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Modular Recurrent Neural Networks
for Mandarin Syllable Recognition

Sin-Horng ChenSenior Member, IEEEand Yuan-Fu Liao

Abstract—A new modular recurrent neural network (MRNN)-  have the distinction of possessing high discrimination ability
based speech-recognition method that can recognize the entiregptained through competitive training [6], [7]. Although
vocabulary of 1280 highly confusable Mandarin syllables is pro- many ANN-based methods have been proposed previously

posed in this paper. The basic idea is to first split the compli(:ated]c h i, v f f th itable f
task, in both feature and temporal domains, into several much or speech recognition, only few of them are suitable for

simpler subtasks involving subsyllable and tone discrimination, large-vocabulary applications because of the scaling and
and then to use two weighting RNN’s to generate several dynamic time-alignment problems. The scaling problem holds that
weighting functions to integrate the subsolutions into a complete gn ANN structure that is effective for small-vocabulary

solution. The novelty of the proposed method lies mainly in the 000 recognition is not guaranteed to also be effective
use of appropriate a priori linguistic knowledge of simpleinitial -

final structures of Mandarin syllables in the architecture design Of large-vocabulary applications simply because it has
of the MRNN. The resulting MRNN is therefore effective and been scaled-up. The time-alignment problem results mainly
efficient in discriminating among highly confusable Mandarin from the use of ANN's, which are designed for static

syllables. Thus both the time-alignment and scaling problems of pattern recognition, to discriminate among dynamic speech

the ANN-based approach for large-vocabulary speech-recognition ) _
can be addressed. Experimental results show that the proposed patterns. Among all successful ANN-based methods for large

method and its extensions, the reverse-time MRNN (Rev-MRNN) Vocabulary speech recognition, hybrid HMM/ANN methods
and bidirection MRNN (Bi-MRNN), all outperform an advanced  [8]-[10] and modular neural network (MNN)-based methods
HMM method trained with the MCE/GPD algorithm in both [11]-[12] are the most promising. We briefly review these

recognition-rate and system complexity. two methods as follows.
Index Terms—Mandarin speech recognition, MCE/GPD algo- Hybrid HMM/ANN methods incorporate ANN-emission
rithms, modular recurrent neural networks. probability estimators into the probabilistic frameworks of
HMM'’s to relax some improper assumptions made by the
|. INTRODUCTION HMM methods. They can partially overcome the weakness

caused by noncompetitive training in conventional ML-trained
I N the past decade, many methods have been propoggdyis. many successful HMM/ANN methods [8]-[10] with

for large-vocabulary speech-recognition. Among them, tE{en‘ormances better than those of the conventional HMM
most widely used and successful is the hidden Markov moqgbqs have been reported. Although they are all effective,
(HMM)-based approach. In th's. approach, each class 'S TqRere is some room for performance improvement. These meth-
resented by an HMM model trained usually by the maximumys ony yse ANN's as nonparametric probability function

likelihood (ML) algorithm [1], which maximizes the within- o vimators, and do not usepriori knowledge of specific
class likelihood for each class without considering competltlagkplica,[ionS in their architecture designs to further improve

among hostile classes. The recent research trend in this ognition performances. Specifically, ANN's are only used

proach, IS th_us_ to _ehmm_a_t(_e this drawback by Increasing tkfgr the frame-level discrimination, not phone segment-level
HMMs' discrimination abilities through the use of COMPeMitive, - \yord-level discrimination, none of which uses full ability

training. Many discriminative training algorithms have beegf ANN's. And ANN outputs cannot be directly used in

pl\r/lohpll)?se?. 'I:[r;]ey ';Cll:r?e the _maximum tm”tqakﬂrliormlat'oﬂMM’s as likelihood functions, they must be scaled according
( ) algorithm [2], the maximuma posteriori ( ) al- to a priori probabilities in order to fit HMM requirements

go”thm_ .[3].' and the minimum classificat_ion error/genergliz 1-[10]. Moreover, the scaling operation has no appropriate
Iprt(_)bablhstlﬁ dﬁscent (I\:‘I.CE/(thﬁ)tatl)g(t)tnthm [4], [tS] Slm?'interpretations to minimize error rates in realizing the final
ation resufts have confirmed that betier recognition per %‘éﬁal of speech recognition. This may reduce its discrimination
mances can usually be achieved by these advanced H T¥hiity
methods. : L
Along with the HMM approach, the artificial neural network MNN-based methods use thel|V|de-and-_conquérpr|n0|- )
le to first decompose complicated large-vocabulary speech

(ANN)-based approach is also attractive because A'\”\r:)gcognition tasks into subtasks involving subset recognition or
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methods is proper use @ priori domain knowledge in the TABLE |

design of the MNN architecture [13] in order to efficiently THE PHONETIC STRUCTURE OF MANDARIN SYLLABLES
and effectively accomplish the main task of large-vocabulary

speech-recognition. Currently, this key issue is still not well Tone

addressed in most MNN-based methods. Only few successful
systems have been reported in the literature. They include
the hierarchical mixture of experts (HME) [14]-[17], Meta- ( Consonant ) | ( Medial } | Vowel | ( Ending )
Pi networks [18], [19], one-word-one-net neural networks
(OWON) [20], [21], and the hierarchical neural network
(HNN) [22]. One main drawback of those methods is that TABLE I

