is needed. The in-
put layers of all RNN’s in the MRNN are therefore much
smaller as compared with those using whole-utterance
input patterns [20]–[22].

• The short-term context-dependencies of input feature vec-
tors are explicitly invoked during recognition testing by
using RNN’s to discriminate among subsyllables. As
mentioned above, all RNN’s have similar three-layer
structures with all outputs from hidden layers being fed
back to themselves as additional inputs. Thus each RNN
functions as a dynamic system with the outputs of its
hidden layer depending at any given time on a complex
aggregate of all previous inputs [9], [38].

• The architecture of the MRNN recognizer has been de-
signed to conform to Mandarin Chinese’s syllabic pho-
netic structure. Subsyllables with similar acoustic prop-
erties are grouped together and recognized using the
same RNN. This makes each individual RNN an ex-
pert classifier of associated subsyllable subsets through
concentration on the distinguishing parts of constituent
subsyllables.

• Initials, which are the most highly confusable subsyl-
lables, receive special care in the MRNN recognizer:

100 FD initials are used as recognition units, and then
several sets of dynamic weighting functions are applied
to increase their distinguishablility.

• The MRNN is architecturally homogeneous. Except for
the discriminant-function combination module, it is all
made up of RNN’s.

• The time-alignment considerations have been resolved via
the use of the weighting RNN’s. Thus, no DP’s are needed
to calculate syllable discriminant scores [see (1) and (6)].
This greatly simplifies the recognition process.

As compared with previously proposed methods, the proposed
MRNN recognizer has the following distinct advantages.

• It is more effective on Mandarin syllable-recognition than
the HMM and hybrid HMM/ANN methods because it
considers not only the frame-level but also subsyllable-
and syllable-level competition among hostile syllables
during the recognition process. Besides, it lets each frame
of the input test speech signal contribute uniquely to the
final recognition decision via the use of several sets of
dynamic weighting functions.

• It is also more sophisticated in that it uses the information
in the transient area between theinitial andfinal segments
for both initials and finals discriminations.

• The time-alignment requirement inherent in applying
ANN’s to the task of large-vocabulary speech recognition
is solved. Temporal variations in test speech patterns
are absorbed partially by the discrimination RNN’s and
partially by the weighting RNN’s.

IV. EVALUATIONS

The performance of the proposed method was evaluated
using a multispeaker speech-recognition task. A database
containing utterances of all 1280 isolated Mandarin syllables
was used in the following experiments. Each syllable was
pronounced ten times by eight male and two female speakers
with a Taiwan accent. Seven repetitions were used for training
and the remaining three for testing. All speeches were directly
digitally recorded in a laboratory using a personal computer
with a 16-bit Sound Blaster card and a head-set microphone.
A sampling rate of 16 kHz was used. All speech signals were
then preprocessed to extract features for recognition. During
preprocessing, signals were first preemphasized with a high-
pass filter then, a 14th-order LPC analysis was
performed on every 20-ms Hamming-windowed frame with
10-ms frame shifts. Fourteen liftered LPC-derived cepstral
coefficients and their first-order time derivatives were then
computed. The first-order and second-order time derivatives
of the log energy, as well as the zero-crossing rate, were also
computed for each frame. All 31 parameters were then taken
as input features for base-syllable recognition. Five parameters
were used for tone recognition: log energy, delta log energy,
peak normalized auto-correlation function, pitch period, and
delta pitch period. The pitch period was automatically detected
using the simple inverse filter tracking (SIFT) algorithm [44]
without any modification. The window size for pitch analysis
was 40 ms with 10-ms shifts.
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TABLE IV
RECOGNITION RESULTS OF THEDISTRIBUTIVE-TRAINING PROCEDURE FOR THE

