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Abstract

This work investigates how a time-modulated gate-voltage influences the differential conductance G of a saddle-point
constriction. The constriction is modeled by a symmetric saddle-point potential and the time-modulated gate-voltage is
represented by a potential of the form »

0
#(a/2!Dx!x

#
D) cos(ut). For +u less than half of the transverse subband energy

level spacing, gate-voltage-assisted (suppressed) feature occurs when the chemical potential k is less (greater) than but
close to the threshold energy of a subband. Our results indicate that as k increases, G exhibits, alternatively, the assisted
and the suppressed feature. For a larger +u, these two features may overlap. In addition, dip structures are found in the
suppressed regime, and mini-steps are found in the assisted regime only when the gate-voltage covers a region sufficiently
distant from the center of the constriction. ( 1998 Elsevier Science B.V. All rights reserved.

PACS: 72.10.!d; 72.40.#w
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1. Introduction

The extent to which time-modulated fields influ-
ence the quantum transport has received extensive
interest. These time-modulated fields can be trans-
versely polarized [1—10], longitudinally polarized
[11,12], or represented by time-modulated poten-
tials, with no polarization [13—21]. The systems
considered as of late are primarily mesoscopic
systems, such as the narrow constrictions
[1—10,17,21]. For a circumstance in which a
constriction is acted upon by an incident electro-
magnetic wave, the time-modulated field has a

polarization. Such a circumstance can be realized
experimentally, as demonstrated by recent invest-
igations [4,6]. On the other hand, the time-
modulated potentials are expected to be realized in
gate-voltage configurations [8,21], as depicted in
Fig. 1.

The time-modulated fields, with or without po-
larizations, give rise to coherent inelastic scatter-
ings. These inelastic scatterings do not conserve the
longitudinal momentum along the transport direc-
tion, as long as the time-modulated fields have
finite longitudinal ranges. This phenomenon is at-
tributed to that the finiteness in the range of the
fields breaks the translational invariance [9,21].
Furthermore, the inelastic scattering processes in-
duced by these time-modulated fields depend also
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Fig. 1. Sketch of the gated saddle-point constriction which is
connected at each end to a two-dimensional electron gas elec-
trode. The gate induces a finite-range time-modulated potential
in the constriction.

on the polarization of the fields. In an adiabatically
varying constriction, the inelastic scattering pro-
cesses involve inter-subband transitions when the
time-modulated fields are transversely polarized.
However, these processes involve only intra-
subband transitions when the fields do not have
polarizations, such as those arising from time-
modulated gate-voltages. Hence, the detailed trans-
port characteristics of the constriction depend on
the polarization of the time-modulated fields.

In this work, we investigate how a time-
modulated gate-voltage influences the differential
conductance G of a saddle-point constriction. Of
particular concern is the case of a time-modulated
potential. The extent to which such a potential
affects the transport properties of one-dimensional
systems has received extensive attention [13—21].
However, the possible manifestation of quasi-
bound-state (QBS) features has seldom been men-
tioned. An exception is Bagwell and Lake [17],
who considered a time-dependent potential that
has a delta profile. The energy of this QBS is below,
but close to, the band bottom of a one-dimensional
system. The transport exhibits QBS feature when
the conducting electrons can make transitions via
inelastic processes to the QBS. As expected, this
QBS feature is more significant in a narrow con-
striction than in a one-dimensional system because
there are, in a constriction, more subbands and
hence more QBSs. Furthermore, the tunability of
the subband structures and the chemical potential
together provide a higher likelihood of probing the
QBS feature in narrow constrictions.

Our earlier work [21] investigated the effect of
a time-dependent gate potential acting upon the
uniform-width region of a narrow constriction. Ac-

cording to those results, those electrons that man-
age to enter the narrow channel region from the
two end-electrodes have perfect transmission. Con-
sequently, the time-modulated potential cannot
further increase the dc conductance. Instead, the
potential causes backscattering, thereby lowering
dc conductances. Hence, as expected, the dc con-
ductance exhibits only gate-voltage-suppressed and
not gate-voltage-assisted feature. As the chemical
potential k increases, dip structures at which k is
m+u above the threshold energy of a subband char-
acterize the suppressed feature in the dc conduc-
tance. These dip structures are associated with the
formation of QBS at a subband bottom in the
narrow channel, as partially attributed to the singu-
lar density of states (DOS). Of relevant interest is
whether such QBS feature persists in systems that
have a large but not singular DOS. Cases that may
have gate-voltage-assisted feature should also be
explored.

