
MPT-based branch-and-bound strategy for
scheduling problem in high-level synthesis

P.-Y. Hsiao
G .-M. WU
J.-Y.Su

Indexing terms: Scheduling problem, High-level synthesis, M P T

Abstract: A branch-and-bound algorithm based
on a maximum possibility table (MPT) is
proposed to solve scheduling problems in high-
level synthesis. Six efficient priority rules are
developed as bounding functions in the
algorithm. Extensions for real-world constraints
are also considered, including chained operations,
multicycle operations, mutually exclusive
operations and pipelined data paths.
Experimental results indicate that the MPT-based
algorithm returns competitive scheduling results
at significant savings in execution time as
compared with other methods.

1 Introduction

High-level syntheses are performed to transform algo-
rithmically specified behaviours of digital systems into
register-transfer level structures [l, 21. There are three
major phases in high-level synthesis. The first phase,
called compilation, compiles the formal language into
an internal representation. Control/data flow graphs
(CDFGs) are the most frequently used representations.
The second phase, called scheduling, assigns the opera-
tions into control steps according to certain constraints
while minimising corresponding objective functions.
The third phase, called allocation, tries to share hard-
ware resources, such as functional units, storage and
communication paths, while minimising costs as much
as possible. However, the interrelationship between
scheduling and allocation is very close. An optimal
schedule is not guaranteed to provide an optimal syn-
thesis result after subsequent allocation operations. For
practical considerations, using many interleaved sched-
uling and allocation iterations with a fast heuristic
algorithm, instead of searching for a single optimal
solution, will obtain a more satisfactory synthesis result

During the last decade, many systems using different
scheduling techniques have been proposed. When
resources are unconstrained, the simplest scheduling
technique, as soon as possible (ASAP), and the comple-

[31.

0 IEE, 1998
IEE Proceedings online no. 19982347
Paper first received 1st July 1996 and in final revised form 11th March
I997
The authors are with the Department of Computer and Information
Science, National Chiao Tung University, Republic of China

mentary as late as possible (ALAP), as shown in Fig. 1,
may be used along with the corresponding description
of the computation set from the example of the HAL
[4] system. Scheduling problems with limited resources
have already been shown to be NP-hard and thus, for
most systems, analytic methodology must depend on
heuristic techniques. The class of algorithms including
SLICER [5] and MAHA [6] is based on list scheduling
techniques. List scheduling manages all operations in
topological order, using the precedences dictated by
data and control dependencies in the CDFGs. The
force-directed scheduling (FDS) [7] algorithm is the pri-
mary scheme within the HAL system. In this algo-
rithm, the cost of hardware resources can be reduced
by conducting operations concurrently. The ASCAM
[8] algorithm considers evaluated costs as major con-
cerns in updating probability values. The FAMOS [3]
algorithm is based on the scheme proposed by
Kernighan and Lin to escape local minima traps [9]. It
also includes various selection functions developed to
define hardware resource costs. A global scheduling
algorithm with code-motions has been proposed by
Rim [16]. Instead of using heuristic algorithms to
schedule operations, mathematical descriptions of
scheduling objectives and constraints are derived from
ALPS [lo] and can be successfully translated into inte-
ger linear programming (ILP) formulations. Therefore,
ALPS obtains solutions at the expense of execution
time because ILP is, by nature, an exponential-time
algorithm.

XI = X+ dx;
uI = U- (3*x*u*dx)- (3*y*dx);
yl = y+ u*dx;
c = XI < a:

Fig. 1 ASAP und ALAP scheduling

In this paper, a branch-and-bound algorithm based
on a maximum possibility table (MPT) [l 11 is proposed
to solve scheduling problems in high-level synthesis. Six
efficient priority rules are developed as bounding func-
tions within our MPT-based algorithm.

2 Preprocess

For internal representations, we create maximum possi-
bility tables (MPTs) instead of distribution graphs.