NINE initial SUB-GROUPS, 100 FD initials, 39 finals, AND FIVE TONES

A. Experimental Results

We started by examining the performance of the proposed
MRNN syllable-recognizer. The effect of first-phase distribu-
tive training was examined first. All input-syllable utterances
were presegmented intoinitial and final segments with 100-
ms overlaps. All five RNN’s were then trained separately with
target information being set according to the given segmen-
tations of all training utterances. The numbers of neurons
used in the hidden layers of the primary weighting RNN,
the secondary weighting RNN, and the tone discrimination
RNN were all set to fixed values of 30. By contrast, several
values for the numbers of hidden neurons were tested for the
initial andfinal discrimination RNN’s, including 60, 120, and
150 hidden neurons. All five RNN’s were trained in parallel
on several workstations for 100 iterations. The recognition
results for theinitial -, final-, and tone-discrimination RNN’s
are shown in Table IV. The best recognition rates achieved
for 100 FD initials, 39 finals, and five tones were 80.9, 90.0,
and 88.3%, respectively. We also report the performance of
the secondary weighting RNN on the nineinitial subgroup
classification in Table IV. A fair classification rate of 85.0%
was obtained. We note that the classification performance of
the secondary weighting RNN is given for reference only and
is not important to the MRNN-based syllable recognition. This
is because the secondary weighting RNN is only trained by
the EBP algorithm using frame-based “01” target functions
with a goal to provide proper dynamic weighting functions
for the initial part of the testing utterance. Besides, it will be
fine-tuned in the second-phase training.

We then combined the five RNN’s to form the basic MRNN
1280-Mandarin-syllable-recognizer and retrained it using the
bootstrapping procedure. As mentioned above, all constituent
RNN’s of the MRNN were distributed into three parts and
fine-tuned part-by-part. The fine-tuning sequence started with
the secondary weighting RNN, continued with the primary
weighting RNN, and ended with theinitial -, final-, and tone-
discrimination RNN’s. Twenty iterations were performed in

Fig. 2. The learning curves of the three schemes of the proposed MRNN
recognizer for 1280 Mandarin syllables (solid line: Bi-MRNN, dashed line:
MRNN, dotted line: Rev-MRNN).

each of the three retraining steps. Fig. 2(a) and (b) show,
respectively, the syllable recognition-rate learning curves and
the average loss functions for syllable recognition [defined
in (A.2)] achieved in both closed and open tests. Fig. 2(a)
shows that the recognition rates for closed and open tests
both increased very rapidly at the beginning of the first
retraining step, and then went into saturation. Conversely,
the two average loss functions decreased very rapidly during
the first several iterations of the first retraining step, and
then became saturated. They then decreased again at the
beginning of the second retraining step, and again went into
saturation quickly. These results show that the retraining gain
in recognition performance decreased as we proceeded with
the bootstrapping procedure. A recognition rate of 74.2%
was finally obtained. It is worth noting that the sum of
the recognition rate and the average loss function equaled
approximately 1.0 when the training process converged. This
outcome is the same as that obtained in [24] and [25]. Thus the
effectiveness of the bootstrapped retraining procedure has been
confirmed.

The performances of the Rev-MRNN and Bi-MRNN rec-
ognizers on the 1280 Mandarin syllables were then examined.
The same two-phase training algorithm was used to train
these two systems. The training procedure for the Rev-MRNN
syllable recognizer was the same as that used to train the
basic MRNN syllable recognizer, except that the time scale
was reversed. Five reverse-time RNN’s were trained separately
during the first phase (see Table IV), then combined and fine-
tuned during the second phase. The training procedure was
similar for the Bi-MRNN syllable recognizer. We first trained
the ten RNN’s separately, five in the basic MRNN and five in
the Rev-MRNN, in the first-phase training (see Table IV), then
combined them and used the same three-step bootstrap retrain-
ing procedure to fine-tune them during second-phase training.
Note that in each step of the bootstrapping procedure, the
same parts of the two MRNN’s were retrained simultaneously.
The learning curves of these two MRNN syllable recognizers
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Fig. 3. The learning curves of the three schemes of the proposed MRNN
recognizer for 411 Mandarin base-syllables (solid line: Bi-MRNN, dashed
line: MRNN, dotted line: Rev-MRNN).

are also shown in Fig. 2. As the figure shows, the learning
processes of these two syllable recognizers were very similar
to that of the basic MRNN system. Recognition rates of 74.1
and 76.3% were achieved by the Rev-MRNN and Bi-MRNN
syllable recognizers, respectively. The performance of the
Rev-MRNN syllable recognizer was comparable to that of the
basic system, but the performance of the bidirectional system
was better. This shows that the complementary characteristics
of the Rev-MRNN to the basic MRNN on Mandarin syllable
recognition [43].