In light of the above discussion, we examine a
saddle-point constriction in a time-modulated gate-
voltage. The following issues are addressed. First,
the effective DOS in a saddle-point constriction is
not singular, owing to that the singularity in the
DOS of a narrow channel originates from the one-
dimensionality and the sharp threshold energy of
each subband. In a saddle-point constriction, the
threshold energy of each subband is not sharp but
is smeared by tunneling processes that occur near
the threshold. Herein, the robustness of the QBS
feature against the absence of a singular DOS is
explored. Second, the gate-voltage encompasses
regions in which the effective width of the constric-
tion varies. The gate-voltage-assisted processes
become feasible, which should be sensitive to the
range of the gate-voltage. These range-dependent
characteristics are studied herein. Third, the system
can be easily configured into an asymmetric situ-
ation by shifting the center of the gate-voltage away
from the symmetric center of the saddle-point con-
striction. The effect of this asymmetry is studied as
well.

The rest of this paper is organized as follows.
Section 2 presents the proposed method. Section
3 provides some numerical examples which demon-
strate the proposed method’s effectiveness. Con-
cluding remarks are finally made in Section 4.
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2. Theory

By selecting the energy unit E*
"+2k2

F
/2m*, the

length unit a*
"1/k

F
, the time unit t*"+/E*, and

»
0

in units of E*, the dimensionless Schrödinger
equation for such saddle-point constriction be-
comes

i

t

W(x, t)

"[!+2!u2
x
x2#u2

y
y2#»(x, t)]W(x, t) , (1)

where k
F

is a typical Fermi wave vector of the
reservoir and m* is the effective mass. The trans-
verse energy levels e

n
"(2n#1)u

y
are quantized,

with /
n
(y) being the corresponding wavefunctions.

The time-modulated gate-voltage »(x, t) can be ex-
pressed as

»(x, t)"»
0

HA
a

2
!Dx!x

#
DB cos(ut) , (2)

where the interaction region is centered at x
#

and
with a longitudinal range a. Although the saddle-
point constriction is symmetric, the transport
characteristics could become asymmetric if the in-
teraction region were not centered at the symmetric
center of the constriction. On the other hand, the
»(x, t) considered herein is uniform in the trans-
verse direction and it does not induce intersubband
transitions. Thus, for a nth subband electron and
with energy k, incident along x̂, the subband index
n remains unchanged and the scattering wavefunc-
tion can be written in the form W(`)

n
(x, t)"

/
n
(y)t(x, t).
The wavefunction t(x, t) can be expressed in

terms of the unperturbed wavefunctions t(x,k
n
)

which satisfy the Schrödinger equation

C!
2
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x
x2Dt(x,k

n
)"k

n
t(x,k

n
) , (3)

where k
n
"k!e

n
is the energy for the motion

along x̂. The solutions to Eq. (3) are doubly degen-
erate, given by [22]
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where t
%

(t
0
) denotes an even (odd) function of x,

and M(a, b, z) represents the Kummer’s function
[23]. For our scattering problem, it is more feasible
to construct out of t

%
and t

0
wavefunctions that

have the appropriate asymptotic behaviors. In the
asymptotic region xP!R, we construct
wavefunctions t

*/
and t

3%&
which have only a posit-

ive and negative current, respectively. In the
asymptotic region xP#R, we construct wave-
function t

53!/
which has only a positive current.

These wavefunctions are given by [22]
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and C(z) is the Gamma function.
Using these wavefunctions allows us to write the

wavefunction t(x, t) for an electron incident from
the left hand side of the constriction in the follow-
ing form [14,21]:

t(x,t)"t
*/
(x, k

n
)e~*kt#+

m

r(`)
m

(k
n
, x
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,
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t(x, t)"+
m

t(`)
m

(k
n
,x

c
)t

53!/
(x, k

n
#mu)

]e~*(k`mu)t if x'x
1
, (10)

where n denotes the subband index, m represents
the sideband index, and J

p
(x) is the Bessel function.