they cannot solve the time-alignment problem by themselves. 22 CDNTEXT"NDEPENDENT(L“““""S AND THEIR C‘.’R.R.ESIPOND'NG
Besides, HME, Meta-Pi, and OWON only decompose the SUBGROUPS HERE 01 DENOTES A NULL Initia

task in the feature domain, and ignore the rich information initial

contained in the temporal domain. And OWON and HNN are

(Initial ) Final

. _ . . . st affricate fricative
inefficient, using too many subnetworks or parameters in their ooP -
MNN'’s. liquid | nasal | voiced | unvoiced | voiced | unvoiced | voiced | unvoiceed | null
In this paper, a new speech recognition method based on o
a modular recurrent neural network (MRNN) is proposed fo )
m p

r
recognizing the entire vocabulary of 1280 highly confusable

isolated Mandarin syllables. It decomposes this complicated f
task in both feature and temporal domains by first dividing s ts s
it into several subtasks involving subsyllable and tone dis-
criminations. And then uses two weighting RNN'’s to generate
several dynamic weighting functions to integrate them. The i ch r sh
novelty of the work is its proper use of appropriatepriori
linguistic knowledge of Mandarin syllables’ structure in the
architecture design of the MRNN, which makes it effective an
efficient in discriminating among highly confusable Mandarin

syllables. The MRNN also solves time-alignment problem . o
effectively by allowing temporal variations in speech signafy/lables can thus be accomplished by combining the two

and avoiding the time-consuming dynamic programming (Dlsybtasks of recognizing the 4_11 base-syl_lables and five tones.
procedure. Moreover, all RNN’ outputs are directly combineflthough, from a vocabulary-size standpoint, the task seems to
to form discriminant functions for all 1280 syllables. Thid€ relatively simple when compared with that of recognizing
makes it easy to design a discriminative training algorith@! English words, it is actually very difficult because the
to optimize the MRNN with a goal of maximizing the syllablevocabulary contains many highly confusable syllables. This
accuracy rate. The resulting MRNN is therefore suitable fégsults mainly from the simplenitial-final [or more roughly
Mandarin syllable recognition. the consonant-vowel (C-V)] structure of base-syllables. Table |
The organization of this paper is as follows. Section Bhows the phonetic structure of Mandarin syllables. ifiteal
provides background information about the task of recognizi®j & base-syllable, if it exists, consists only of a single
the entire vocabulary of 1280 isolated Mandarin syllablesonsonant. There are a total of 2@tials including a null
Section Il presents the proposed method and its two extene (see Table Il). Thénal is composed of three components
sions, the reverse-time MRNN (Rev-MRNN) and bidirectionancluding an optional preceding medial, a vowel nucleus, and
MRNN (Bi-MRNN). A two-phase embedded training method@n optional nasal ending. A total of 3thals (see Table )
with both subsyllable-level and syllable-level MCE/GPD algdform all legal concatenations of three medials, 17 vowels, and
rithms is also described. Performance of the proposed mettia endings. With such a simple phonetic structure, all 411
is evaluated in Section IV. Some conclusions are given in thase-syllables can be categorized into 39 confusing sets [23].
last section. Like the English E-set, all base-syllables in each confusing
set differ only in theirinitial consonants and are therefore
difficult to distinguish among [24]-[25]. The A-set: [j-a], [ch-
Il. BACKGROUND INFORMATION AND PROBLEM STATEMENT  g], [sh-a], [tz-a], [ts-a], [s-a], [g-a], [k-a], [h-a], [d-a], [t-a],
Mandarin Chinese is a tonal language. There exist mdreal, [I-a], [b-a], [p-a], [m-a], [f-a] and the AN-set: [j-an],
than 80000 words, each composed of from one to segh-an], [sh-an], [r-an], [tz-an], [ts-an], [s-an], [g-an], [k-an],
eral characters. There are more than 10000 commonly ugkein], [n-an], [b-an], [p-an], [m-an], [f-an] are two typical
characters, each pronounced as a monosyllable with a tex@mples. Moreover, considerable cross-confusion among the
embedded in its fundamental frequency (FO) contour [23)ase-syllables in these 39 confusing sets also exists [23]. For
There are only about 1280 phonologically allowed syllablesxamples, [l-i-an], [l-u-an] and [l-iu-an] differ only in their
and these comprise the set of all legal combinations wofedials; [k-en] and [k-eng] can only be distinguished by their
411 base-syllables and five tones. Recognition of these 128fding nasals; and so on.

1 n d t
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_ TABLE il Spectral Features Pitch Features
39 finals AND THEIR CORRESPONDING i
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Discriminant Functions Accumulator

Currently, the dominant technology for approaching the task ..o T TR JRTTT )

is still HMM-based. Most HMM-based methods use the con- 1280  Discriminant-Function
. L L. . Combination Module

ventional within-class training algorithm to separately generate ‘v
HMM models for each individual class without considering
competition with hostile classes. Letal. proposed an isolated
syllable-based dictation machine [23], [26]. The system was \ 4
then upgraded into a con_tinuous-speech qk_evice [27], [28]. Recognized Syllable
Some HMM-based Mandarin speech-recognition methods that
use the MCE/GPD discriminative training algorithm hav&ig- 1. A block diagram of the proposed MRNN syllable-recognizer.
recently been reported [29], [30].