Due to its relative importance, recognition of 411 Mandarin
base-syllables was also examined using the MRNN, Rev-
MRNN, and Bi-MRNN. Fig. 3 shows the learning curves for
these three recognizers. Similar learning processes can be
observed in the figure. Respective recognition rates of 80.7,
80.6, and 82.8% were achieved by the three systems.

For a performance comparison, the continuous-density
HMM method using the same subsyllable recognition units
to recognize the 411 Mandarin base-syllables was also tested.
Three combinations of state numbers forinitials and finals
were used, including (3,5), (4,8), and (5,12). Here
denotes that the state numbers ofinitial andfinal HMM models
are set to and , respectively. All HMM models had left-to-
right structures and no states were skipped. The observation
features in each state were modeled by a partitioned-mixture
Gaussian distribution. The mixture number in each state
varied depending on the number of training data, but a
maximum mixture number of five or eight was set. The
best recognition rate was achieved when there were (5,12)
states and five mixtures. It was only 75.3% (see Fig. 4). For
a fairer comparison, these ML-trained HMM’s were then
further refined using the syllable-level MCE/GPD training
algorithm [5]. The best recognition rate increased to 76.8%
(see Fig. 4), but this was still far below that achieved by
the proposed Bi-MRNN base-syllable recognizer. To compare
performance on recognition of the 1280 Mandarin syllables,
we combined the base-syllable HMM’s with the same RNN
tone-recognizer used in the basic MRNN system to form

Fig. 4. Recognition results of the ML-, MCE/GPD-trained HMM and the
proposed MRNN methods for 411 Mandarin base-syllables. Here HMM(x)
means the maximum mixture number in each state is set tox:

Fig. 5. Recognition results of the ML-, MCE/GPD-trained HMM and the
proposed MRNN methods for 1280 Mandarin syllables. Here HMM(x) means
the maximum mixture number in each state is set tox:

a hybrid syllable-recognizer. This hybrid system was also
further refined using the syllable-level MCE/GPD training
algorithm. Recognition rates of 68.9 and 70.8% (see Fig. 5)
were achieved by the ML-trained and MCE/GPD-trained
HMM’s, respectively. But they were still far lower than
that obtained by the proposed Bi-MRNN system. Thus the
proposed MRNN-based method outperformed the HMM
method.

We then examined the computational efficiencies of these
five methods. Rough comparisons based on total numbers
of parameters used by these five methods were made. The
results are also plotted in Figs. 4 and 5 for the two cases
involving recognition of the 411 base-syllables and 1280
syllables, respectively. These two figures show that all three
schemes in the proposed method used fewer parameters than
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 6. Typical responses of the Bi-MRNN after the first-phase training: (a)
the waveform of the syllable /ji-i-ang-4/ and (b) its pitch contour; the dynamic
weighting functions (DWF’s) for (c) the basic (forward) MRNN and (d) the
Rev-MRNN (bold solid line: product of the two DWF’s for the desiredinitial
subgroup, solid lines: products of the two DWF’s for otherinitial subgroups,
dotted line: DWF forfinal, dash line: DWF for tone); the cumulative weighted
discriminant functions of (e) the 100 FDinitials, (g) 39finals, and (i) five
tones for the basic MRNN; and those of (f) the 100 FDinitials, (h) 39finals,
and (j) five tones for the Rev-MRNN (bold solid lines: the desiredinitial ,
final, and tone classes).

the two HMM methods. Beside, no DP’s were needed in the
recognition tests of the three schemes in the proposed method.
They were thus all much more efficient than the HMM method.

B. Analysis of the MRNN Operation

A detailed analysis of the operation of the proposed MRNN
was then performed. This was worthwhile since it yielded a
better understanding of its behavior. Typical responses of the
Bi-MRNN, obtained before and after we applied the second-
phase combining retraining procedure, are shown in Figs. 6
and 7, respectively. These two figures show several distinctive
properties of the two-phase training process.

