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Abstract: A branch-and-bound algorithm based 
on a maximum possibility table (MPT) is 
proposed to solve scheduling problems in high- 
level synthesis. Six efficient priority rules are 
developed as bounding functions in the 
algorithm. Extensions for real-world constraints 
are also considered, including chained operations, 
multicycle operations, mutually exclusive 
operations and pipelined data paths. 
Experimental results indicate that the MPT-based 
algorithm returns competitive scheduling results 
at significant savings in execution time as 
compared with other methods. 

1 Introduction 

High-level syntheses are performed to transform algo- 
rithmically specified behaviours of digital systems into 
register-transfer level structures [l, 21. There are three 
major phases in high-level synthesis. The first phase, 
called compilation, compiles the formal language into 
an internal representation. Control/data flow graphs 
(CDFGs) are the most frequently used representations. 
The second phase, called scheduling, assigns the opera- 
tions into control steps according to certain constraints 
while minimising corresponding objective functions. 
The third phase, called allocation, tries to share hard- 
ware resources, such as functional units, storage and 
communication paths, while minimising costs as much 
as possible. However, the interrelationship between 
scheduling and allocation is very close. An optimal 
schedule is not guaranteed to provide an optimal syn- 
thesis result after subsequent allocation operations. For 
practical considerations, using many interleaved sched- 
uling and allocation iterations with a fast heuristic 
algorithm, instead of searching for a single optimal 
solution, will obtain a more satisfactory synthesis result 

During the last decade, many systems using different 
scheduling techniques have been proposed. When 
resources are unconstrained, the simplest scheduling 
technique, as soon as possible (ASAP), and the comple- 
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mentary as late as possible (ALAP), as shown in Fig. 1, 
may be used along with the corresponding description 
of the computation set from the example of the HAL 
[4] system. Scheduling problems with limited resources 
have already been shown to be NP-hard and thus, for 
most systems, analytic methodology must depend on 
heuristic techniques. The class of algorithms including 
SLICER [5] and MAHA [6] is based on list scheduling 
techniques. List scheduling manages all operations in 
topological order, using the precedences dictated by 
data and control dependencies in the CDFGs. The 
force-directed scheduling (FDS) [7] algorithm is the pri- 
mary scheme within the HAL system. In this algo- 
rithm, the cost of hardware resources can be reduced 
by conducting operations concurrently. The ASCAM 
[8] algorithm considers evaluated costs as major con- 
cerns in updating probability values. The FAMOS [3] 
algorithm is based on the scheme proposed by 
Kernighan and Lin to escape local minima traps [9]. It 
also includes various selection functions developed to 
define hardware resource costs. A global scheduling 
algorithm with code-motions has been proposed by 
Rim [16]. Instead of using heuristic algorithms to 
schedule operations, mathematical descriptions of 
scheduling objectives and constraints are derived from 
ALPS [lo] and can be successfully translated into inte- 
ger linear programming (ILP) formulations. Therefore, 
ALPS obtains solutions at the expense of execution 
time because ILP is, by nature, an exponential-time 
algorithm. 

XI = X+ dx; 
uI = U- (3*x*u*dx)- (3*y*dx); 
yl = y+ u*dx; 
c = XI < a: 

Fig. 1 ASAP und ALAP scheduling 

In this paper, a branch-and-bound algorithm based 
on a maximum possibility table (MPT) [l 11 is proposed 
to solve scheduling problems in high-level synthesis. Six 
efficient priority rules are developed as bounding func- 
tions within our MPT-based algorithm. 

2 Preprocess 

For internal representations, we create maximum possi- 
bility tables (MPTs) instead of distribution graphs. 
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Definitio,r 2.2: Given a CDFG, the freedom of path A 
equals n if, and only if, the mobility of each operation 
within path A involves n C-steps. 

For example, the freedom of path (h,  i) in Fig. 1 
equals 3. 
Definition 2.3: The critical path of a given CDFG is 
defined as  the single path of the CDFG with the long- 
est delay time. 