425 IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 6 , November 1998

-
operation type *

node a c b f g hlMPT*I d e i j k I MPT*

+ - >

Fig.2 MPTgraphfor Fig. 1

ope-ation type *

nsde b f g h MPT*

Definitio,r 2.2: Given a CDFG, the freedom of path A
equals n if, and only if, the mobility of each operation
within path A involves n C-steps.

For example, the freedom of path (h, i) in Fig. 1
equals 3.
Definition 2.3: The critical path of a given CDFG is
defined as the single path of the CDFG with the long-
est delay time.

+ - >

i j k MPT* -+ * -
0 1
0 0

Mznzt = 0 1
1 0
1 0

- 1 1-
Fig. 3 MPTgraph without critical path nodes

For example, (a, c, d, e) or (b, c, d, e) can be consid-
ered to be critical paths, as shown in Fig. 1. Using the
critical path (a, e, d, e) with four control steps, we now
assume five control steps as the time constraint. This
time constraint thus has one control step more than the

426

critical path. MPT graphs without critical-path nodes
can be constructed, as shown in Fig. 3.

Using these constructed MPTs, we first consider the
maximal multiplier possibilities. C-step.2 has the maxi-
mal cost in MPT*. Therefore, whenever possible we
must try to eliminate multiplication operations from C-
step.2 when scheduling the critical path. The critical-
path schedule for the five control-step time constraint
is shown in Fig. 4.

C-step 1 "0
C-step 2 \

\

C-step 4

C-step 5

Fig. 4 Critical path scheduling result

many possible alternative assignments for each opera-
tion, as the tree structure in Fig. 5 shows.

Fig. 5 Alternative assignments for each operation

As shown in Fig. 5 , Minit describes the distributions
of operations after the critical path has been found.
Associated with the CDFG shown in Fig. 1, where the
time constraint is assumed to be four control steps,
there is only one possible noncritical path assignment
from Minit such as assigning 0pn.b to C-step.1. After
0pn.b has been manipulated, there are two available
ways to assign the following opn.g, C-step.2 (Mg,2) or
C-step.3 (Mg,3). After previous assignments have been
made, there are two possible assignments for opnf MJ2
or MLl, for Mg,3 and Mg,2, respectively. Therefore,
there are exponentially many possible paths to con-
sider. To select the most efficient path, we propose a
heuristic solution based on the following six priority
rules and corresponding bounding functions to remove
undesirable branches from the M i j graph.

Table 1

Name of PR Descriptive outline

Precedence constraint

Lowest cost matrix
among current
candidates

Minimum value of
MPT items

Lowest-cost ancestor min(COST(backtrack(1, Mi,$)),
matrix

Backtrack among min(MPT(backtrack(> 1, Mi,j))),
ancestors until the
MPT value can be
determined

Latest C-step

(C-step.i) < (C-step.j) Vopni - opnj,
Si s (C-step.i) s Li, Si s (C-step.j) s Lj

min(COST(Mi,j)),Si s (C-stepd s Li

min(MPT(C-step.i)), Si s (C-step.i) s Li

Si s (C-step.i) s Li

Si s (C-step.i) s Li

If candidates cannot be eliminated
by R I through R5, select matrix
corresponding to latest C-step

where Si, Si: the C-step that 0pn.i or 0pn.j assigned to by
ASAP.
Li, Lj: the C-step that 0pn.i or 0pn.j assigned to by ALAP.
Mino: finding the minmum value.
COSTO: evaluating the total cost.
MPTO: getting the element value of MPT.
Backtrack(n0, Mi,j): Backtrack to no-th ancestor of Mi,j.

Section. The corresponding bounding functions are
also listed in Table 1. For convenience of presentation,
ancestor matrices are represented as Mc,p, Mc,p+,, ...,
Mc,q, and the operation mobility 0pn.c is between p and
q. By sequentially applying these six priority rules (PR1
through PR6), we can guarantee that only one ancestor
matrix, called the consulting matrix, should be referred.
Using this consulting matrix, we can further construct
the corresponding Mi,j and update the MPT.

