Pergamon Computers Ops Res. Vol. 25, No. 11, pp. 879-885, 1998
© 1998 Elsevier Science Ltd. All rights reserved

PII: S0305-0548(98)00032-X Printed in Great Britain

0305-0548/98 $19.00 + 0.00

IMPROVED SOLUTIONS FOR THE TRAVELING
PURCHASER PROBLEM

W. L. Pearnti and R. C. Chien§

Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu,
Taiwan R.O.C.

(Received December 1996, in revised form February 1998)

Scope and Purpose —The traveling purchaser problem (TPP) is a generalization of the well-known
traveling salesman problem (TSP), which has many real-world applications. Examples include the pur-
chase of the required raw materials for the manufacturing factories in which the total cost has to be
minimized, and the scheduling of a set of jobs over some machines with different set-up and job proces-
sing costs in which the total cost for completing the jobs has to be minimized. The TPP has been
shown to be computationally intractable. Therefore, many heuristic solution procedures have been pro-
posed to solve the TPP approximately. The purpose of this paper is to consider some variations of the
existing solution procedures to improve the solutions. Computational experiments and performance
comparisons among the existing algorithms as well as the proposed variations are provided, and the
results are analyzed.

Abstract—The traveling purchaser problem (TPP) is an interesting generalization of the well-known
traveling salesman problem (TSP), in which a list of commodity items have to be purchased at some
markets selling various commodities with different prices, and the total travel and purchase costs must
be minimized. Applications include the purchase of raw materials for the manufacturing factories in
which the total cost has to be minimized, and the scheduling of jobs over some machines with different
set-up and job processing costs in which the total costs for completing the jobs has to be minimized.
The TPP has been shown to be computationally intractable. Therefore, many heuristic solution pro-
cedures, including the Search algorithm, the Generalized-Savings algorithm, the Tour-Reduction algor-
ithm, and the Commodity-Adding algorithm have been proposed to solve the TPP approximately. In
this paper, we consider some variations of these algorithms to improve the solutions. The proposed
variations are compared with the existing solution procedures. The results indicate that the proposed
variations significantly improve the existing solutions. © 1998 Elsevier Science Ltd. All rights reserved

Key words: Network optimization, combinatorics, complexity

1. INTRODUCTION

There are numerous generalizations of the traveling salesman problem (TSP). Examples include
the time-constrained traveling salesman problem (TCTSP), the stochastic traveling salesman
problem (STSP), the multiple traveling salesman problem (MTSP), the vehicle routing problem
(VRP), and many others. The traveling purchaser problem (TPP) is another interesting
generalization of the TSP, which has many applications. One example is the purchase of parts
and raw materials for the manufacturing factories in which the total cost has to be minimized.
Since the required parts and raw materials may be carried by various warehouses located in
different areas with different prices in this case, the purchaser has to select the warehouses to be
visited, and plan the tour for these selected warehouses in order to minimize the sum of the
purchase and the travel costs. Another example is the scheduling of a set of jobs over some
machines. Each machine has a different set-up cost and a different job processing cost, and the

TTo whom all correspondence should be addressed. Tel.: +35-714261/35-712121; E-mail: roller@cc.nctu.edu.tw

fDr W. L. Pearn is a Professor of Operations Research and Quality Management at the Department of Industrial
Engineering and Management, National Chiao Tung University, Taiwan, R.O.C. He received his Ph.D. degree from
the University of Maryland at College Park, MD, U.S.A. Dr Pearn worked for AT&T Bell Laboratories at Switch
Network Control Center and Process Quality Center.

§Mr R. C. Chien received his B.S. degree in Management Information System from Chung Yuan Christian University,
and M.S. degree in System and Decision Sciences from the Department of Industrial Engineering and Management,
National Chiao Tung University, Taiwan, R.O.C.

879

880 W. L. Pearn and R. C. Chien

engineer has to determine which machines, and in what orders the jobs should be processed on
these machines so that the total cost to complete the jobs is minimized.