Many ANN-based isolated Mandarin syllable-recognitionog final-dependent (FD)initials, and 39finals Here the
methods have also been proposed. Wahgl. used a three- 100 FD initials form a complete, legal set expanded from
stage HNN to recognize all 1300 isolated Mandarin syllablggese 22 context-independeinttials (see Table 1) according
[22]. Jouet al. used a OWON to recognize 408 isolated basgg the seven broad-classes (see Table Ill) of their succeeding
syllables [20]. They all used high-dimensional input featurg,ais. They are used to partially compensate the intrasyllable
vectors to represent whole-syllable (or subsyllable) patterns {Q45 ticulation effect between thiaitial and final segments

recognition. Preprocessing to time—normalize ipput utteranc&s,], [28], [30], [37]. The integration subtask does the upper-
was therefore needed. Chenal. used a hierarchical recurrentia, e among-group classifications, as well as the discriminant-
neural network (HRNN) to recognize 54 highly confusablg .o combinations required for final decision-making. As
Mandarin syllables, all with nasal endings [31]. The HRNNp . in Fig. 1, each discrimination subtask is accomplished
recognizer is a preliminary version of the MRNN recognlzelﬂsing an RNN to generate within-group discriminant functions

propgsed n this study. It has a simpler Structur.e' and was u Spall subsyllables belonging to the group it is associated with.
only in a pilot study 9f 54-base-syllable recognltl(_)n. A hybri Be integration subtask is accomplished using two weighting
approach that combines an ANN pattern recognizer and a NN’s and one discriminant-function combination module.
search was also presented recently [32]. e‘lgﬂe first weighting RNN generates three primary dynamic

Many methods for tone recognition have been proposed. hting f : f h of the th . bsvilabl
They include MLP-based methods for four—tone—recognitiovr\{elg ting upctlons oreach of t .e-t ree respect!ve subsyliable
oups of five tones, 100 FDnitials, and 39finals. The

of isolated Mandarin syllables [33], and HMM-based methods S . o
: . ; X econd weighting RNN generates nine additional secondary
for five-tone-recognition of continuous Mandarin speech [34

A prosodic-model-based method [35] and a hybrid methdd Eamlc W?rl]gf:tlng t_ftl_mcu:)hns fotr efa(;hz of t?etmr:jmtlal dent
[36] have also been proposed. subgroups that partition the set o context-independen

initials (and the expansion set of 100 Hiltials) according
to the manner of articulation. Table Il shows that these nine
1. THE PROPOSEDMETHOD initial subgroups include liquid, nasal, unvoiced and voiced
An MRNN recognizer is proposed to discriminate amongtops, unvoiced and voiced affricates, unvoiced and voiced
the entire set of 1280 isolated Mandarin syllables. Fig. 1 shoficatives, and null. All these dynamic weighting functions
a block diagram of the MRNN recognizer. It decomposes tlage used in the discriminant-function combination module to
task of recognizing 1280 syllables into four subtasks includirgpmbine subsyllable discriminant functions generated by those
three discrimination subtasks and one integration subtask. Theee discrimination RNN'’s in order to generate discriminant
three discrimination subtasks do the lower-level within-groufoinctions for the entire set of 1280 syllables. All five RNN’s
classifications for the three subsyllable groups of five tondsave similar three-layer simple recurrent structures with all

Decision-Making
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outputs from their hidden layers being fed back to themselvdsais speeding up the training process. Beside, the MRNN is a
as additional inputs [38]. All output-layer nodes in each RNIhird-order system for which direct whole-MRNN training is
use linear output functions, rather than the more commonigetentially unstable, and may lead to the training process fail
used sigmoid output functions. The operation of the MRNM converge. Moreover, direct whole-MRNN training would
recognizer is described in more detail below. suffer from so-called spatial crosstalk (or interference) [11],

To recognize an input test utterance, a discriminant functiamd thus risk becoming trapped in local optima, resulting in
is first defined for each of the 1280 syllables. For fita slow convergence, poor generalization, or even learning fail-
syllable, which is composed of théh tone, thejth FD initial  ure. Below, the two phases of the proposed training algorithm
(belonging to thelth initial subgroup), and théth final, its are described in more detail.

discriminant function [5] can be expressed as In the first phase, distributive training, all three discrim-
| Lol ination RNN's and the two weighting RNN’'s are trained

gp(Xélfl) =7 Z[O;.P(X YOW (X,) separately. Preprocgsglqg is first gsed to segment all training
— syllable utterances intinitial and final segments. Segmen-

tation is realized by using the HMM-based segmentation

I/~ VVg ' w '
+ 05 (Xn)O, 7 (Xn)OF (Xn) method to find theinitial/final boundary for each training

+ OF (X,)OF (X)), utterance. Then, the boundary is relaxed allowing itfigal
p=20,---,1279 (1) andfinal segments to overlap by several frames, after which
. the subsyllable-level MCE/GPD algorithms [5], [31] are used
where X'~ = Xo,X;,--, Xy, is the feature-vector se-yq train the initial, final, and tone discrimination RNN's

quence of a test utterance of length O (X,.), O}(X,), separately on thenitial segments, thdinal segments, and
and Of (X,,) are, respectively, théth output of the tone the voiced segments, respectively. The voiced segment of
RNN, the jth output of theinitial RNN, and thekth output an utterance is defined as that portion of the pitch period
of the final RNN; O} (X,,), O} (X,), and OF (X,,) are that can be reliably detected. At the same time, the two
the corresponding three primary dynamicwyveighting functioRgeighting RNN’s are being independently trained by the error
produced by the first weighting RNN; arig"* (X,) is thelth  backpropagation (EBP) algorithms [42] to generate appropriate
secondary dynamic weighting function produced by the secogghamic weighting functions for the three subsyllable groups
weighting RNN. The final decision rule then chooses the begid nineinitial subgroups. “O— 1" output target functions
candidate syllable according to the maximum discriminagetermined according to the segmentation results are used for
function, i.e., all 12 dynamic weighting functions. It is worth noting that the
coarticulation effect between thmitial andfinal segments on
syllable recognition can be partially compensated for by using
c)Ryerlappedinitial and final segments to train thanitial and