3.1 PR?: precedence constraint
Operation assignments must not violate data dependen-
cies. That is, the associative relation between 0pn.i and
opnj in CDFG must be always preserved.

3.2 PR2: choose the lowest cost matrix from
among current candidates
M i j is made the consulting matrix if it has the lowest
cost function among all candidate matrices, as deter-
mined by

C O S T (K , ,) = Mopn(l) * cost1 + Mopn(2) * costa

+ . ' . + Mopn(k) * costk
(3)

where costk is the area-associated cost of type k opera-
tion.

Mf.3 Mg.2
U + U +

construcf

- -
Fig. 6 Sample illustration of priority rules

Fig. 6 illustrates construction MJ3 by referring to
Mg,2 or Mg,3, where opnfis a multiplier needing to be
assigned at C-step.3. Reference to Mg,2, shows that
three multipliers and two adders will be consumed.
However, reference to Mg,3, shows that four multipliers
and two adders will be required. Precision demands
selection of the former case.

Mf.3 MB.3 3 gj.;%r??.$ 5

Fig. 7 Sample illustration of priority rules

3 Priority rules and bound functions for 3.3 PR3: minimum value of MPT items
scheduling

In this Section, we present detailed descriptions of six
priority rules concerning the assignment of operations
based on the derived representation from the previous

This rule selects the reference matrix with the minimum
MPT value. This approach reduces the impact of
unscheduled nodes as much as possible. In Fig. 7, we
refer to Mg,2 and Mg,3 to construct ML3, with equiva-
lent cost consumption. We can check the constructed

IEE Proc.-Comput. Digit. Tech, Vol. 145, No. 6, November 1998 421

informai.ion representation MPT* to determine whether
MPT*(~:I = 5 is larger than MPT*(%) = 3; if so, we will
select Mg,2 to construct MJ3 to reduce the impact on
nodes not yet scheduled.

3.4 P/?4: lowest-cost ancestor matrix
This rule identifies the lowest-cost matrix from among
ancestor matrices. As shown in Fig. 8, we refer to Mx,2
or Mx,3 to construct Mr: I . They have equivalent sched-
uled MJl costs and MPT*. However, the cost consump-
tion resilting from Mx,2 is lower than that resulting
from Mg,3, therefore we will select Mg,2 to construct

Mf, I

MPT*
3

Mf.1 M8.3 4
4

Fig. 8 Srrmple ih t ra t ion of priority rules

Mf.3 Mg. I Me.2
X +

MPT*
4
4 3 2 3 2

MU Mg.2 Me.3
T + X + X + 3

- 3 2 3 2

2 2

3 0
3 2

2

Fig. 9 Srrmple illustration of priority rules

3.5 Pt75: backtrack among ancestors until the
MPT value can be determined
This rule backtracks among ancestors of candidate
matrices until PR3 is able to determine an appropriate
selection. As shown in Fig. 9, we would like to con-
struct M f 3 , but we cannot distinguish between Mg,l and
Mg,2 by applying PRl through PR4. Hence, we back-
track among ancestor matrices to Me,2 and Me,3, where
MPT(3) < MPT(2), after which the former can be
abandoned.

3

Fig. 10

428

Sample illustration of priority rules

3.6 PR6: latest C-step selection
If an appropriate selection cannot made using PRl
through PR5, the latest C-step is then considered. This
rule is derived from the ALAP algorithm. As shown in
Fig. 10, Mg, , and Mx,2 have passed RI through R5.
We would then select Mg,2 to construct M J ~ since its
corresponding C-step occurred later than Mg,] .