• As shown in Fig. 6(c) and (d), the active levels of the
initial , final, and tone dynamic weighting functions are

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 7. Typical responses of the Bi-MRNN after the second-phase training:
(a) the waveform of the syllable /ji-i-ang-4/ and (b) its pitch contour; the
dynamic weighting functions (DWF’s) for (c) the basic (forward) MRNN
and (d) the Rev-MRNN (bold solid line: product of the two DWF’s for the
desiredinitial subgroup, solid lines: products of the two DWF’s for other
initial subgroups, dotted line: DWF forfinal, dash line: DWF for tone); the
cumulative weighted discriminant functions of (e) the 100 FDinitials, (g)
39 finals, and (i) 5 tones for the basic MRNN; and those of (f) the 100 FD
initials, (h) 39finals, and (j) 5 tones for the Rev-MRNN (bold solid lines: the
desiredinitial , final, and tone classes).

all the same after the first-phase distributive training.
Here, the active level of an output response is generally
defined as the approximate level reached when an input
utterance of the class associated with it is received. On
the contrary, as shown in Fig. 6(e)–(j), the active levels
of the cumulative weighted discriminant functions for 100
FD initials, 39 finals, and five tones are quite different.
The two active levels for 39finalsare much larger than all
others. This means that, after the first-phase training, the
recognition results are dominated primarily by thefinal
part of the test utterance. This is reasonable because the
final part of a test utterance contains, in average, much
more input frames and the three weighting functions have
approximately equal active levels.
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(a)

(b)

(c)

(d)

Fig. 8. Error analysis for 22 context-independentinitials: (a) error counts for the ML-trained HMM; and corrected error counts compared with the ML-trained
HMM for (b) MCE/GPD-trained HMM, (c) MRNN, and (d) Bi-MRNN.

• As shown in Fig. 7(c) and (d), the active levels of the
initial dynamic weighting functions are much higher than
those of thefinal and tone after the second-phase training.
The contribution of theinitial part of the test utterance
to the final recognition decision is therefore emphasized.
This result is consistent with those obtained in [24] and
[25] for the recognition of English E-set. Actually, as
shown in Fig. 7(e)–(h), the active levels of the cumulative
weighted discriminant functions for 100 FDinitials and
39 finals are approximately the same. So they contribute
almost equally to the recognition of 411 base-syllables
regardless of the inherent difference in their average
durations.

• Fig. 7(c) and (d) shows that the active levels of theinitial
andfinal dynamic weighting functions were automatically
adjusted to their appropriate levels after the second-
phase training. Theinitial dynamic weighting functions
truly emphasize theinitial parts of input utterances and
suppresses thefinal parts, and thefinal dynamic weighting
function do the opposite. So together, they provide proper
information aboutinitial /final segmentation, thus simpli-
fying the recognition process by directly combining the
weighted discriminant functions without invoking a DP
procedure.

• It can be found from Fig. 7(e)–(j) that the cumulative
weighted discriminant functions of theinitial , final, and
tone in the basic MRNN have different active levels from
their counterparts in the Rev-MRNN after the second-

phase training. For both theinitial and tone, they are
much higher in the Rev-MRNN than in the basic MRNN.
For the final, it is slightly higher in the basic MRNN
than in the Rev-MRNN. This shows that the basic MRNN
and Rev-MRNN use different context information in their
syllables’ discrimination. So, they can complement to
each other.

C. Error Analyzes and Discussions

Lastly, some error analyzes were made. Statistics onini-
tial and final recognition errors made by the ML-trained
HMM method, the MCE/GPD-trained HMM method, the basic
MRNN recognizer, and the Bi-MRNN recognizer were calcu-
lated for comparison, and are shown in Figs. 8 and 9. We note
that in order to show the results more clearly, the errors for
the 100 FDinitials are grouped together to form error sets of
22 context-independentinitials. Some observations concerning
these two figures can be made. First, Fig. 8(a) shows that the
most seriousinitial errors occurred on theinitials in , [j],
[ch], [tz], [ts], [t], [n], [b], [p] Among them, [j], [tz] [ch],
[ts] , and [b], [p] were three most confusable pairs. The
first two pairs are retroflex sound/nonretroflex sound pairs.
And [b], [p], and [t] are stop sounds that are well known
to be difficult to recognize. Second, as Fig. 9(a) shows, the
most seriousfinal errors occurred on thefinals in [ou],
[en], [ang], [eng], [i-en], [i-eng] Among them, [en], [eng]
and [i-en], [i-eng] were the two most confusable pairs
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(a)

(b)

(c)

(d)