~” X - 1,—1

p=arg max gp(Xo7). 2
It is worth noting that the proposed method can be ¢ ! . . .

sidered as a generalization of the conventional hybrid NN/[ﬂQaI RNN's during the first training phase.

method, which uses the set of much simpler weighting func- Alter ”"’“”'T‘Q the f{\/g RNN’S.’ we the,n execute the secqnd
tions given below phase, combining training. All five RNN’s are combined using

the discriminant-function combination module and then fine-
A (3) tuned using a “bootstrapping” procedure embedded within
W, o W , 0<n<B a syllable-level MCE/GPD algorithm according to the dis-
O (X)0r (X)) = { 0. B<n<L-—1 (4)  criminant function defined in (1). In the bootstrap fine-tuning
a procedure, all constituent RNN's of the MRNN was distributed
{ (5) into three parts and retrained part-by-part, i.e., we select
one part at a time for retraining and freeze the weights
where A is a constant weight determined by try-and-error fasf the other parts. Detailed derivations of the syllable-level
properly combining the base-syllable and tone scores,AndMCE/GPD training algorithms are given in the Appendix.
is theinitial /final boundary determined by DP search. We alsbhe reason for using a bootstrapping procedure rather than
note that the proposed MRNN has an architecture similar direct whole-MRNN retraining is also to avoid encountering
those of the recurrent HME's proposed in [39]-[41], but theistability in the training process. We note that the 01"
function in very different ways. bounds of all dynamic weighting functions, set as learning
To train the MRNN recognizer, a special two-phase embetdrgets during first-phase training, are now relaxed and freed
ded training method with both subsyllable-level and syllabl@f any manual control during the second-phase training. The
level MCE/GPD algorithms [5] was incorporated in it. ltultimate level that a dynamic weighting function can reach
uses the distributively-train-then-combine approach to firit automatically determined by the syllable-level MCE/GPD
train all constituent RNN’s separately in the first phase, ardgorithm. This increases the discrimination capacity of the
then combine all RNN'’s to form the whole MRNN syllableMRNN syllable-recognizer by placing special emphases on
recognition system and fine-tune in the second phase. Yhe most distinguishing parts of input test utterances for each
chose this training method instead of direct whole-MRNNandidate syllable [24]—[25].
training because, in the first phase, all MRNN modules can beThe basic MRNN syllable recognizer described above is
trained in parallel on only a small subset of the training datemproved by first adding an additional Rev-MRNN syllable
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recognizer, and then combining these two MRNN’s into a 100 FD initials are used as recognition units, and then
bidirectional syllable recognizer, i.e., the Bi-MRNN. The Rev-  several sets of dynamic weighting functions are applied
MRNN is the same as the basic MRNN except that the to increase their distinguishablility.

time scale was reversed, and is designed to utilize the right= The MRNN is architecturally homogeneous. Except for
context information of speech signal instead of the left-context the discriminant-function combination module, it is all
information in the basic MRNN. Therefore, the Bi-MRNN made up of RNN’s.

can explore the context-information of a speech signal ine The time-alignment considerations have been resolved via
both directions to further improve its performance [43]. Many the use of the weighting RNN'’s. Thus, no DP’s are needed
combination methods [43] can be used to form the Bi-MRNN  to calculate syllable discriminant scores [see (1) and (6)].
syllable recognizer. In this study, we used a simple combina- This greatly simplifies the recognition process.

tion method that directly averages the syllable discriminapjg Compared with previou5|y proposed methods, the proposed
functions of the two MRNN syllable recognizers to formvRNN recognizer has the following distinct advantages.

the fllngl syIIabIe.d|scr|m|nant functions. The final syllable , |tis more effective on Mandarin syllable-recognition than
discriminant function for theth syllable can thus be expressed  1e HMM and hybrid HMM/ANN methods because it

by considers not only the frame-level but also subsyllable-
Bi-MRNN / - r.—1 and syllable-level competition among hostile syllables
9 (*Xo ) duri . . .
uring the recognition process. Besides, it lets each frame
of the input test speech signal contribute uniquely to the
p=0,---,1279. (6) final recognition decision via the use of several sets of
dynamic weighting functions.
It is also more sophisticated in that it uses the information
in the transient area between fhéial andfinal segments
for both initials and finals discriminations.
The time-alignment requirement inherent in applying
ANN's to the task of large-vocabulary speech recognition
is solved. Temporal variations in test speech patterns
are absorbed partially by the discrimination RNN'’s and
partially by the weighting RNN's.

— % . {QI’}ARNN(X(f_l) _r_ngEV-MRNN(Xé/—l)}

The Bi-MRNN are also trained by the above mentioned two- ,
phase embedded training method according to the discriminant
function defined in (6). Detailed derivations of the training
algorithms are similar to those given in the Appendix. Note ,
that although a simple averaging combination method is used
here, the basic MRNN and Rev-MRNN recognizers are of un-
equal importance in influencing the final syllable-recognition
decision. The syllable-level MCE/GPD algorithm will fine-
tune the Bi-MRNN syllable recognizer to automatically adjust
the dynamic weighting functions of the two MRNN's to their
appropriate values.