The superscript (#) in the transmission and the
reflection coefficients indicates that the electron is
incident from the left hand side of the constriction.
In addition, the sideband index m corresponds to
a net energy change of m+u for the outgoing elec-
trons. The two ends of the interaction region are at
x
0
"x

c
!a/2 and x

1
"x

#
#a/2.

The transmission and reflection coefficients can
be obtained by matching the wavefunctions and
their derivatives at the two ends of the time-
modulated gate-voltage. For the matching to hold
at all times, the integration variable e in Eq. (10)
must take on discrete values k$mu. Hence, AI (e)
and BI (e) can be written in the following form:

FI (e)"+
m

F(m) d(e!k!mu) , (11)

where FI (e) refers to either AI (e) or BI (e). After per-
forming the matching and eliminating the reflection
coefficients r(`)

m
(k

n
,x

#
), we obtain the equations re-

lating A(m), B(m), and the transmission coefficients
t(`)
m
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n
, x

#
), as expressed in the following equations:
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where t@"t/x.
By solving Eqs. (12)—(14), we obtain t(`)

m
(k

n
, x

#
),

A(m), and B(m), from which the reflection coeffi-
cients r(`)

m
(k

n
,x

#
) can be calculated. The corre-

sponding coefficients for electrons incident from the
right-hand side of the constriction can be found by
following a similar procedure. The validity of the
transmission and the reflection coefficients can be
checked by a conservation of current condition,
given by
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where superscript p"$ denotes the direction of
the incident particle. In our calculation, a suffi-
ciently large cutoff to the sideband index is im-
posed. The r(p)

m
(k

n
,x

#
) and t(p)

m
(k

n
,x

#
) coefficients that

we obtain are exact in the numerical sense.
The current transmission coefficient ¹p

nm
(E,x

c
) is

the ratio between the transmitting current in the
mth sideband and the corresponding incident cur-
rent due to a nth subband electron, with incident
energy E and incident direction p. This current
transmission coefficient is related to the transmission
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1One may want to use another current expression, which, in
units of !2e/h, is given by

I"P
=

~=

dE +
nm

Mf (E!k!(1!b)*k)

][1!f (E!k!mu#b*k) ]¹`
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( E,x
#
)

!f (E!k#b*k)[1!f (E!k!mu!(1!b)*k) ]

]¹~
nm

( E,x
c
)N .

However, it can be shown that the two expressions give the same
result.

coefficient, as expressed in the following form:
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where E
n
"E!e

n
. The total current transmission

coefficient ¹p(E,x
#
) is defined as

¹p(E,x
#
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n
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n
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#
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+
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¹p
nm

(E,x
#
) . (17)

Furthermore, in the case when the saddle-point
potential is shifted by *º, the total current trans-
mission coefficient becomes ¹p(E!*º,x

#
).

According to our results, the total current trans-
mission coefficients ¹`(E,x

#
) and ¹~(E, x

#
) are dif-

ferent for x
#
O0, when the interaction region is not

centered at the symmetric center of the constriction.
This difference can be understood from the follow-
ing example. The entire interaction region is, for
instance, on the right-hand side of the constriction
and the incident energy E is chosen such that the
electrons must tunnel through the constriction. In
this example, an electron incident from the left
hand side receives no assistance from the time-
modulated gate-voltage when tunneling through
the constriction. Instead, the electron suffers addi-
tional reflection from the gate-voltage after tunnel-
ing through the constriction. However, an electron
incident from the right hand side can receive assist-
ance from the gate-voltage while passing through
the constriction. Of course, the electron might be
reflected by this gate-voltage as well. However, in
the opening up of a new gate-voltage-assisted
transmission channel, the assisted feature domin-
ates when the electron, after absorbing m+u, can
propagate (rather than tunnel) through the con-
striction. This example, although not a generic one,
illustrates that the difference between the current
transmission coefficients originates from the differ-
ent extent to which the time-modulated gate-volt-
age is involved in assisting the transmitting elec-
trons.

The fact that ¹`(E,x
#
) can differ from ¹~(E,x

#
)

when a time-modulated potential acts upon the
QPC leads to a nonzero current in an unbiased
QPC. The current is the photocurrent I

1)
(see be-

low). Therefore, the transport in the QPC is more
accurately represented by the differential conduc-
tance G, rather than the conductance or the total
current transmission coefficient ¹.

To obtain the differential conductance in the
low-bias regime, we choose the left reservoir as the
source electrode such that the left reservoir has
a chemical potential shift of (1!b)*k, and the
right reservoir has a chemical potential shift of
!b*k. In the low-bias regime, we have *k@k.
Martin-Moreno et al. [24] and Ouchterlony et al.
[25] adopted the parameter b in their work on the
nonlinear dc transport through a saddle-point con-
striction. The current I in the constriction can then
be expressed by1.