Fig. 9. Error analysis of 39 context-independentfinals: (a) error counts for the ML-trained HMM; and corrected error counts compared with the ML-trained
HMM for (b) MCE/GPD-trained HMM, (c) MRNN, and (d) Bi-MRNN.

which are ended with nasals. The difficult to distinguish those
retroflex/nonretroflex pairs and nasal ending pairs is partially
due to the accent of Taiwanese. Third, in comparing Fig. 8(c),
(d) and Fig. 9(c), (d), with Figs. 8(b) and 9(b), we find that
both the basic MRNN and Bi-MRNN recognizers were better
to correctinitial and final errors than the MCE/GPD-trained
HMM method. In particular, almost half the errors occurring
on the most confusableinitials in [j], [tz], [ch], [b],
and finals in [ou], [ang], [en], [i-en] made by the ML-
trained HMM method were corrected in both the MRNN and
Bi-MRNN recognizers.

V. CONCLUSIONS

In this paper, a new MRNN-based method for recogniz-
ing all legal Mandarin syllables has been described. The
scaling and time-alignment problems encountered when ap-
plying ANN-based pattern recognition approaches to large-
vocabulary speech recognition have been solved in unique
fashion. The novelty of the proposed method mainly lies in
the use ofa priori domain knowledge about Mandarin syllable
phonetic structures in designing the MRNN architecture. So it
is superior to many current methods, including the advanced
MCE/GPD-trained HMM method and some ANN-based meth-
ods. A further study to extend it to continuous Mandarin
speech-recognition is a worthwhile future project [46]–[48].

APPENDIX

THE SYLLABLE -LEVEL MCE/GPD
ALGORITHM FOR MRNN TRAINING

The procedure for applying the syllable-level MCE/GPD
algorithm to MRNN training is described below. Although,
we only discuss the algorithm for the basic MRNN here. The
deriving of the training algorithms for the Rev-MRNN and
Bi-MRNN are almost the same. First, based on the syllable
discriminant function defined in (1), a mis-classification mea-
sure [5] for a input utterance of the th syllable is
defined as

(A.1)

where is the most probable incorrect syllable. A loss func-
tion for syllable recognition is then defined to evaluate
the cost of the current decision for the syllable. The loss
function should be a monotonically increasing, differentiable
function. If a well-approximated “ ” function is used for

, the average loss function of a utterances set

(A.2)

will approximately represent the syllable recognition error rate.
In this study, the sigmoidal function

(A.3)
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was chosen as the loss function. Hereis a scalar for
controlling the rate of weight adjustment. It is clear that
the above loss function will force the training to emphasize
utterances located a short distance from the decision boundary,
and the scalar serves to scale that distance. The objective of
the MCE/GPD algorithm is to recursively adjust the weights
of the MRNN to achieve minimization of A three-step
bootstrapping procedure is used to sequentially adjust the
weights of the five constituent RNN’s. Thus, for each input
utterance of the utterances set, the corresponding
amount of weight change in these RNN’s can be expressed
via the MCE/GPD algorithm as

• Step 1:

for the secondary weighting RNN (A.4)

• Step 2:

for the primary weighting RNN (A.5)

• Step 3:

for the tone RNN (A.6)

for the RNN (A.7)

for the RNN (A.8)

where is the learning rate at theth iteration, and
are, respectively, the most probable incorrect tone, FD

initial (belonging to the th initial subgroup), andfinal. The
five derivative terms in the equations above can actually be
computed through applications of the chain rule as suggested
in [42]. The scheme for choosing a proper learning rate can
be found in [49].

It is worth noting that in (A.5) the accumulation of the term
is weighted by ,

which is the difference between the outputs of thefinal RNN
for the correctfinal and the most probable incorrectfinal
at time This enables the primary weighting RNN to be
trained to emphasize the parts of the input utterances that are
important in distinguishing between the correctfinal and the
most probable incorrect one. The same consideration can also
be applied to the weight adjustments in the primary weighting
RNN’s for initial and tone, and in the secondary weighting
RNN for initial subgroup. And from (A.8), the accumulation of
the term is windowed by the
dynamic weighting function This makes thefinal
RNN focus on discriminating among thefinal parts of input
utterances. The same consideration can also be applied to the
weight adjustments of theinitial and tone RNN’s.
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