The TPP was originally proposed by Ramesh [6]. The problem may be stated as follows.
We are given a network with a set of markets V' = {v, v,, ..., v,} with a special market v;
called the domicile, and a set of items P = {1, 2, ..., m} to be purchased. We are also given
a travel cost matrix D = [d(v; v;)], 1 <i, j<n, between any two markets; and C = [c(v;, k)],
2<i<n, 1<k<m, the purchase costs of the items at the various markets. Then, the
objective of the TPP is to find a tour, which starts at the domicile v;, goes through a subset
of the n markets and returns to v; once all m items are purchased at chosen markets, and the
total travel and purchase cost is minimized. It is assumed that: (1) each item is available in at
least one market; (2) the traveling purchaser may pass through a market or the domicile v
any number of times without purchasing an item there; (3) the traveling purchaser may
purchase as many items as there are available at each market; and (4) no items are available
at the domicile v;.

The TPP has been shown to be computationally intractable, and many heuristic solution
procedures have been proposed to solve the TPP approximately, including the Search algorithm
[6], the Generalized-Savings algorithm [2], the Tour-Reduction algorithm [3] and the
Commodity-Adding algorithm [4]. In this paper, we consider several variations of the four
existing algorithms to improve the solutions. The proposed variations are compared with the
existing solution procedures. The results indicate that the proposed variations significantly
improve the original versions of the four existing solution procedures. Extensive computational
experiments and comparisons are provided.

2. THE SEARCH ALGORITHM

Ramesh [6] developed an exact algorithm based on a lexicographic search procedure to solve
the TPP optimally. In his approach, an alphabet table of words representing all possible
sequences of markets is first created. The algorithm then searches for each possible word (a
sequence of markets) according to the alphabet table, and checks if the current sequence of
markets constitute a feasible solution. Some lower bound techniques are also used to accelerate
the search procedure. Unfortunately, this algorithm is computationally inefficient, only problems
with small and moderate sizes can be solved optimally. Based on the search procedure, Ramesh
[6] also developed a heuristic algorithm to solve the problem approximately. The algorithm
executes the search procedure until a feasible solution is found. To improve the solution,
Ramesh [6] also considered a modification which requires that all the markets be examined at
least once, or the bound of any partial solution exceeds current best solution. In the following,
we consider two variations of the Search algorithm, which we refer to as the Next-Bloc (A1),
and the Next-Neighbor (A2) search algorithms.

(A1) Next-Bloc Search Algorithm

We first execute the lexicographic search procedure until a bloc of word is rejected. We then
move to the next bloc of a word and continue to search for better solution. The search
procedure is repeated until a certain number (is set to 5 in this paper) of blocs are rejected.

(A2) Next-Neighbor Search Algorithm

We start with the nearest neighbor of v, and execute the lexicographic search procedure until
a bloc of word is rejected. We then move to the second nearest neighbor of v; and continue to
search for better solution until a bloc of word is rejected. The search procedure is repeated until
all the M — 1 neighbors are examined.

In attempting to improve the solutions, Ong [3] considered a procedure using available TSP
heuristics to resequence the markets that have to be visited in the solution, to reduce the travel
cost. In this paper, we use the TSP heuristic developed by Basart and Huguet [1] for the
resequencing. We shall call the variations which apply the TSP resequencing procedure as Al’
and A2'. To further improve the solutions, we proceed with the following two procedures called
the market-drop and the market-exchange procedures. Given a TPP solution, the market-drop
procedure drops a market from the current solution if it yields a cost reduction. Repeat
the market-drop procedure until no more cost reduction can be made. On the other hand, the
market-exchange procedure exchanges a market in the solution with another market not in the

Improved solutions for the traveling purchaser problem 881

solution if it yields a cost reduction. Repeat the market-exchange procedure until no more cost
reduction can be made. We call the variations, which apply both the market-drop and the
market-exchange procedures after the TSP resequencing, as A1” and A2".

3. THE GENERALIZED-SAVINGS ALGORITHM

Golden et al. [2] proposed a heuristic solution procedure to solve the TPP approximately.
Their solution procedure has been referred to as the Generalized-Savings algorithm. The
Generalized-Savings algorithm starts with an initial solution containing the domicile and the
market selling more items than any other market at the cheapest price. If there is a tie,
choose the one with minimal total price. At each iteration, the algorithm selects a market
based on the savings calculated from the travel and the purchase costs, and insert that
market into the current tour. The algorithm terminates when no more savings can be made.
In the following, we consider two variations of the Generalized-Savings algorithm, which we
refer to as the Parameter-Selection (B1), and the Tie-Selection (B2) Generalized-Savings
algorithms.