Several distinctive characteristics of the MRNN recognizer IV. EVALUATIONS

are given below. The performance of the proposed method was evaluated

It is a frame-based recognition system. Recognition feasing a multispeaker speech-recognition task. A database
ture vectors are fed in frame-by-frame. No preprocessimgntaining utterances of all 1280 isolated Mandarin syllables
to time-normalize input test utterances is needed. The was used in the following experiments. Each syllable was
put layers of all RNN'’s in the MRNN are therefore muctpronounced ten times by eight male and two female speakers
smaller as compared with those using whole-utteraneath a Taiwan accent. Seven repetitions were used for training
input patterns [20]-[22]. and the remaining three for testing. All speeches were directly

« The short-term context-dependencies of input feature vadigitally recorded in a laboratory using a personal computer
tors are explicitly invoked during recognition testing bywith a 16-bit Sound Blaster card and a head-set microphone.
using RNN'’s to discriminate among subsyllables. A# sampling rate of 16 kHz was used. All speech signals were
mentioned above, all RNN’s have similar three-layethen preprocessed to extract features for recognition. During
structures with all outputs from hidden layers being fegreprocessing, signals were first preemphasized with a high-
back to themselves as additional inputs. Thus each RNfdss filterl — 0.95z~1, then, a 14th-order LPC analysis was
functions as a dynamic system with the outputs of ifgerformed on every 20-ms Hamming-windowed frame with
hidden layer depending at any given time on a comple0-ms frame shifts. Fourteen liftered LPC-derived cepstral
aggregate of all previous inputs [9], [38]. coefficients and their first-order time derivatives were then

* The architecture of the MRNN recognizer has been deemputed. The first-order and second-order time derivatives
signed to conform to Mandarin Chinese’s syllabic phosf the log energy, as well as the zero-crossing rate, were also
netic structure. Subsyllables with similar acoustic progomputed for each frame. All 31 parameters were then taken
erties are grouped together and recognized using thAginput features for base-syllable recognition. Five parameters
same RNN. This makes each individual RNN an exwere used for tone recognition: log energy, delta log energy,
pert classifier of associated subsyllable subsets througdak normalized auto-correlation function, pitch period, and
concentration on the distinguishing parts of constituedelta pitch period. The pitch period was automatically detected
subsyllables. using the simple inverse filter tracking (SIFT) algorithm [44]

« Initials, which are the most highly confusable subsylwithout any modification. The window size for pitch analysis
lables, receive special care in the MRNN recognizewas 40 ms with 10-ms shifts.
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TABLE IV 3
RECOGNITION RESULTS OF THEDISTRIBUTIVE-TRAINING PROCEDURE FOR THE % 86 ! ' . -
NINE initial Sus-Groups 100 FDinitials, 39 finals, AND FivE TONES é 2‘;’/.(—'-*——— ------------ e
k) 7
# of hidden | 9 énitial | 100FD | 39 | 5 g o ]
§ 76>
neurons sub-groups | initials | finals | tones 5 74_/"’_f_ _____ i = _:
E 72_//” .................... Open test |
RNN 30 85.0% 88.3% & o io o) ) 40 ) 50
Iteration
60 76.9% | 88.6%
c C
120 80.6% | 89.5% 22
2t Open test
=1 At ireeaesey et At ekt Ar ke Ay Lt AP k" A ek A d
150 80.9% | 90.0% %5 025
8s
[}
Rev-RNN 30 83.4% 87.5% =
g 3 Closed test
60 77.2% | 88.9% <8 . . : . .
i ’ 0155 10 20 30 40 50 80
120 80.3% | 90.3% Heration
. Fig. 2. The learning curves of the three schemes of the proposed MRNN
150 82.0% | 90.6% recognizer for 1280 Mandarin syllables (solid line: Bi-MRNN, dashed line:

MRNN, dotted line: Rev-MRNN).