I"!

2e

h P
=

~=

dE [ f (E!k!(1!b)*k)¹`(E,x
#
)

! f (E!k#b*k)¹~(E,x
#
)] , (18)

where f (E)"[1#exp(E/k
B
¹)]~1 is the Fermi

function. In addition, !e denotes the charge of an
electron. By assuming that the lowest energy elec-
trons from the reservoirs contribute negligibly to I,
the lower energy limit of the above integral can be
extended to !R. The zero temperature limit of
Eq. (18) is given by

I"!

2e

h CP
k`(1~b)*k

~=

dE¹`(E,x
#
)

!P
k~b*k

~=

dE¹~(E,x
#
)D. (19)
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2 In Ref. [25], Ouchterlony et al. have chosen the parameters:
m*"0.2m

e
, +u

y
"9meV, and +u

x
"4.5 meV. Their length

¸
#
"4+J3/(m*+u

y
)K 11.3nm for a typical n"1 subband. The

length ¸ over which the potential drop occurs was taken to be
¸"30 nm. Thus, in footnote 1, ¸

#
/¸+1.5.

The differential conductance in the low-bias re-
gime, as defined by

G
0
"

I

»
4$
K
V4$/0

, (20)

can be calculated from differentiating Eq. (19), and
is given by

G
0
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2e2

h
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#
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#
)b ] . (21)

Interestingly, G
0

depends on b whenever
¹`(k,x

#
)O¹~(k,x

#
). This b-dependence in

G
0
does not occur for cases of purely elastic scatter-

ings, such as impurity scatterings. We believe that
G

0
is the major contribution to the differential

conductance G. The other contribution to G is from
the change in the photocurrent I

1)
when the QPC

is subjected to the low-biased transport field. This
term is much smaller than G

0
and is qualitatively

given by

G
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is the photocurrent. Here ¸ denotes the effective
length of the potential drop across the QPC, and
*k/(2u2

x
¸) represents the effective shift of the QPC

position attributed to the small bias potential. The
differential conductance G"G

0
#G

1)
.

3. Numerical examples

In our numerical examples, the physical para-
meters are assumed to be in a high-mobility
GaAs!Al

x
Ga

1~x
As heterostructure, with a typi-

cal electron density n&2.5]1011 cm~2 and
m*

"0.067m
e
. Correspondingly, we choose an en-

ergy unit E*
"+2k2

F
/(2m*)"9meV, a length unit

a*
"1/k

F
"79.6As , and a frequency unit u*

"

E*/+"13.6THz. For the saddle-point constriction,
we have chosen u

x
"0.0125, and u

y
"0.05 such

that the effective length to width ratio of the con-
striction is ¸

#
/¼

#
"u

y
/u

x
"4. In presenting the

dependence of G on k, it is more convenient to plot
G as a function of X, where

X"

1

2C
k
u

y

#1D , (24)

and the integral value of X denotes the number of
propagating channels through the constriction.

To evaluate the term G
1)

of the differential con-
ductance G, the length ¸ of the potential drop is
assumed to be of the same order as ¸

#
[26], where

the length of our constriction ¸
#
"4¼

#
"

8J3/u
y
K62 for a typical n"1 subband. Follow-

ing Ouchterlony et al.2, who chose ¸
#
/¸+1.5, we

choose ¸ to have a value ¸"¸
#
/1.5K41.

Figs. 2—4 present the changes in the G charac-
teristics when the range of the time-modulated
potential is increased, from a"16, 32, to 50, re-
spectively. All these time-modulated potentials are
centered, with x

#
"0, and have the same frequency

(u"0.04), and the same amplitude (»
0
"0.06).