(B1) Parameter-Selection Generalized-Savings Algorithm

In the following definition of savings function, we consider seven values of 4 = {0.4, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6}. Each value of 1 is used to generate a complete solution, and the best one
among the seven is then chosen as the solution from this variation.

s@i, j, p) = d(@, j)—dG, p)—dp, j) + AZk = 1. 2. ... mg(, p, k), where d(i, j) = the shortest
distance between i and j in the current tour; g(o, p, k) = max{fle, k) —c(p, k), 0}, flo,
k) = min{c(i, k)} for all market i in the current tour «, and c¢(i, k) = price of item k at market i.

(B2) Tie-Selection Generalized-Savings Algorithm

In constructing the initial solution in variation B1, the market ‘“‘selling more items than any
other market at the cheapest price” is selected. If there is a tie, choose one which is nearest to
the depot.

Similar to the Search Algorithm, we could improve the solutions using the TSP heuristic by
Basart and Huguet [1] to resequence the markets which have to be visited in the solution. We
shall call such improved variations which apply the TSP resequencing procedure as Bl and B2'.
To further improve the solutions, we can also apply the market-drop and the market-exchange
procedures as described earlier. We shall call such improved variations which apply both the
market-drop and market-exchange procedures after the TSP resequencing as B1” and B2".

4. THE TOUR-REDUCTION ALGORITHM

Ong [3] proposed a heuristic solution procedure, called the Tour-Reduction algorithm, to
solve the TPP approximately. The algorithm starts with an initial tour consisting of some
selected markets (which may be chosen by some heuristic procedure or specified by the decision
maker) which collectively carry all the m items. In practice, we may select the markets selling at
least one item at the lowest prices [5]. The algorithm then examines each of the markets in the
tour and checks whether a cost reduction can be made by dropping a market from the current
tour. The algorithm repeats the market drop procedure and terminates until no more cost
reduction can be made. In the following, we consider two variations of generating initial tours
for the Tour-Reduction algorithm, which we refer to as the Adjusted-Cheapest (C1), and the
Nearest-Cheapest (C2) Tour-Reduction algorithms. Let S¢, =the set of markets in the initial
tour for variation C; (i = 1, 2) of the Tour-Reduction algorithm.

(C1) Adjusted-Cheapest Tour-Reduction Algorithm

S1 = {vi|e(i, k) is minimal for some item &, 1 <k < m},

S2 = {vi|c(i, k) + d(vy, v;) is minimal for some item k, 1 <k <mj}.

Sc, =S1U 82. Connect the markets in S¢, using any TSP algorithm.
(C2) Nearest-Cheapest Tour-Reduction Algorithm

S1 = {vi|c(i, k) is minimal for some item k, 1 <k < mj},
S3 = {a proportion, p, of the markets nearest to v;}.

882 W. L. Pearn and R. C. Chien

Table 1. A comparison between the variations and the originals for the Search and Generalized-Savings algorithms on the thirty test pro-

blems

A Al A2 Al” A2" B BI’ B2 B1” B2”
Average % above the optimal solution 18.7 13.7 5.4 6.8 2.0 15.7 5.6 4.5 1.5 2.0
Worst % above the optimal solution 70.0 70.0 35.0 40.0 20.0 46.3 32.3 35.7 19.0 23.2
Number of optimal solutions obtained 4 7 12 14 24 3 11 14 20 20
Number of the best solutions obtained 10 14 29 18 29 19 26 28 29 29
No. of solutions worse than the original - 0 0 0 0 - 0 1 0 1
No. of solutions tied with the original - 14 8 7 4 - 8 6 3 3
No. of solutions better than the original - 16 22 23 26 - 22 23 27 26
Ave. % of improvement over the original - 7.2 13.4 11.7 14.3 - 11.2 12.5 12.8 13.0

Sc, =S1U S3. Connect the markets in S¢, using any TSP algorithm.
We consider p = 0.1, 0.2, 0.3, 0.4, and 0.5. Each value of p is used to generate a complete
solution, and the best one is chosen to be the solution from this variation.

We could improve the solutions using the TSP algorithm by Basart and Huguet [1] to
resequence the order of the markets that have to be visited in the solution. We shall call the
improved variations which apply the TSP resequencing procedure as C1’ and C2'. To further
improve the solutions, we can apply the market-exchange procedure to examine whether any
cost reduction can be made by exchanging a market in the solution with another market not in
the solution. We can also apply the market-drop procedure which drops a market from the
current solution (after the market-exchange procedure) if it yields a cost reduction. We shall call
such improved variations which apply both the market-exchange and the market-drop
procedures as C1” and C2".