A complete description of our algorithm is presented
below. Note that the six priority rules must be checked
in sequence.
Branch-Bound-SCHEDULE() {
Take the data flow graph, assignment delays and cost
values of each operation;
Use ASAP and ALAP to determine the mobility of all
operations;
Find the critical path;
Create MPTs for noncritical path nodes.
Schedule the critical path;
WHILE (there are nodes remain unassigned)

select a path A with the smallest degree of
freedom;
SCHEDULE(A);

END

1
SCHEDULE(A)
BEGIN

select node i which is the leaf node of path A;
WHILE(i is not NULL)

FOR j = mobility-start(i) TO mobility-
end(i) using PRI, PR2, ..., PR6 to
select the consulting matrix;
IF (operation i is assigned to C-step j ,
all data dependencies are not violated)

THEN using consulting matrix to construct
Mi,j i = leaf node of path A; remove i from A;
update the MPT;
END

WHILE (there are paths related to path A
that are unscheduled) select one path B
among them with the smallest degree of free-
dom;
SCHEDULE(B);
END

END
The result derived from our algorithm on the example
from HAL is shown in Fig. 11. We assume that the
available functional units are multipliers and ALUs
(the ALU is capable of performing addition, subtrac-
tion and comparison), and that the multiplier costs are
higher than the costs of the ALUs. It is not difficult to
see that the critical path is (a, c, d, e). Minit is the initial
potential cost matrix after the critical path has been
scheduled. The initial MPT* = (3,3,2,0) and MPT+ =
(1,3,3,2); neither of these MPT graphs include the criti-
cal path. The arrows point out the matrices associated
with the consulting direction. PR1, PR2, ..., PR6 along
with the arrows are used as referential bases. When
0pn.b can only be assigned to C-step.1, we assign 0pn.b
to C-step.1 and refer to Minit to construct Mb,l with
the first element in the second column increased by one

IEE Proc.-Compuf. Digit. Tech., Vol. 145, No. 6 , November 1998

Mj.1 M k . 2 Mh.1 Mi2
+ X + X + X + X

Mtl Mg,2 Minit

Fig. 11 Procedures derived by our MPT-bused algorithm for H A L example

and the last element in the second column changed to
2. MPT* must be updated to (2,3,2,0). The o p n f can
follow assignment to C-step.2 or C-step.1. Since it is
assigned to C-step.2, it can refer by Mg,3 only, because
according to PRI, 0pn.g and opnfhave data dependen-
cies. As it is assigned to C-step. 1, the candidate matri-
ces Mg,2 and Mg,3 have the same costs as the candidate
matrices. Now, MPT* = (2,2,1,0) and the third element
is smaller than the second element. Therefore, Mf;, can
refer to Mg,3 according to PR3. Using the proposed
methodology, the final solution is indicated by the
shadowed block. We can backtrack indexes to obtain
the optimal solution, as shown by the thick arrows;

multipliers and two ALUs are required for the imple-
mentation.

For the computational complexity consideration of
the proposed algorithm, the associated MPTs can be
created in linear time and initialisation of the critical
path also consumes linear time. Let S be the number of
control steps and N be the total number of noncritical
path nodes. Consider PR5 is backtracking behaviour,
which may require O(iV). In the worst case, the entire
time complexity will be bounded by O(S2N2).

they are Mj,2> Mk.3, Mi ,4> Mf;2> Mg,3> Mb,1. That is, two

4 Extensions for real-world constraints

In previous Sections, we assumed that one clock cycle
is required for each operation, but that is not always
true in real situations. In this Section we must extend
the previous algorithm to accommodate real world
situations.

The conditional construct is similar to the ‘if-then-
else’ or ‘case’ statement within the programming
language. Inherently, it results in several mutually
exclusive branches. Mutually exclusive operations can
easily be handled by referring to them as only one
operation if they use the same type of functional unit,
even though they are assigned to the same control step.

Operations that require multiple control steps to exe-
cute are also considered. For nonpipelined implementa-
tion, when the operation is assigned, the functional unit
cannot be shared by other operations until the assigned
operation has been completed. Assume that M i j indi-
cates that operation i is necessarily assigned from C-
step4 to C-step.(j + di - l), where di represents the
propagation delay of operation i. Then, a new MPT,
called MC-MPT, must be redefined as follows:

IEE Proc.-Comput. Digit. Tech., Vol 145, No. 6, November 1998

j + d , - l

M C - M p T t y p e (c) , j = M p T t y p e (c) , k
k = j

Therefore, PR3 and PR5 must be modified to choose
the smallest MC-MPT. Specifically, the corresponding
hardware use costs must be modified for each propaga-
tion C-step following assignment.