+ - >  
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Fig. 3 MPTgraph without critical path nodes 

For example, (a, c, d, e)  or (b, c, d, e)  can be consid- 
ered to be critical paths, as shown in Fig. 1. Using the 
critical path (a,  e, d, e )  with four control steps, we now 
assume five control steps as the time constraint. This 
time constraint thus has one control step more than the 
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critical path. MPT graphs without critical-path nodes 
can be constructed, as shown in Fig. 3. 

Using these constructed MPTs, we first consider the 
maximal multiplier possibilities. C-step.2 has the maxi- 
mal cost in MPT*. Therefore, whenever possible we 
must try to eliminate multiplication operations from C- 
step.2 when scheduling the critical path. The critical- 
path schedule for the five control-step time constraint 
is shown in Fig. 4. 

C-step 1 "0 
C-step 2 \ 

\ 

C-step 4 

C-step 5 

Fig. 4 Critical path scheduling result 



many possible alternative assignments for each opera- 
tion, as the tree structure in Fig. 5 shows. 

Fig. 5 Alternative assignments for each operation 

As shown in Fig. 5 ,  Minit describes the distributions 
of operations after the critical path has been found. 
Associated with the CDFG shown in Fig. 1, where the 
time constraint is assumed to be four control steps, 
there is only one possible noncritical path assignment 
from Minit such as assigning 0pn.b to C-step.1. After 
0pn.b has been manipulated, there are two available 
ways to assign the following opn.g, C-step.2 (Mg,2) or 
C-step.3 (Mg,3). After previous assignments have been 
made, there are two possible assignments for opnf MJ2 
or MLl,  for Mg,3 and Mg,2, respectively. Therefore, 
there are exponentially many possible paths to con- 
sider. To select the most efficient path, we propose a 
heuristic solution based on the following six priority 
rules and corresponding bounding functions to remove 
undesirable branches from the M i j  graph. 

Table 1 

Name of PR Descriptive outline 

Precedence constraint 

Lowest cost matrix 
among current 
candidates 

Minimum value of 
MPT items 

Lowest-cost ancestor min(COST(backtrack( 1, Mi,$)), 
matrix 

Backtrack among min(MPT(backtrack(> 1, Mi,j))), 
ancestors until the 
MPT value can be 
determined 

Latest C-step 

(C-step.i) < (C-step.j) Vopni - opnj, 
Si s (C-step.i) s Li, Si s (C-step.j) s Lj 

min(COST(Mi,j)),Si s (C-stepd s Li 

min(MPT(C-step.i)), Si s (C-step.i) s Li 

Si s (C-step.i) s Li 

Si s (C-step.i) s Li 

If candidates cannot be eliminated 
by R I  through R5, select matrix 
corresponding to latest C-step 

where Si, Si: the C-step that 0pn.i or 0pn.j assigned to  by 
ASAP. 
Li, Lj: the C-step that 0pn.i or 0pn.j assigned to  by ALAP. 
Mino: finding the minmum value. 
COSTO: evaluating the total cost. 
MPTO: getting the element value of MPT. 
Backtrack(n0, Mi,j): Backtrack to no-th ancestor of Mi,j. 

Section. The corresponding bounding functions are 
also listed in Table 1. For convenience of presentation, 
ancestor matrices are represented as Mc,p, Mc,p+,, ..., 
Mc,q, and the operation mobility 0pn.c is between p and 
q. By sequentially applying these six priority rules (PR1 
through PR6), we can guarantee that only one ancestor 
matrix, called the consulting matrix, should be referred. 
Using this consulting matrix, we can further construct 
the corresponding Mi,j and update the MPT. 

3.1 PR?: precedence constraint 
Operation assignments must not violate data dependen- 
cies. That is, the associative relation between 0pn.i and 
opnj in CDFG must be always preserved. 

3.2 PR2: choose the lowest cost matrix from 
among current candidates 
M i j  is made the consulting matrix if it has the lowest 
cost function among all candidate matrices, as deter- 
mined by 

C O S T ( K , , )  = Mopn(l)  * cost1 + Mopn(2) * costa 

+ . ' . + Mopn(k) * costk 
(3) 

where costk is the area-associated cost of type k opera- 
tion. 