5. THE COMMODITY-ADDING ALGORITHM

Pearn [4] introduced a solution procedure to solve the TPP approximately. The solution
procedure has been referred to as the Commodity-Adding algorithm. The Commodity-Adding
algorithm starts with an initial solution containing the domicile and the market which minimizes
the total cost (travel cost + purchase cost) for purchasing the first item. At each iteration, the
algorithm considers the next commodity on the list and checks if any cost reduction can be
made by adding another market to the solution. The algorithm terminates when all items have
been considered. In the following, we consider two variations of the Commodity-Adding
algorithm, which we refer to as the Random-Order (D1), and the Sequence-Order (D2)
Commodity-Adding algorithms.

(D1) Random-Order Commodity-Adding Algorithm

In the Commodity-Adding algorithm, a list of items with given order 1, 2, ..., m, is given.
We randomly generate k (is set to 10 in this paper) lists with different orders. Each order is used
to generate a complete solution, and the best one among the k solutions is chosen as the
solution from this variation.

(D2) Sequence-Order Commodity-Adding Algorithm

In the Commodity-Adding algorithm, a list of items with given order 1, 2, ..., m, is given.
We consider the following lists with orders {(1, 2, ..., m), (2, 3, ..., m, 1), 3,4, ..., m, 1, 2),

Table 2. A comparison between the variations and the originals for the Tour-Reduction and Commodity-Adding algorithms on the thirty
test problems

C Clr Cc2 Cl” c2” D DI’ D2 D1” D2"
Average % above the optimal solution 9.3 7.1 4.6 5.7 4.1 8.5 1.5 2.2 0.9 1.4
Worst % above the optimal solution 61.2 50.0 50.0 50.0 50.0 38.7 6.5 10.1 6.5 9.7
Number of optimal solutions obtained 8 11 15 16 19 8 16 17 21 21
Number of the best solutions obtained 20 22 28 25 28 13 28 25 28 26
No. of solutions worse than the original - 2 1 2 1 - 0 0 0 0
No. of solutions tied with the original - 23 18 17 16 - 13 16 13 14
No. of solutions better than the original — 5 11 11 13 — 17 14 17 16

Ave. % of improvement over the original - 9.8 9.8 7.9 9.4 - 10.4 11.3 11.2 11.1

Improved solutions for the traveling purchaser problem 883

Table 3. Performance of the four algorithms and the variations with the best performance on the two sets of test problems

A A2" B B1” C c2” D D1”
Average % above the optimal (30) 18.7 2.0 15.7 1.5 9.3 4.1 8.5 0.9
Worst % above the optimal (30) 70.0 20.0 46.3 19.0 61.2 50.0 38.7 6.5
Number of optimal solutions (30) 4 24 3 20 8 19 8 21
Number of worse solutions (90) — 0 — 0 — 6 — 0
Number of tied solutions (90) — 9 — 11 — 22 — 23
Number of better solutions (90) - 81 - 79 - 62 - 67
Average % of improvement (90) - 14.5 - 12.6 - 9.8 - 11.8

e, (m, 1,2, ..., m—1)}. Each order is used to generate a complete solution, and the best
solution is chosen as the solution from this variation. In this paper, we will consider only min
{10, m} sequences of orders.

We could improve the solutions using the TSP algorithm by Basart and Huguet [1] to
resequence the markets that have to be visited in the solution. We shall call the improved
variations which apply the TSP resequencing procedure as D1’ and D2'. To further improve the
solutions, we can also apply the market-drop and the market-exchange procedures. We shall call
the further-improved variations as D1” and D2".

6. PERFORMANCE COMPARISONS

We first experimented with the proposed variations on a set of thirty sample problems,
and compared with the original algorithms. The thirty sample problems were randomly
generated with the following characteristics: (1) the number of markets is from 10 to 50, (2)
the number of commodity items is from 5 to 60, (3) the travel costs are from 1 to x,
where 15<x <140, and (4) the purchase costs are from 0 to y, where 5<y<75. Some
networks are dense, and others are sparse. For those TPP problems, we also implemented
the lexicographic search algorithm proposed by Ramesh [6] to find the problem optimal
solutions. The preliminary comparison, summarized in Tables 1 and 2, is based on the
average percentage above the optimal solution, the worst percentage above the optimal
solution, number of optimal solutions obtained, number of the best solutions obtained,
number of solutions worse than those obtained by the original algorithm, number of
solutions tied with those obtained by the original algorithm, number of solutions better
than those obtained by the original algorithm, and the average percentage of improvement
over the original algorithm.