A. Experimental Results each of the three retraining steps. Fig. 2(a) and (b) show,

We started by examining the performance of the proposkgppectively, the syllable recognition-rate learning curves and
MRNN syllable-recognizer. The effect of first-phase distribithe average loss functions for syllable recognition [defined
tive training was examined first. All input-syllable utterancel (A.2)] achieved in both closed and open tests. Fig. 2(a)
were presegmented iniaitial and final segments with 100- shows that the recognition rates for closed and open tests
ms overlaps. All five RNN’s were then trained separately withoth increased very rapidly at the beginning of the first
target information being set according to the given segmeigtraining step, and then went into saturation. Conversely,
tations of all training utterances. The numbers of neuroife two average loss functions decreased very rapidly during
used in the hidden layers of the primary weighting RNNhe first several iterations of the first retraining step, and
the secondary weighting RNN, and the tone discriminatidhen became saturated. They then decreased again at the
RNN were all set to fixed values of 30. By contrast, severBeginning of the second retraining step, and again went into
values for the numbers of hidden neurons were tested for $furation quickly. These results show that the retraining gain
initial andfinal discrimination RNN'’s, including 60, 120, andin recognition performance decreased as we proceeded with
150 hidden neurons. All five RNN’s were trained in paralldhe bootstrapping procedure. A recognition rate of 74.2%
on several workstations for 100 iterations. The recognitiodas finally obtained. It is worth noting that the sum of
results for theinitial-, final-, and tone-discrimination RNN'’s the recognition rate and the average loss function equaled
are shown in Table IV. The best recognition rates achievégproximately 1.0 when the training process converged. This
for 100 FDinitials, 39 finals and five tones were 80.9, 90.0,0utcome is the same as that obtained in [24] and [25]. Thus the
and 88.3%, respectively. We also report the performance &ffectiveness of the bootstrapped retraining procedure has been
the secondary weighting RNN on the niitial subgroup confirmed.
classification in Table IV. A fair classification rate of 85.0% The performances of the Rev-MRNN and Bi-MRNN rec-
was obtained. We note that the classification performance aginizers on the 1280 Mandarin syllables were then examined.
the secondary weighting RNN is given for reference only anthe same two-phase training algorithm was used to train
is not important to the MRNN-based syllable recognition. Thigiese two systems. The training procedure for the Rev-MRNN
is because the secondary weighting RNN is only trained Isyllable recognizer was the same as that used to train the
the EBP algorithm using frame-based 01" target functions basic MRNN syllable recognizer, except that the time scale
with a goal to provide proper dynamic weighting functiongvas reversed. Five reverse-time RNN'’s were trained separately
for the initial part of the testing utterance. Besides, it will beluring the first phase (see Table 1V), then combined and fine-
fine-tuned in the second-phase training. tuned during the second phase. The training procedure was

We then combined the five RNN'’s to form the basic MRNNsimilar for the Bi-MRNN syllable recognizer. We first trained
1280-Mandarin-syllable-recognizer and retrained it using tlilee ten RNN's separately, five in the basic MRNN and five in
bootstrapping procedure. As mentioned above, all constitugheé Rev-MRNN, in the first-phase training (see Table 1V), then
RNN’s of the MRNN were distributed into three parts andombined them and used the same three-step bootstrap retrain-
fine-tuned part-by-part. The fine-tuning sequence started wittg procedure to fine-tune them during second-phase training.
the secondary weighting RNN, continued with the primariote that in each step of the bootstrapping procedure, the
weighting RNN, and ended with thaitial-, final-, and tone- same parts of the two MRNN's were retrained simultaneously.
discrimination RNN'’s. Twenty iterations were performed ifThe learning curves of these two MRNN syllable recognizers
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Fig. 3. The learning curves of the three schemes of the proposed MRNN

recognizer for 411 Mandarin base-syllables (solid line: Bi-MRNN, dashed ” )
line: MRNN, dotted line: Rev-MRNN). Fig. 4. Recognition results of the ML-, MCE/GPD-trained HMM and the

proposed MRNN methods for 411 Mandarin base-syllables. Here KiMM
means the maximum mixture number in each state is set to

are also shown in Fig. 2. As the figure shows, the learning
processes of these two syllable recognizers were very similarg , , , , ,
to that of the basic MRNN system. Recognition rates of 74.1
and 76.3% were achieved by the Rev-MRNN and Bi-MRNN Bi-MRNN
syllable recognizers, respectively. The performance of the o
Rev-MRNN syllable recognizer was comparable to that of the
basic system, but the performance of the bidirectional systé:mm» MRNN :
was better. This shows that the complementary characteristits
of the Rev-MRNN to the basic MRNN on Mandarin syllable_§

recognition [43]. 5" |
Due to its relative importance, recognition of 411 Mandari® Rev-MRNN

base-syllables was also examined using the MRNN, Re%—?o q
MRNN, and Bi-MRNN. Fig. 3 shows the learning curves fog
these three recognizers. Similar learning processes can bgg
observed in the figure. Respective recognition rates of 80.7,

MCE/GPD-HMM(5)

80.6, and 82.8% were achieved by the three systems. ML-HMM(5)
For a performance comparison, the continuous-density 6y 05 i 15 3 2'5 3
HMM method using the same subsyllable recognition units Number of parameters x 10°

to recognize the 411 Mandarin base-syllables was also testlga_d.5 5 - s of the ML MCE/GPD-rained HMM and th
S " . ig. 5. Recognition results of the ML-, -traine and the

Three Combl_natlon_s of state numbers faitials and finals proposed MRNN methods for 1280 Mandarin syllables. Here HMMmeans

were used, including (3,5), (4,8), and (5,12). Hetey) the maximum mixture number in each state is setto

denotes that the state numbersrafial andfinal HMM models

are set tar andy, respectively. All HMM models had left-to- brid svilabl . This hvbrid |
right structures and no states were skipped. The observat?omy rd syliable-recognizer. IS hybrid system was also

features in each state were modeled by a partitioned-mixtjHsther refined using the syllable-level MCE/GPD training

Gaussian distribution. The mixture number in each sta@dorithm. Recognition rates of 68.9 and 70.8% (see Fig. 5)

varied depending on the number of training data, but '4€ré achieved by the ML-trained and MCE/GPD-trained

maximum mixture number of five or eight was set. ThEIMM'S, respectively. But they were still far lower than
best recognition rate was achieved when there were (5,ip§t obtained by the proposed Bi-MRNN system. Thus the
states and five mixtures. It was only 75.3% (see Fig. 4). FBfoposed MRNN-based method outperformed the HMM
a fairer comparison, these ML-trained HMM's were thefethod.