For functional units that provide chaining functions,
we can chain several operations in one cycle if their
total running time is less than the cycle time. We can
further formulate a chaining problem as a multicycle
problem by reducing the cycle time. The greatest com-
mon divisor of the functional unit’s propagation delay
time is selected as the new cycle time; a multicycle
strategy can then be used to solve the chaining prob-
lem.

For pipelined data-path systems, execution of multi-
ple tasks can be conducted concurrently. For a given
latency L, operations assigned to C-step(i + pL) (for p
= 0, 1, 2, ... and i = 0, 1, 2, ..., L - 1) cannot share a
functional unit because they are executed simultane-
ously. Consequently, the MPT in PR3 and PR5 must
be changed to the sum of MPTs (SMPT) over C-stepj
+ p L (p = 0, 1, 2, ...) as follows:

sMPTtype(c),j = c M P T t y p e (c) ,7

(r - j)modL=O,l<rLs

where
s denotes the number of C-steps

PR3 is then modified as follows:

S M p T t y p e (c) , j 1 = min (s M P T t y p e (c) , p + k)

O l k l p L

Table 2: Information on computers

Method Computer MIPS

MAHA [61

FDS 171
ALPS [IO]

FAMOS 131

SEHWA [I51

Kung 1121

Komi [I31
Achatz [I41

MPT [ours]

VAX-I ID50

Xerox 1108 LISP machine

VAX-11/8800

SUN 4/280

VAX-I ID50

nla

SUN SPARC

SUN SPARC-2

SUN SPARC-IPC

1

nla
12

10

1

n/a
25

12.5

14

429

Table 3: Experimental results for MAHA example

CPU time CPU time
Cycles Operlcycle Adds Muls (unnormalised) (normalised) System

MAHA 8 1 1 1 160s 2857
4 3 2 3 160s 2857

FDS 8 1 1 1 50 s nla

4 2 2 2 25s nla

3 3 3 3 35s nla

APLS 8 1 1 1 0.26s 55.7
4 2 2 2 0.08s 17.1
3 3 3 3 0.23s 49.3

FAMOS 8 1 1 1 0.033s 5.9
4 2 2 2 0.05s 8.9
3 3 3 3 0.033s 5.9

MPT(ours) 8 1 1 1 0.004s 1
4 2 2 2 0.004s 1
3 3 3 3 0.004s 1
2 4 4 4 0.004s 1

5 Experimental results

Our MPT-based system has been implemented and
tested in C language on a Sun SPARC-IPC. To verify
the efficiency of the proposed algorithm, results from
other approaches are described, and are compared with
ours in Tables 3-6. For comparison with other meth-
ods, we have normalised the CPU time for each
method using the MIPS information shown in Table 2.
Note that the required resource results for ALPS in
these Tables are optimal, since they are obtained using
ILP.

The first example, taken from MAHA, contains
chained (operations involving fewer than eight cycles.
The experimental results for this example are summa-
rised in Table 3. The same required resource cost opti-
misations, can be derived using FDS, ALPS, FAMOS
and our MPT-based approach. However, a significant
time saving is achieved by our MPT-based algorithm.