The bias parameter b"0.5 in these figures. The
G characteristics are represented by the dependence
of G on X, i.e., the appropriately rescaled chemical
potential k. According to this scale, a situation in
which k is changed by a subband energy spacing
corresponds to *X"1. In addition, a situation in
which k is changed by +u corresponds to
*X"u/(2u

y
)"0.4. In addition, when X"N, k is

at the threshold of the Nth subband.
According to Fig. 2, both gate-voltage-assisted

and gate-voltage-suppressed features are found in
G. These two features occur in well separated re-
gions of X. The gate-voltage-assisted regions occur
when k is merely beneath a subband threshold, and
is most evident in the pinch-off (X(1) region.
Meanwhile, the gate-voltage-suppressed regions
occur when k is above but close to a subband
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Fig. 2. Differential conductance G as a function of X for a
centered time-modulated potential (x

#
"0), with oscillating am-

plitude»
0
"0.06, frequency u"0.04, and b"0.5. The range of

the potential a"16 covers a distance up to d"8 from the
constriction center. The solid curve is the total differential con-
ductance G, the dash-dotted curve is G

0
, and the dashed curve is

G
1)

. In the assisted regime, although G
1)

effectively suppresses
the differential conductance, the general tunneling-like feature
remains unchanged. In the suppressed regime, there are dip
structures at X"1.4 and 2.4.

Fig. 3. Differential conductance G as a function of X for
a centered time-modulated potential. The physical parameters
are the same as in Fig. 3 except that the range of the potential is
a"32. The potential covers a distance up to d"16 from the
constriction center. In the assisted regime, the G

1)
modifies the

shoulder-like feature in G
0

and leads to the quasi-mini-step-like
feature in G. In the suppressed regime, the dip structures at
X"1.4 and 2.4 are slightly modified by G

1)
.

threshold. Dip structures are found in the sup-
pressed region, at around X"1.4 and 2.4, i.e., at
*X"0.4 above a threshold. These dip structures
are due to the processes that an electron in the Nth
subband, and at energy N#*X, can give away an
energy +u and become trapped in the quasi-
bound-state (QBS) immediately beneath the thre-
shold [17,21]. In contrast with the QBS features in
narrow channels [21], the QBS structures in
a saddle-point contriction is much broader, indicat-
ing that the QBS life-time is much shorter due to
the added possibility of escape via tunneling. In the
gate-voltage-assisted region, G gradually increases,
rather than abruptly, when a channel, after picking
up an energy +u, becomes propagating. This is
because the range of the interacting region does not
extend far enough so that the electron, although
having the right energy, must tunnel to the interac-

ting region first before being assisted. This also
accounts for why no structures exist at N$2*X,
which corresponds to the 2+u processes. Conse-
quently, the gate-voltage-assisted features do not
affect the dip structures in the suppressed regions.

Notably, no harmonic feature could have been
caused by the abrupt-profile of the the gate-voltage.
This lack of such a feature is because the effective
wavelength of a particle decreases as it emanates
from the constriction so that multiple scattering
between the two abrupt edges of the potential is
subjected to rapid phase fluctuations, thereby sup-
pressing any possible harmonic resonances. Thus,
our results should also represent the cases of
smooth-profile gate-voltages.

According to Fig. 3, the QBS structures at
X"1.4 and 2.4 are still evident. The assisted fea-
tures are enhanced. In particular, in the pinch-off
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Fig. 4 . Differential conductance G as a function of X for
a centered time-modulated potential. The physical parameters
are the same as in Fig. 2 except that the range of the potential is
a"50, which covers a distance up to d"25 from the constric-
tion center. In the assisted regime, G

1)
enhances G. Two mini-

step-like structures are found in the pinch-off region.

region, G increases much faster, exhibiting a mini-
step-like structure. The gate-voltage-assisted and
the gate-voltage-suppressed features are well separ-
ated because no 2+u features are found.

Fig. 4 reveals additional dip structures in G
0

at
X"1.8 and 2.8, indicating that 2+u processes
become significant. There are, of course, assisted
features that involve one +u processes; they are the
abrupt rises in G at X"0.6, 1.6, and 2.6. The assist-
ed feature that involves 2+u is most apparent in the
pinch-off region, around X"0.2, where G exhibits
another mini-step. Other 2u assisted processes are
at X"1.2 and 2.2, which, unfortunately, are in the
vicinity of the dip structures at X"1.4 and 2.4.
Hence, the dip structures become less dip-like but
have turned into a sharp uplift in G because they
are affected by the assisted features.

The assisted features in the above three figures
differ from each other. Such a difference is related
to how the electrons enter the interaction region.