further refined using the syllable-level MCE/GPD training We then examined the computational efficiencies of these
algorithm [5]. The best recognition rate increased to 76.8%e methods. Rough comparisons based on total numbers
(see Fig. 4), but this was still far below that achieved b§f parameters used by these five methods were made. The
the proposed Bi-MRNN base-syllable recognizer. To compaiesults are also plotted in Figs. 4 and 5 for the two cases
performance on recognition of the 1280 Mandarin syllablegvolving recognition of the 411 base-syllables and 1280
we combined the base-syllable HMM's with the same RNRNyllables, respectively. These two figures show that all three
tone-recognizer used in the basic MRNN system to forsthemes in the proposed method used fewer parameters than
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Fig. 6. Typical responses of the Bi-MRNN after the first-phase training: (&ig. 7. Typical responses of the Bi-MRNN after the second-phase training:
the waveform of the syllable /ji-i-ang-4/ and (b) its pitch contour; the dynami@) the waveform of the syllable Jji-i-ang-4/ and (b) its pitch contour; the
weighting functions (DWF’s) for (c) the basic (forward) MRNN and (d) thedynamic weighting functions (DWF's) for (c) the basic (forward) MRNN
Rev-MRNN (bold solid line: product of the two DWF's for the desiiedial and (d) the Rev-MRNN (bold solid line: product of the two DWF's for the
subgroup, solid lines: products of the two DWF's for otl@tial subgroups, desiredinitial subgroup, solid lines: products of the two DWF's for other
dotted line: DWF foffinal, dash line: DWF for tone); the cumulative weightedinitial subgroups, dotted line: DWF fdimal, dash line: DWF for tone); the
discriminant functions of (e) the 100 Fhitials, (g) 39finals and (i) five cumulative weighted discriminant functions of (e) the 100 Fdials, (g)
tones for the basic MRNN; and those of (f) the 100 iridials, (h) 39finals, 39 finals, and (i) 5 tones for the basic MRNN; and those of (f) the 100 FD
and (j) five tones for the Rev-MRNN (bold solid lines: the desimitial, initials, (h) 39finals, and (j) 5 tones for the Rev-MRNN (bold solid lines: the
final, and tone classes). desiredinitial, final, and tone classes).

the two HMM methods. Beside, no DP’s were needed in the all the same after the first-phase distributive training.
recognition tests of the three schemes in the proposed method. Here, the active level of an output response is generally
They were thus all much more efficient than the HMM method.  defined as the approximate level reached when an input
utterance of the class associated with it is received. On
B. Analysis of the MRNN Operation the contrary, as shown in Fig. 6(e)—(j), the active levels

A detailed analysis of the operation of the proposed MRNN  of the cumulative weighted discriminant functions for 100
was then performed. This was worthwhile since it yielded a FD initials, 39 finals and five tones are quite different.
better understanding of its behavior. Typical responses of the The two active levels for 3finalsare much larger than all
Bi-MRNN, obtained before and after we applied the second- others. This means that, after the first-phase training, the
phase combining retraining procedure, are shown in Figs. 6 recognition results are dominated primarily by theal
and 7, respectively. These two figures show several distinctive part of the test utterance. This is reasonable because the
properties of the two-phase training process. final part of a test utterance contains, in average, much

» As shown in Fig. 6(c) and (d), the active levels of the  more input frames and the three weighting functions have

initial, final, and tone dynamic weighting functions are  approximately equal active levels.
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L]

As shown in Fig. 7(c) and (d), the active levels of the
initial dynamic weighting functions are much higher than
those of thdinal and tone after the second-phase training.
The contribution of thenitial part of the test utterance

to the final recognition decision is therefore emphasized.

This result is consistent with those obtained in [24] and
[25] for the recognition of English E-set. Actually, as
shown in Fig. 7(e)—(h), the active levels of the cumulative
weighted discriminant functions for 100 Fibitials and

39 finals are approximately the same. So they contribufe:

phase training. For both thimitial and tone, they are
much higher in the Rev-MRNN than in the basic MRNN.
For thefinal, it is slightly higher in the basic MRNN
than in the Rev-MRNN. This shows that the basic MRNN
and Rev-MRNN use different context information in their
syllables’ discrimination. So, they can complement to
each other.

Error Analyzes and Discussions

almost equally to the recognition of 411 base-syllables Lastly, some error analyzes were made. Statisticsngn
regardless of the inherent difference in their averadml and final recognition errors made by the ML-trained

durations.
Fig. 7(c) and (d) shows that the active levels of ithiéal

HMM method, the MCE/GPD-trained HMM method, the basic
MRNN recognizer, and the Bi-MRNN recognizer were calcu-

andfinal dynamic weighting functions were automaticallylated for comparison, and are shown in Figs. 8 and 9. We note
adjusted to their appropriate levels after the seconthat in order to show the results more clearly, the errors for
phase training. Thénitial dynamic weighting functions the 100 FDinitials are grouped together to form error sets of
truly emphasize thénitial parts of input utterances and22 context-independeittitials. Some observations concerning
suppresses tHaal parts, and thénal dynamic weighting these two figures can be made. First, Fig. 8(a) shows that the
function do the opposite. So together, they provide properost seriousnitial errors occurred on thmitials in {¢;, [j],
information aboutnitial /final segmentation, thus simpli- [ch], [tz], [ts], [t], [n], [b], [p] }. Among them{[]], [tz] }, {[ch],

fying the recognition process by directly combining thts]}, and {[b], [p]} were three most confusable pairs. The
weighted discriminant functions without invoking a DFfirst two pairs are retroflex sound/nonretroflex sound pairs.

procedure.