The results showed that for the Search Algorithm, variation A2” received 29 best solutions
(out of 30), which outperformed the other three variations. Therefore, only variation A2” (Near-
Neighbor Search) will be considered. For the Generalized-Savings Algorithm, variation B1”
received 29 best solutions (out of 30), which outperformed the other three variations. Therefore,
only variation B1” (Parameter-Selection Generalized-Savings) will be considered. For the Tour-
Reduction Algorithm, variation C2” received 28 best solutions (out of 30), which outperformed
the other three variations. Therefore, only variation C2” (Nearest-Cheapest Tour-Reduction)
will be considered. For the Commodity-Adding Algorithm, variation D1” received 28 best
solutions (out of 30), which outperformed the other three variations. Therefore, only variation
D1” (Random-Order Commodity-Adding) will be considered. To compare the four best

Table 4. A comparison of the four best variations

A2" B1” c2” D1”
Average % above the optimal solution (30) 2.0 1.5 4.1 0.9
Worst % above the optimal solution (30) 20.0 19.0 50.0 6.5
Number of optimal solutions obtained (30) 24 20 19 21
Number of the best solutions obtained (90) 45 47 36 63
Number of the worst solutions obtained (90) 20 22 32 10

Average run time CPU (40 < n < 50) 25.6 1.56 4.07 0.94

884 W. L. Pearn and R. C. Chien

Table 5. Performance of D1” for various values of R

10 25 50 100
Average % above the optimal solution (30) 0.9 0.8 0.7 0.5
Worst % above the optimal solution (30) 6.5 6.5 6.5 6.5
Number of optimal solutions obtained (30) 21 23 25 26
Number of the best solutions obtained (90) 63 66 72 79
Number of the worst solutions obtained (90) 10 7 4 3
Average run time CPU (40 < n < 50) 0.94 2.33 4.62 9.28

variations A2”, B1”, C2”, and D1” with the original algorithms, we randomly generated another
sixty test problems with the same characteristics.

Table 3 summarizes the performance of the four original algorithms (the Search algorithm,
the Generalized-Savings algorithm, the Tour-Reduction algorithm, and the Commodity-
Adding algorithm), and their best variations A2”, B1”, C2”, and D1”. The results indicated
that the improvements made by those variations over the four original algorithms were
indeed significant. In fact, for the Search algorithm, the best variation A2” reduced 16.7%
(on the average) of the problem solutions, reduced 50% of the worst solution, received 24
(out of 30) optimal solutions, and improved 81 (out of 90) problem solutions. For the
Generalized-Savings algorithm, the best variation B1” reduced 14.2% (on the average) of the
problem solutions, reduced 27.3% of the worst solution, received 20 (out of 30) optimal
solutions, and improved 79 (out of 90) problem solutions. For the Tour-Reduction
algorithm, the best variation C2” reduced 5.2% (on the average) of the problem solutions,
reduced 11.2% of the worst solution, received 19 (out of 30) optimal solutions, and
improved 62 (out of 90) problem solutions. For the Commodity-Adding algorithm, the best
variation D1” reduced 7.6% (on the average) of the problem solutions, reduced 32.2% of
the worst solution, received 21 (out of 30) optimal solutions, and improved 67 (out of 90)
problem solutions.

Table 4 is a comparison among the four best variations A2”, B1”, C2”, and D1” in terms of
the average percentage above the optimal solutions, the worst percentage above the optimal
solutions, number of optimal solutions obtained, number of the best solutions obtained, number
of the worst solutions obtained, and the average run time in CPU seconds. We note that
variation D1” (Random-Order Commodity-Adding) significantly outperformed the other three
best variations. In fact, variation D1” receive an average of 0.9% above the optimal solutions.
Furthermore, variation D1” requires the least amount of computer time (less than 1 CPU
second) among all. In our experiment, the number of random orders selected for the commodity
items (R) in the variation D1” was initially set to ten (R = 10). For problems with 40 <n < 50,
the average run time was 25.6 (CPU) seconds for variation A2”, 1.56 s for variation B1”, 4.07 s
for variation C2”, and 0.94 s for variation D1”.