Table 4: E.xperimental results for FDS example

FDS 6 3 2 15s nla

7 2 2 35s nla

7 2 2 0.28s 60
FAMOS 6 3 2 0.016s 3.8

7 2 2 0.033s 5.9

APLS 6 3 2 0.17s 48.6

MPT 6 3 2 0.003s 1
(ours) 3 1 0.004s 1

8 2 2 0.007s 1
9 2 1 0.009s 1
14 1 1 0.21 s 1

The second example is differential equation taken
from FDS that contains multicycle operations and has
a critical path six cycles long. In this example, multipli-
cation WE.S assumed to have a delay of two cycles, while
addition was given a delay of half a cycle. The corre-
sponding scheduling results for the second example are

Table 5: Experimental results for fifth order elliptic filter
example

CPU time CPU time
System Cycles ALUs (unnormalised) (normalised)

Kung

Komi

Achatz

FDS

APLS

FAMOS

M PT
(ours)

17 4 4
17 3 3
18 2 2
21 2 1
17 3 3
18 2 2

2 1 21
17 3 3
18 3 2
19 2 2

2 1 21
17 3 3

2 2 18

21 2 1
17 3 3
18 2 2

2 1 21
17 3 3
18 2 2
21 2 1
28 1 1

nla
4.2s
15.3s
22.2s
Is
5s
26s
60s

180s
420s
780 s
0.26s
3.1s

34.5s
0.067s
0.101s
0.783s
0.009s
0.013s
0.023s
0.108s

nla
883
2101
1723
99.2
343
1009
nla

nla

nla

nla
24.8
204

1285
5.3
5.6
24.3
1
1
1
1

shown in Table 4; our MPT-based extension algorithm
for multicycle operations derived in section IV was
applied for resource scheduling. Considering resource
costs, our MPT-based approach had one multiplier
growth and one ALU decrement for the case involving
seven cycles. However, a significant time saving was
also achieved by our MPT-based algorithm.

The third example is a fifth-order elliptic digital filter
[I21 that contains 26 additions and eight multiplica-
tions. For this example, multiplication was assumed to
take two cycles, and addition was assumed to have a
one-cycle requirement. The critical path was 17 cycles
long. The MPT-based solution obtained for 17 control
steps is shown in Fig. 12; it requires three multipliers

430 IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 6, November 1998

Table 6: Experimental results for SEHWA example

System CPU time CPU time
(unnormalised) (normalised)

Cycles Adds Muls

SEHWA (feasible) 7 6 3 n/a n/a

FDS 6 5 3 30s n/a
ALPS 6 5 3 0.32s 15.2
FAMOS 6 5 3 0.05s 2
MPT (ours) 6 5 3 0.018s 1

SEHWA (exhaust) 6 5 3 10 min 2381

and three ALUs. All scheduling results for the third
example are shown in Table 5, along with two other
ILP-based methods derived by H. Kmi et al. [13] and
Achatz [141, respectively. Our MPT-based algorithm
was able to obtain the optimal solutions for each criti-
cal-cycle consideration in significantly less execution
time.

Fig. 12 17 C-steps scheduling for fifth-order elliptic filter

The fourth example is a pipelined 16-point digit FIR
filter adopted from SEHWA [15]. For this example,
multiplication was assumed to take 80ns and addition
to take 40ns. Cycle time was 100ns. The latency for the
pipelined data path was equal to three cycles. The cor-
responding scheduling results for this example are
shown in Table 6. A significant time saving was
achieved by our MPT-based algorithm, and an optimal
solution was obtained.

Average normalised execution time can be expressed
as geometric mean. The formula for the geometric
mean is

APLS, 6 times than FAMOS, 1473 times than Komi,
and 325 times than Achatz. The comparisons presented
in these examples show the ALPS scheduling algorithm
to be an optimal approach to using the ILP method.
Moreover, our MPT-based algorithm can achieve near
optimal scheduling of hardware resources in signifi-
cantly shorter CPU times than any of the previous
approaches we tested.

6 Conclusions

We create MPT graphs instead of the distribution
graphs used in most previous scheduling systems. The
MPT graphs indicate maximal degrees of concurrence
among the similar operations in each control step. We
preprocess the nodes among the critical path using a
simple method that removes a subset of the total
number of nodes from the computationally more
expensive parts of the algorithm. The kernel of our
method can be classified as a branch-and-bound algo-
rithm. To improve the computation time, we propose
six priority rules to serve as our bounding functions.
Extensions for real-world constraints are also consid-
ered in our algorithm, including chained operations,
multicycle operations, mutually exclusive operations,
and pipelined data paths. Our algorithm guarantees to
achieve near-optimal hardware resources usage in sig-
nificantly shorter CPU times than other approaches
tested.