And [b], [p], and [t] are stop sounds that are well known

It can be found from Fig. 7(e)—(j) that the cumulativéo be difficult to recognize. Second, as Fig. 9(a) shows, the
weighted discriminant functions of thitial, final, and most seriousfinal errors occurred on théinals in {[ou],
tone in the basic MRNN have different active levels fronjen], [ang], [eng], [i-en], [i-eng}. Among them,{[en], [eng]}
their counterparts in the Rev-MRNN after the secondnd {[i-en], [i-eng]} were the two most confusable pairs
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which are ended with nasals. The difficult to distinguish those APPENDIX
retroflex/nonretroflex pairs and nasal ending pairs is partially THE SYLLABLE -LEVEL MCE/GPD
due to the accent of Taiwanese. Third, in comparing Fig. 8(c), ALGORITHM FOR MRNN TRAINING

(d) and Fig. 9(c), (d), with Figs. 8(b) and 9(b), we find that o rocedure for applying the syllable-level MCE/GPD
both the basic MRNN and Bi-MRNN recognizers were bettef,jihm to MRNN training is described below. Although,

to correctinitial and final errors than the MCE/GPD-trainedWe only discuss the algorithm for the basic MRNN here. The
HMM method. In partic‘.*"’?‘f* a'”_‘OSt _half the errors Occurrin%eriving of the training algorithms for the Rev-MRNN and
on the most confusablaitials in {[il, [tz]. [ch], [b], ¢r} Bi-MRNN are almost the same. First, based on the syllable

and finals in {[oul, [ang], [en], [i-en} made by the ML- o ininant function defined in (1), a mis-classification mea-
trained HMM method were corrected in both the MRNN angure [5] for a input utterancé(oLfl of the pth syllable is

Bi-MRNN recognizers.

defined as
dP(X(f_l) = _gp(XoL_l) + gp (XOL_I) (A.1)
V. CONCLUSIONS wherep* is the most probable incorrect syllable. A loss func-

In this paper, a new MRNN-based method for recogniii-on for syllable recognitiorv(d,) is then defined to evaluate
ing all legal Mandarin syllables has been described. THRE COSt Of the current decision for the syllable. The loss
scaling and time-alignment problems encountered when 6(Bnct!on should be a monotonlcally increasing, differentiable
plying ANN-based pattern recognition approaches to |arggj_nct|on. If a welI-approxmat(_adO — 1" function is used for
vocabulary speech recognition have been solved in unigdéls): the average loss functiofi of a V" utterances set
fashion. The .no'velty qf the proposed method majnly lies in J= 1 Z J(dp(Xéﬁl)) (A.2)
the use ofa priori domain knowledge about Mandarin syllable N
phonetic structures in designing the MRNN architecture. So it ] .
is superior to many current methods, including the advancédll approximately represent the syllable recognition error rate.
MCE/GPD-trained HMM method and some ANN-based met#? this study, the sigmoidal function
ods. A further study to extend it to continuous Mandarin J(d,) = 1 (A.3)
speech-recognition is a worthwhile future project [46]—[48]. v 1+ e 7d

L—1
XO
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was chosen as the loss function. Hereis a scalar for initial (belonging to thd*th initial subgroup), andinal. The
controlling the rate of weight adjustment. It is clear thdive derivative terms in the equations above can actually be
the above loss function will force the training to emphasizéomputed through applications of the chain rule as suggested
utterances located a short distance from the decision boundé#ty[42]. The scheme for choosing a proper learning rate can
and the scalar serves to scale that distance. The objective 8¢ found in [49].

the MCE/GPD algorithm is to recursively adjust the weights !t is worth noting that in (A.5) the accumulation of the term
of the MRNN to achieve minimization off. A three-step 9OF (Xn)/OW™ is weighted by[—O{(X,,) + Oy (X)),
bootstrapping procedure is used to sequentially adjust tH8ich is the difference between the outputs of fimal RNN

weights of the five constituent RNN’s. Thus, for each inp firt_the cor_lr_ic_:tflnal ;nd ttr?e m_ost pronbLet_ mcgrl:le'\?rlal b
utteranceX§ ™' of the IV utterances set, the correspondin imen. [his enables the primary weighting 0 e

. . , %ined to emphasize the parts of the input utterances that are
amount of weight change in these RNN's can be EXPreSSRportant in distinguishing between the corrdicial and the
via the MCE/GPD algorithm as P g g

most probable incorrect one. The same consideration can also

+ Step 1 be applied to the weight adjustments in the primary weighting
AWWs =—p,, . J’(dk(XO’*_l)) RNN's for initial and tone, and in the secondary weighting
= 50" (X RNN for initial subgroup. And from (A.8), the accumulation of
L= Z _#Of()@) the termd[—OF (X,,) + OF. (X,,)]/OW T is windowed by the
L~ oW e dynamic weighting functiorO¥ (X,,). This makes thdinal
90" (X) ) RNN focus on discriminating among thmal parts of input
WOJI (X)) 07 3, utterances. The same consideration can also be applied to the
9 . . « _age
weight adjustments of thimitial and tone RNN’s.
for the secondary weighting RNN (A.4)
* Step 2: ACKNOWLEDGMENT
T—1
; _ 1 Th hors would lik hank th itor and reviewer
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