Mf.3 Mg.2 
U +  U +  

construcf 

- -  
Fig. 6 Sample illustration of priority rules 

Fig. 6 illustrates construction MJ3 by referring to 
Mg,2 or Mg,3, where opnfis a multiplier needing to be 
assigned at C-step.3. Reference to Mg,2, shows that 
three multipliers and two adders will be consumed. 
However, reference to Mg,3, shows that four multipliers 
and two adders will be required. Precision demands 
selection of the former case. 

Mf.3 MB.3 3 gj.;%r??.$ 5 

Fig. 7 Sample illustration of priority rules 

3 Priority rules and bound functions for 3.3 PR3: minimum value of MPT items 
scheduling 

In this Section, we present detailed descriptions of six 
priority rules concerning the assignment of operations 
based on the derived representation from the previous 

This rule selects the reference matrix with the minimum 
MPT value. This approach reduces the impact of 
unscheduled nodes as much as possible. In Fig. 7, we 
refer to Mg,2 and Mg,3 to construct ML3, with equiva- 
lent cost consumption. We can check the constructed 
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informai.ion representation MPT* to determine whether 
MPT*(~:I = 5 is larger than MPT*(%) = 3; if so, we will 
select Mg,2 to construct MJ3 to reduce the impact on 
nodes not yet scheduled. 

3.4 P/?4: lowest-cost ancestor matrix 
This rule identifies the lowest-cost matrix from among 
ancestor matrices. As shown in Fig. 8, we refer to Mx,2 
or Mx,3 to construct Mr: I .  They have equivalent sched- 
uled MJl  costs and MPT*. However, the cost consump- 
tion resilting from Mx,2 is lower than that resulting 
from Mg,3,  therefore we will select Mg,2 to construct 

Mf, I 

MPT* 
3 

Mf.1 M8.3 4 
4 

Fig. 8 Srrmple ih t ra t ion  of priority rules 

Mf.3 Mg. I Me.2 
X +  

MPT* 
4 
4 3 2  3 2  

MU Mg.2 Me.3 
T +  X +  X +  3 

- 3 2  3 2  

2 2  

3 0  
3 2  

2 

Fig. 9 Srrmple illustration of priority rules 

3.5 Pt75: backtrack among ancestors until the 
MPT value can be determined 
This rule backtracks among ancestors of candidate 
matrices until PR3 is able to determine an appropriate 
selection. As shown in Fig. 9, we would like to con- 
struct M f 3 ,  but we cannot distinguish between Mg,l  and 
Mg,2 by applying PRl through PR4. Hence, we back- 
track among ancestor matrices to Me,2 and Me,3, where 
MPT(3) < MPT(2), after which the former can be 
abandoned. 

3 

Fig. 10 

428 

Sample illustration of priority rules 

3.6 PR6: latest C-step selection 
If an appropriate selection cannot made using PRl 
through PR5, the latest C-step is then considered. This 
rule is derived from the ALAP algorithm. As shown in 
Fig. 10, Mg, ,  and Mx,2 have passed RI  through R5. 
We would then select Mg,2 to construct M J ~  since its 
corresponding C-step occurred later than Mg, ] .  

A complete description of our algorithm is presented 
below. Note that the six priority rules must be checked 
in sequence. 
Branch-Bound-SCHEDULE() { 
Take the data flow graph, assignment delays and cost 
values of each operation; 
Use ASAP and ALAP to determine the mobility of all 
operations; 
Find the critical path; 
Create MPTs for noncritical path nodes. 
Schedule the critical path; 
WHILE (there are nodes remain unassigned) 

select a path A with the smallest degree of 
freedom; 
SCHEDULE(A); 

END 

1 
SCHEDULE(A) 
BEGIN 

select node i which is the leaf node of path A; 
WHILE(i is not NULL) 

FOR j = mobility-start(i) TO mobility- 
end(i) using PRI, PR2, ..., PR6 to 
select the consulting matrix; 
IF (operation i is assigned to C-step j ,  
all data dependencies are not violated) 

THEN using consulting matrix to construct 
Mi,j i = leaf node of path A; remove i from A; 
update the MPT; 
END 