7 References

1 MCFARLAND, M.C., PARKER, A.C., and CAMPOSANO,
R.: ‘The high-level synthesis of digital systems’, Proc. IEEE, 1990,

DE MICHELI, G.: ‘Synthesis and optimization of digital circuits’
(McGraw-Hill, 1994)
PARK, I.C., and KYUNG, C.M.: ‘FAMOS: an efficient schedul-
ing algorithm for high-level synthesis’, ZEEE Trans., 1993, CAD-

4 PAULIN, P.G., KNIGHT, J.P., and GIRCZYC, E.F.: ‘HAL: A
multi-paradigm approach to automatic data path synthesis’. Pro-
ceedings of 23rd Design automation conference, 1986, pp. 263-270

5 PANGRLE, B.M., and GAJSKI, D.D.: ‘Slicer: a state synthe-
sizer for intelligent silicon compilation’. Proceedings of IEEE
international conference on Computer design, 1987

6 PARKER, A.C.: ‘MAHA: A program for datapath synthesis’.
Proceedings of 23rd Design automafion conference, 1986, pp. 263-
270

78, pp. 301-318
2

3

12, pp. 1437-1448

7 PAULIN, P.G., and KNIGHT, J.P.: ‘Force-directed scheduling
for the behavioural synthesis for ASIC’s’, IEEE Trans., 1989,
C A M , pp. 661-679
CIVERA, P., MASERA, G., PICCININI, G., and ZAMBONI,
M.: ‘Algorithms for operation scheduling in VLSI circuit design’,

8

IEE Pr&, 1993, 140, pp, 339-346
9 KERNIGHAN, B,W,, and LIN, s,: ‘An efficient heuristic proce-

dure for partitioning graph’, Bell Syst. Tech. J., 1970, 49, (2), pp.
291-308

10 HWANG, C.-T., LEE, J.-H., and HSU, Y-C.: ‘Formal approach
to the scheduling program in high-level synthesis’, IEEE Trans.,

-
where execution time ratio, is the execution time, nor-
malised to the reference system, for the ith example of
a total of IZ in the workload. Comparing the time per-
formance of systems with geometric mean, our algo-
rithm is 2875 times than MAHA, 103 times than 1991, CAD-10, pp. 464475

IEE Proc-Comput. Digit. Tech.. Vol. 14S, No. 6, November 1998 431

I 1 HSIAO, P.Y., WU,,G.M., HO, M.H., and. CHANG, C.J.: 14 ACHATZ, H.: ‘Extended Oil LP formulation for the scheduling
problem in high-level synthesis’. Proceedings of EDAC-93, 1993,
pp. 226231

15 PARK, N., and PARKER, A.C.: ‘SEHWA: a software package
for synthesis of pipelines from behavioural specifications’, IEEE
Trans., 1988, CAD-7, pp, 356-370

16 RIM, M., FA”, Y., and JAIN, R.: ‘Global scheduling with
code-motions for high-level synthesis applications’, IEEE Trans.,

MPT based scheduling for high-level synthesis’. International
symposium on VLSI technical systems and applicutions, 1995, pp.
63-67

12 KUNG, S.Y., WHITEHOUSE, H.J., and KAILATH, T.: ‘VLSI
and moiern signal processing’ (Prentice Hall, Englewood Cliffs,
NJ, 1985), pp. 258-264

13 KOMI, H., YAMADA, S., and FUKUNAGA, K.: ‘A scheduling
method by stepwise expansion in high-level synthesis’. Proceedings
of IEEE conference on Computer-aided design, 1992, pp. 234-237 1995, VLSI-3, pp. 379-392

432 IEE Proc-Comput. Digif . Tech., Vol. 145, No. 6. Novemher 1998