For the Nth subband electrons with incident ener-
gies that fall within the m+u interval below the
threshold of the same subband, they are non-
propagating. They can become propagating, and
traverse through the constriction by absorbing
m+u from the time-modulated potential. However,
the electrons must be in the interaction region to
absorb the needed energy. If the gate-voltage covers
a region over a distance d'd

m
"Jmu/u

x
from

the center, and on the incident side, of the constric-
tion, the incident electrons can propagate into the
interaction region. However, if the gate-voltage
only covers regions over a shorter distance (d(d

m
)

from the constriction center, the electrons must
tunnel into the interaction region. For u

x
"0.0125,

we have d
1
"16 and d

2
+23. As mentioned

earlier, the distances d covered by the gate-voltage
are d"8, 16, and 25, respectively, in Figs. 3, 4,
and 5. Hence in Fig. 2, d(d

1
, and the electrons

must tunnel into the interaction regime so that the
assisted feature, such as in the X)1 region,
exhibits a tunneling-like structure. According to
Fig. 3, when d"d

1
, the electrons can barely avoid

entering the interaction region via tunneling, the
assisted feature exhibits a quasi-mini-step-like
structure. Fig. 4 indicates that when d'd

2
, the

electrons involved in the 2+u processes can
also propagate into the interaction region, and
the assisted feature exhibits additional mini-step
structures.

Fig. 5 presents the dependence of the G charac-
teristics on the parameter b. The time-modulated
gate-voltage is off-center, with x

#
"3.0, range

a"32, »
0
"0.06, and frequency u"0.04. The

parameter b"0.2, 0.5, and 0.8 in Figs. 5a—c, re-
spectively. The curves in Fig. 5 indicate that G is
quite sensitive to b. However, further analysis re-
veals that G

0
, rather than G

1)
, gives rise to the

b-sensitivity in G. Hence, according to Eq. (21), as
b increases, the contribution to G

0
from ¹` de-

creases while that from ¹~ increases. Since the
assisted feature of ¹~ is more prominent than that
of ¹` because x

#
"3.0. Therefore, the assisted fea-

tures in the pinch-off region are progressively en-
hanced in Figs. 5a—c. This particular b-dependence
simply reflects the asymmetry in ¹`(k, x

#
) and

¹~(k,x
#
), which occurs for coherent inelastic scat-

terings and not for elastic scatterings.
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Fig. 5. Differential conductance G as a function of X for an
off-centered time-modulated potential (x

#
"3), with range

a"32, frequency u"0.04, and oscillating amplitude »
0
"

0.06. The parameter b"0.2(a), 0.5(b), and 0.8 (c). The curves
are vertically offset for clarity.

Fig. 6. *¹`
n

as a function of X for a centered time-modulated
potential and subband n"1, with frequency u"0.04, b"0.5,
and oscillating amplitude »

0
"0.06. The potential range a"32

(solid) and 50 (dash-dotted). The assisted feature is found
below X"2 (the n"1 subband edge), and the suppressed
feature is found above X"2. The 2+u structures appear in the
longer potential range (a"50) case. The QBS features are at
around X"2.4, 2.8, and 3.2.

4. Conclusion

This study demonstrates that the differential
conductance G, rather than the conductance or the
current transmission coefficient, is the relevant
physical quantity to characterize the low-bias
transport, when a time-modulated field acts upon
the QPC. This has not been recognised previously.
Thus, comparing with the results of previous stud-
ies allows us to only turn to the current transmis-
sion coefficient. The deviation of the current trans-
mission coefficient from its unperturbed value

*¹`
n
(E,x

#
)"¹`

n
(E,x

#
)!T0

n
(E),

was the photoconductance calculated by Grin-
cwajg et al. [8], and Maa+ et al. [10], when they
considered a transverse electric field acting on
a QPC with varying width. Here T0

n
(E)"

1/[1#exp (!ne
n
)], and n denotes the subband in-

dex of the incident electron. Fig. 6 plots our
*¹`

n
(E,x

#
) results against X. The time-modulated

potential is centered (x
#
"0), the frequency

u"0.04, the amplitude »
0
"0.06, and the inci-

dent subband index n"1. The threshold for the
subband is X"2. The assisted and the suppressed
features are clearly shown below and above the
threshold, respectively. This trend is the same as the
results of Refs. [8,10], although the inelastic pro-
cesses induced by a transverse field differs from that
of a potential. On the other hand, our results have
the added QBS features in the suppressed region,
and the added 2u feature in the assisted region for
a longer potential range a. Both features are the
major contributions of this study.

Finally, we have demonstrated the robustness of
the QBS features. Whether these QBS features exist
and remain robust in the cases of time-modulated
electric field is currently under investigation.
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