WHILE (there are paths related to path A 
that are unscheduled) select one path B 
among them with the smallest degree of free- 
dom; 
SCHEDULE(B); 
END 

END 
The result derived from our algorithm on the example 
from HAL is shown in Fig. 11. We assume that the 
available functional units are multipliers and ALUs 
(the ALU is capable of performing addition, subtrac- 
tion and comparison), and that the multiplier costs are 
higher than the costs of the ALUs. It is not difficult to 
see that the critical path is (a, c, d, e).  Minit is the initial 
potential cost matrix after the critical path has been 
scheduled. The initial MPT* = (3,3,2,0) and MPT+ = 
(1,3,3,2); neither of these MPT graphs include the criti- 
cal path. The arrows point out the matrices associated 
with the consulting direction. PR1, PR2, ..., PR6 along 
with the arrows are used as referential bases. When 
0pn.b can only be assigned to C-step.1, we assign 0pn.b 
to C-step.1 and refer to Minit to construct Mb,l with 
the first element in the second column increased by one 
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Mj.1 M k . 2  Mh.1 Mi2 
+ X  + X  + X  + X  

Mtl Mg,2 Minit 

Fig. 11 Procedures derived by our MPT-bused algorithm for H A L  example 

and the last element in the second column changed to 
2. MPT* must be updated to (2,3,2,0). The o p n f  can 
follow assignment to C-step.2 or C-step.1. Since it is 
assigned to C-step.2, it can refer by Mg,3 only, because 
according to PRI, 0pn.g and opnfhave data dependen- 
cies. As it is assigned to C-step. 1,  the candidate matri- 
ces Mg,2 and Mg,3 have the same costs as the candidate 
matrices. Now, MPT* = (2,2,1,0) and the third element 
is smaller than the second element. Therefore, Mf;, can 
refer to Mg,3 according to PR3. Using the proposed 
methodology, the final solution is indicated by the 
shadowed block. We can backtrack indexes to obtain 
the optimal solution, as shown by the thick arrows; 

multipliers and two ALUs are required for the imple- 
mentation. 

For the computational complexity consideration of 
the proposed algorithm, the associated MPTs can be 
created in linear time and initialisation of the critical 
path also consumes linear time. Let S be the number of 
control steps and N be the total number of noncritical 
path nodes. Consider PR5 is backtracking behaviour, 
which may require O(iV). In the worst case, the entire 
time complexity will be bounded by O(S2N2). 

they are Mj,2> Mk.3, Mi ,4> Mf;2> Mg,3> Mb,1. That is, two 

4 Extensions for real-world constraints 

In previous Sections, we assumed that one clock cycle 
is required for each operation, but that is not always 
true in real situations. In this Section we must extend 
the previous algorithm to accommodate real world 
situations. 

The conditional construct is similar to the ‘if-then- 
else’ or ‘case’ statement within the programming 
language. Inherently, it results in several mutually 
exclusive branches. Mutually exclusive operations can 
easily be handled by referring to them as only one 
operation if they use the same type of functional unit, 
even though they are assigned to the same control step. 

Operations that require multiple control steps to exe- 
cute are also considered. For nonpipelined implementa- 
tion, when the operation is assigned, the functional unit 
cannot be shared by other operations until the assigned 
operation has been completed. Assume that M i j  indi- 
cates that operation i is necessarily assigned from C- 
step4 to C-step.(j + di - l), where di represents the 
propagation delay of operation i. Then, a new MPT, 
called MC-MPT, must be redefined as follows: 
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j + d , - l  

M C  - M p T t y p e ( c ) , j  = M p T t y p e ( c ) , k  
k = j  

Therefore, PR3 and PR5 must be modified to choose 
the smallest MC-MPT. Specifically, the corresponding 
hardware use costs must be modified for each propaga- 
tion C-step following assignment. 

For functional units that provide chaining functions, 
we can chain several operations in one cycle if their 
total running time is less than the cycle time. We can 
further formulate a chaining problem as a multicycle 
problem by reducing the cycle time. The greatest com- 
mon divisor of the functional unit’s propagation delay 
time is selected as the new cycle time; a multicycle 
strategy can then be used to solve the chaining prob- 
lem. 