Table 5 displays the results of our experiment on variation D1” (the Random-Order
Commodity-Adding algorithm) with R = 10, 25, 50 and 100. For R = 100, the average
percentage above the optimal solution is reduced to 0.5%, and 26 out of 30 problems (87%)

Table 6. Performance comparisons on problems with n> 50

n m A B C D A2" B1” c2” D1”
1 75 100 6023 7727 11311 5854 4823 4594 8626 3597
2 90 300 6580 6571 6341 6600 6361 6322 6314 6282
3 100 300 2550 3008 5005 2658 2333 2398 4341 2330
4 110 120 3228 3057 3425 2979 2966 2697 3096 2712
5 120 80 2977 3181 3543 2746 2837 2590 3241 2271
6 130 120 4881 4831 9797 4418 4219 4520 8733 3955
7 140 180 3158 3264 3497 3142 2985 2853 3346 2849
8 150 200 3909 4945 8445 4022 3569 3690 6139 3442
9 180 150 2319 2213 3122 2043 2154 2058 2903 1936
10 200 140 2239 2223 4370 2264 2097 2144 3527 1955

Improved solutions for the traveling purchaser problem 885

received optimal solutions. The average run time (in CPU seconds) for problems with
40 <n < 50, however, is increased to 9.3 s.

Table 6 displays the performance of the four original algorithms and the four best variations
on the ten problems with number of markets ranging from 75 to 200, and number of
commodity items ranging from 80 to 300. For the ten problems, variation D1” received 9 best
solutions (out of 10), while variation B1” received 1 best solution. Variation D1” again
significantly outperformed the other three best variations as well as the four original algorithms.
All the four original algorithms, the four best variations, and the lexicographic search algorithm
which generated the problem optimal solutions were coded in FORTRAN programming
language (with FORTRAN IV Compiler) and run on PC-486 DX-100.

7. CONCLUSIONS

The traveling purchaser problem (TPP) is an interesting generalization of the well-known
traveling salesman problem (TSP), which has many applications. The TPP has been shown to
be computationally intractable. Therefore, many heuristic solution procedures have been
proposed to solve the TPP approximately, including the Search algorithm, the Generalized-
Savings algorithm, the Tour-Reduction algorithm, and the Commodity-Adding algorithm.

In this paper, we considered several variations of the four existing algorithms to improve the
solutions. Those variations include the Next-Bloc and the Next-Neighbor search algorithms, the
Parameter-Selection and the Tie-Selection Generalized-Savings algorithms, the Adjusted-
Cheapest and the Nearest-Cheapest Tour-Reduction algorithms, and the Random-Order and
the Sequence-Order Commodity-Adding algorithms. We experimented with the proposed
variations on many problems which were randomly generated. The results indicated that the
proposed variations significantly improved the original algorithms. In particular, the
improvements made by the Next-Neighbor Search, the Parameter-Selection Generalized-Savings,
the Nearest-Cheapest Tour-Reduction, and the Random-Order Commodity-Adding algorithms
with TSP resequencing, the market-drop, and the market-exchange improvement procedures,
were remarkable. We also compared the four best variations. The results indicated that the
Random-Order Commodity-Adding algorithm (variation D1”) significantly outperformed the
other three best variations as well as the four original algorithms.

Acknowledgements—The authors would like to thank the anonymous referees for their careful reading of the paper and
several suggestions which improved the paper.

REFERENCES

1. Basart, J. M. and Huguet, L., An approximation algorithm for the TSP. Information Processing Letters, 1989, 31(2),
77-81.

2. Golden, B. L., Levy, L. and Dahl, R., Two generalizations of the traveling salesman problem. OMEGA, 1981, 9(4),
439-445.

3. Ong, H. L., Approximate algorithms for the traveling purchaser problem. Operations Research Letters, 1982, 1(5),
201-205.

4. Pearn, W. L., On the traveling purchaser problem. Working Paper 91-01. Department of Industrial Engineering and
Management, National Chiao Tung University, 1991.

5. Pearn, W. L. and Chien, R. C., A new algorithm for the traveling purchaser problem. Working Paper 96-01.
Department of Industrial Engineering and Management, National Chiao Tung University, 1996.

6. Ramesh, T., Traveling purchaser problem. OPSEARCH, 1981, 18(2), 78-91.