For pipelined data-path systems, execution of multi- 
ple tasks can be conducted concurrently. For a given 
latency L, operations assigned to C-step(i + pL)  (for p 
= 0, 1, 2, ... and i = 0, 1, 2, ..., L - 1) cannot share a 
functional unit because they are executed simultane- 
ously. Consequently, the MPT in PR3 and PR5 must 
be changed to the sum of MPTs (SMPT) over C-stepj 
+ p L  (p = 0, 1, 2, ...) as follows: 

sMPTtype(c),j = c M P T t y p e ( c )  ,7 

( r - j )modL=O,l<rLs 

where 
s denotes the number of C-steps 

PR3 is then modified as follows: 

S M p T t y p e ( c )  , j 1  = min ( s M P T t y p e ( c ) , p + k )  

O l k l p L  

Table 2: Information on computers 

Method Computer MIPS 

MAHA [61 

FDS 171 
ALPS [IO] 

FAMOS 131 

SEHWA [I51 

Kung 1121 

Komi [ I31  
Achatz [I41 

MPT [ours] 

VAX-I ID50 

Xerox 1108 LISP machine 

VAX-11/8800 

SUN 4/280 

VAX-I ID50 

nla 

SUN SPARC 

SUN SPARC-2 

SUN SPARC-IPC 

1 

nla 
12 

10 

1 

n/a 
25 

12.5 

14 
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Table 3: Experimental results for MAHA example 

CPU time CPU time 
Cycles Operlcycle Adds Muls (unnormalised) (normalised) System 

MAHA 8 1 1 1 160s 2857 
4 3 2 3 160s 2857 

FDS 8 1 1 1 50 s nla 

4 2 2 2 25s nla 

3 3 3 3 35s nla 

APLS 8 1 1 1 0.26s 55.7 
4 2 2 2 0.08s 17.1 
3 3 3 3 0.23s 49.3 

FAMOS 8 1 1 1 0.033s 5.9 
4 2 2 2 0.05s 8.9 
3 3 3 3 0.033s 5.9 

MPT(ours) 8 1 1 1 0.004s 1 
4 2 2 2 0.004s 1 
3 3 3 3 0.004s 1 
2 4 4 4 0.004s 1 

5 Experimental results 

Our MPT-based system has been implemented and 
tested in C language on a Sun SPARC-IPC. To verify 
the efficiency of the proposed algorithm, results from 
other approaches are described, and are compared with 
ours in Tables 3-6. For comparison with other meth- 
ods, we have normalised the CPU time for each 
method using the MIPS information shown in Table 2. 
Note that the required resource results for ALPS in 
these Tables are optimal, since they are obtained using 
ILP. 

The first example, taken from MAHA, contains 
chained (operations involving fewer than eight cycles. 
The experimental results for this example are summa- 
rised in Table 3. The same required resource cost opti- 
misations, can be derived using FDS, ALPS, FAMOS 
and our MPT-based approach. However, a significant 
time saving is achieved by our MPT-based algorithm. 

Table 4: E.xperimental results for FDS example 

FDS 6 3 2  15s nla 

7 2 2 35s nla 

7 2 2 0.28s 60 
FAMOS 6 3 2 0.016s 3.8 

7 2 2 0.033s 5.9 

APLS 6 3 2 0.17s 48.6 

MPT 6 3 2 0.003s 1 
(ours) 3 1  0.004s 1 

8 2 2 0.007s 1 
9 2 1  0.009s 1 
14 1 1 0.21 s 1 

The second example is differential equation taken 
from FDS that contains multicycle operations and has 
a critical path six cycles long. In this example, multipli- 
cation WE.S assumed to have a delay of two cycles, while 
addition was given a delay of half a cycle. The corre- 
sponding scheduling results for the second example are 

Table 5: Experimental results for fifth order elliptic filter 
example 

CPU time CPU time 
System Cycles ALUs (unnormalised) (normalised) 

Kung 

Komi 

Achatz 

FDS 

APLS 

FAMOS 

M PT 
(ours) 

17 4 4 
17 3 3 
18 2 2 
21 2 1  
17 3 3 
18 2 2 

2 1  21 
17 3 3 
18 3 2 
19 2 2 

2 1  21 
17 3 3 

2 2  18 

21 2 1  
17 3 3 
18 2 2 

2 1  21 
17 3 3 
18 2 2 
21 2 1  
28 1 1 

nla 
4.2s 
15.3s 
22.2s 
Is 
5s 
26s 
60s 

180s 
420s 
780 s 
0.26s 
3.1s 

34.5s 
0.067s 
0.101s 
0.783s 
0.009s 
0.013s 
0.023s 
0.108s 

nla 
883 
2101 
1723 
99.2 
343 
1009 
nla 

nla 

nla 

nla 
24.8 
204 

1285 
5.3 
5.6 
24.3 
1 
1 
1 
1 

shown in Table 4; our MPT-based extension algorithm 
for multicycle operations derived in section IV was 
applied for resource scheduling. Considering resource 
costs, our MPT-based approach had one multiplier 
growth and one ALU decrement for the case involving 
seven cycles. However, a significant time saving was 
also achieved by our MPT-based algorithm. 

The third example is a fifth-order elliptic digital filter 
[I21 that contains 26 additions and eight multiplica- 
tions. For this example, multiplication was assumed to 
take two cycles, and addition was assumed to have a 
one-cycle requirement. The critical path was 17 cycles 
long. The MPT-based solution obtained for 17 control 
steps is shown in Fig. 12; it requires three multipliers 
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Table 6: Experimental results for SEHWA example 

System CPU time CPU time 
(unnormalised) (normalised) 

Cycles Adds Muls 

SEHWA (feasible) 7 6 3 n/a n/a 

FDS 6 5 3 30s n/a 
ALPS 6 5 3 0.32s 15.2 
FAMOS 6 5 3 0.05s 2 
MPT (ours) 6 5 3 0.018s 1 

SEHWA (exhaust) 6 5 3 10 min 2381 

and three ALUs. All scheduling results for the third 
example are shown in Table 5, along with two other 
ILP-based methods derived by H. Kmi et al. [13] and 
Achatz [ 141, respectively. Our MPT-based algorithm 
was able to obtain the optimal solutions for each criti- 
cal-cycle consideration in significantly less execution 
time. 

Fig. 12 17 C-steps scheduling for fifth-order elliptic filter 

The fourth example is a pipelined 16-point digit FIR 
filter adopted from SEHWA [15]. For this example, 
multiplication was assumed to take 80ns and addition 
to take 40ns. Cycle time was 100ns. The latency for the 
pipelined data path was equal to three cycles. The cor- 
responding scheduling results for this example are 
shown in Table 6. A significant time saving was 
achieved by our MPT-based algorithm, and an optimal 
solution was obtained. 

Average normalised execution time can be expressed 
as geometric mean. The formula for the geometric 
mean is 

APLS, 6 times than FAMOS, 1473 times than Komi, 
and 325 times than Achatz. The comparisons presented 
in these examples show the ALPS scheduling algorithm 
to be an optimal approach to using the ILP method. 
Moreover, our MPT-based algorithm can achieve near 
optimal scheduling of hardware resources in signifi- 
cantly shorter CPU times than any of the previous 
approaches we tested. 

6 Conclusions 

We create MPT graphs instead of the distribution 
graphs used in most previous scheduling systems. The 
MPT graphs indicate maximal degrees of concurrence 
among the similar operations in each control step. We 
preprocess the nodes among the critical path using a 
simple method that removes a subset of the total 
number of nodes from the computationally more 
expensive parts of the algorithm. The kernel of our 
method can be classified as a branch-and-bound algo- 
rithm. To improve the computation time, we propose 
six priority rules to serve as our bounding functions. 
Extensions for real-world constraints are also consid- 
ered in our algorithm, including chained operations, 
multicycle operations, mutually exclusive operations, 
and pipelined data paths. Our algorithm guarantees to 
achieve near-optimal hardware resources usage in sig- 
nificantly shorter CPU times than other approaches 
tested. 
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